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Background: Eye movement tests remain significantly underutilized in

emergency departments and primary healthcare units, despite their superior

diagnostic sensitivity compared to neuroimaging modalities for the di�erential

diagnosis of acute vertigo. This underutilization may be attributed to a potential

lack of awareness regarding these tests and the absence of appropriate tools for

detecting nystagmus. This study aimed to develop a nystagmus measurement

algorithm using a lightweight deep-learning model that recognizes the

ocular regions.

Method: The deep learning model was used to segment the eye regions,

detect blinking, and determine the pupil center. The model was trained using

images extracted from video clips of a clinical battery of eye movement tests

and synthesized images reproducing real eye movement scenarios using virtual

reality. Each eye imagewas annotatedwith segmentationmasks of the sclera, iris,

and pupil, with gaze vectors of the pupil center for eye tracking. We conducted

a comprehensive evaluation of model performance and its execution speeds

in comparison to various alternative models using metrics that are suitable for

the tasks.

Results: The mean Intersection over Union values of the segmentation model

ranged from 0.90 to 0.97 for di�erent classes (sclera, iris, and pupil) across types

of images (synthetic vs. real-world images). Additionally, the mean absolute

error for eye tracking was 0.595 for real-world data and the F1 score for

blink detection was ≥ 0.95, which indicates our model is performing at a very

high level of accuracy. Execution speed was also the most rapid for ocular

object segmentation under the same hardware condition as compared to

alternative models. The prediction for horizontal and vertical nystagmus in real

eye movement video revealed high accuracy with a strong correlation between

the observed and predicted values (r = 0.9949 for horizontal and r = 0.9950 for

vertical; both p < 0.05).

Conclusion: The potential of our model, which can automatically segment

ocular regions and track nystagmus in real time from eye movement videos,

holds significant promise for emergency settings or remote intervention within

the field of neurotology.
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Introduction

Sudden damage to the peripheral-to-central vestibular pathway

can lead to visual fixation failure due to the loss of the vestibulo-

ocular reflex, resulting in abnormal eye movements accompanied

by acute vertigo. The observation of such movements provides

diagnostic information regarding the underlying lesion. For

instance, physicians can identify the neural substrate responsible

for acute vertigo using the “HINTS” examination, i.e., the head

impulse (HI) and nystagmus tests (N), and the test of skew (TS).

These tests are widely used to identify central lesions in patients

with acute vestibular syndrome (1–3). Recent studies have revealed

that the “HINTS” examination is more sensitive than neuroimaging

modalities for distinguishing patients with central lesions such as

posterior circulation strokes among patients with acute vertigo; the

sensitivity is 100% and the specificity is 90–94.4% within the first

24 h after a vertigo attack (1, 4). Additionally, nystagmus evaluation

is critical when diagnosing benign paroxysmal positional vertigo

(BPPV) or inferring the inner ear status in patients with Meniere’s

disease. Thus, neuro-otologists must aim to identify abnormal eye

movements as the first bedside exam in patients with acute vertigo.

However, performing eye movement analyses, including

HINTS, and specifically interpreting them, require training to

achieve the clinical accuracy necessary for making diagnoses.

Unfortunately, most patients with acute vertigo primarily visit

emergency departments (EDs) or primary health care units

(PHCUs) that lack trained experts to diagnose with confidence

(5, 6). Furthermore, observation of eye movements during the

ictal period is critical but difficult if no neurotologist or device

to track eye movements is available at the time of the vertigo

attack. Therefore, a focus on providing a dedicated support

system in eye movement tracking and interpretation to frontline

physicians could contribute to improving diagnostic workflow

and avoiding unnecessary brain imaging. We hypothesized

that recording eye movements by patients themselves during

episodes of vertigo and subsequently presenting the video

footage along with nystagmus tracking results during doctor’s

appointments could significantly improve healthcare access and

patient care. This approach would be particularly valuable for

remote evaluation in rural areas where specialized medical

expertise may be limited.

We previously developed a deep learning-based diagnostic

system that classified nystagmus patterns in BPPV patients,

in which we speculated that our trained model from those

who revealed horizontal, vertical, or torsional nystagmus

according to the affected canal can support frontline physicians

in making a diagnosis for patients with vertigo (7). However,

we have reached the conclusion that any model that seeks

to address these problems must be lightweight and patient-

centric design to facilitate efficient diagnostic workflow.

Recent studies have utilized webcams (8) and smartphones

(9) as well as video-oculographic devices (10) for detection

of nystagmus. Thus, we have developed a new technology

capable of continuously tracking eye movements by recognizing

regions of the ocular. It is also capable of providing frame-by-

frame inferences even on low-end graphics processing units

(GPUs) without sacrificing horizontal or vertical nystagmus

tracking accuracy.

TABLE 1 Image datasets for model development.

Source Training Validation Test Total

HUSHH-SN 686 86 86 858

HUSHH-vHIT 566 71 71 708

OpenEDS 9,311 1,164 1,164 11,639

UnityEyes 55,267 6,909 6,908 69,084

Total 65,830 8,229 8,230 82,289

SN, spontaneous nystagmus; vHIT, video head impulse test; HUSHH, Hallym University

Sacred Heart Hospital.

We hope that our model can expedite the diagnostic process

for patients with vertigo, particularly in EDs where timely decisions

are critical or PHCUs, and contribute to remote consultations with

neurotologic experts, bridging geographic variations and ensuring

interpretation of eye movements without the need for additional

specialized equipment, for patients in rural or underserved areas.

Materials and methods

Datasets and preprocessing

We obtained extracted images from real eye movement video

clips from Hallym University Sacred Heart Hospital (HUSHH)

and real eye-image datasets from OpenEDS (11) while synthetic

eye-image datasets were obtained from UnityEyes (12) (Table 1).

The HUSHH datasets were eye-tracking videos of patients (N

= 1,568) who underwent the spontaneous nystagmus test and

video head impulse test (Interacoustics, Middelfart, Denmark);

the Institutional Review Board of Hallym University College of

Medicine approved our use of the datasets (#2022-02-012).

During the data generation process for extraction of images

within the videos from HUSHH, we assessed image similarity

using the Structural Similarity Index Measure (SSIM) from the

Scikit-image package (13). Images with low similarity (SSIM below

0.8) were selectively extracted, ensuring the exclusion of similar

instances throughout the entire dataset. OpenEDS data were

collected during challenges conducted by Meta Platforms Inc. (CA,

USA); the Sparse Semantic Segmentation Challenge 2020 datasets

were used with permission. Synthetic eye images using UnityEyes

were generated with the starting position of the pupil center set

at (x, y) = (0, 0), and the maximum allowed variations were

configured to span from −40 to +40◦ for both the x and y axes.

These settings were utilized to replicate various real eye movements

based on data from UnityEyes.

We used a total of 82,289 images from those datasets for eye

tracking and segmentation of ocular regions, which was split into

80% for the training set, 10% for the validation set, and 10% for the

testing set according to their data sources (Table 1 and Figure 1).

All images were resized to 100× 100 pixels.

Subsequently, we manually annotated ocular regions on those

images using segmentation masks of the sclera, iris, and pupil

(Figure 1). In addition, gaze vectors were employed for eye

tracking, with (x, y) coordinates of the pupil center serving as

the basis for tracking the direction of gaze. The gold standard
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FIGURE 1

Dataset preprocessing (annotation) for ocular object segmentation model. There were two preprocessing steps: (a) extraction of the ocular region

from the image followed by (b) labeling of the sclera, iris, and pupil.

TABLE 2 Datasets for blink classification.

Category Training Validation Test Total

Open 6,697 837 838 8,372

Closing 7,045 881 881 8,807

Closed 5,420 677 678 6,775

Total 19,162 2,395 2,397 23,954

for eye landmark annotation, specifically for the iris and pupil,

involves fitting an ellipse to the segmentation area. The center

point is determined by calculating the centroid of the fitted ellipse,

and this derived center point is utilized as the labeled position.

This approach offers objectivity and precision compared to manual

labeling of the center point by individuals.

For the blink detection model, a total of 23,954 images out of

82,289 images were annotated as follows; “open” when the iris was

fully visible, “closing” when the iris was partially covered by the

eyelid, and “closed” when the iris was invisible. The images are split

into 80% for the training set, 10% for the validation set, and 10% for

the testing set (Table 2).

Model architecture

Initially, our deep learning models were developed

independently according to their specific tasks (a model

that segmented the sclera, iris, and pupil, a gaze estimation

model, and a model that detected blinks; Please refer to the

Supplementary material for more detailed information regarding

three model developments). Subsequently, these models were

integrated for the nystagmus tracking (Figure 2).

The algorithm flow of deep learning-based eye movement

analysis can be summarized as follows: (1) input video data; (2)

extract frames; (3) input the frames; (4) output the segmented

pupil, iris, eyelid, blink status (open, closing, closed), and (x, y)

coordinates of the iris center (Figure 3); and (5) graphically present

nystagmus patterns on the horizontal and vertical axes (Figure 4).

In more detail, the algorithm started by locating the pupil

centers in eye movement videos. Frame images were extracted

from these videos, serving as input data for artificial intelligence

(AI) to identify the central pupil coordinates and detect whether

the eyes were blinking. For each frame where the eye was not

closed, horizontal (x) and vertical (y) coordinates were extracted,

referencing the central pupil coordinates, and plotted over time.

In cases where the eye was closed, the algorithm interpolated

the horizontal and vertical coordinates. This process allowed for

the tracking of eye movements and the analysis of gaze vectors

(Figure 4).

Performance metrics for model validation

The mean Intersection over Union (mIoU) score, which

represents the ratio of the predicted area overlap to the actual

area overlap, was employed to assess the performance of the

segmentation model. A value closer to 1 indicates better model

performance in accurately segmenting the desired areas;

J (GT, P) = 1−
GT ∩ P

GT ∪ P
(GT : ground truth, P predicted values)

The mean absolute error (MAE), which calculates the average

absolute difference between observations and estimates, and the

root mean squared error (RMSE), which computes the average

square of the difference, were utilized for model validation of

eye tracking. Lower RMSE and MAE values, closer to 0, indicate

superior model performance, implying that the observed and

estimated values are closely aligned;

MAE =
1

n

n
∑

i=1

|Ŷi − Yi|,RMSE =

√

√

√

√

1

n

n
∑

i=1

(Ŷi − Yi)
2

where Yi is the ith observation, Ŷi is the ith estimate, and n is the

number of data points.

The study conducted a comparative analysis, evaluating the

performance and inference times of the gaze-tracking and ocular

object segmentation models in relation to findings from previously

developed models.
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FIGURE 2

Model architecture. The model has two modules: (a) a segmentation module (black dotted square) and (b) a module that classifies key object points

(red dotted square). The former module is trained to allow artificial intelligence-based generation of key ocular variables. The latter module uses a

portion of the former module to combine or separate the segmentation outputs; integration is flexible (the Supplementary material provides a

comprehensive overview of the methods employed for ocular object segmentation, blink detection, and eye-tracking).

FIGURE 3

Model inference. The left image shows a closing blink and the pupil center points detected by our model. The images on the right are the AI outputs

of the sclera, iris, and pupil (DeepVOG lacks iris and scleral outputs, and EllSeg has no scleral output).
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TABLE 3 Segmentation model performance comparison using mean IoU scores.

Model (W, H, C) OpenEDS HUSHH

Sclera Iris Pupil Sclera Iris Pupil

Deep VOG (240, 320, 3) - - 0.6806 - - 0.8171

EllSeg (240, 320, 1) - 0.8278 0.9157 - 0.6607 0.7632

RITnet (640, 400, 1) 0.0290 0.4663 0.7142 0.0674 0.4157 0.5404

Our model (100, 100, 1) 0.9743 0.9601 0.9281 0.9500 0.9352 0.9073

(W, H, C), optimal image size for each model. The model with the highest mean IoU scores, denoted in bold, indicates superior performance (higher scores represent better performance).

Results

Model performance for ocular object
segmentation

In our initial evaluation, we focused on assessing the

performance of our ocular object segmentation model. For

a detailed description of the algorithm, please refer to the

Supplementary material. We conducted a comparative analysis

with open-source models, ensuring that all input images were

appropriately adjusted to meet the varying size requirements of

different models (as outlined in Table 3).

Interestingly, the DeepVOG model (14) exhibited higher

accuracy in predicting images sourced from the HUSHH dataset.

In contrast, EllSeg (15) and RITnet (16) demonstrated higher

performance when dealing with OpenEDS images, reflecting their

adaptability to the specific characteristics of the training data

used for those models. However, when considering overall object

segmentation performance across different data sources, our model

consistently outperformed the alternatives. Irrespective of the data

origin, our model consistently delivered superior results in terms of

ocular object segmentation.

To assess pupil tracking performance (please refer to the

Supplementary material for details on the algorithm), we computed

metrics including, MAE, and RMSE. When validating with

OpenEDS data, our algorithm achieved an average MAE of 0.42,

and when using HUSHH data, the MAE was 0.59. In contrast, the

GazeML eye-tracking model (17) yielded MAE values of 10.87 and

7.23 when applied to OpenEDS and HUSHH data, respectively.

Notably, our model exhibited significantly superior performance

compared to the GazeML model (Table 4).

The blink detection model (please refer to the

Supplementary material for details on the algorithm) demonstrated

high accuracy, achieving F1 scores of ≥ 0.95 for the open, closing,

and closed states, along with area under the curve (AUC) values

exceeding 0.99. Our model’s predictions exhibited a high level of

precision and reliability in blink detection (Table 5).

Execution speed and number of parameters

To ensure a fair comparison of execution speeds, we

standardized all models by converting them to ONNX format and

evaluating their performance consistently. We measured frames

per second (FPS) values over 3,000 iterations with a batch size

TABLE 4 Eye-tracking performance comparison.

Model OpenEDS HUSHH

MAE RMSE MAE RMSE

GazeML 10.8796 14.4496 7.2380 14.9750

Our model 0.4220 0.5294 0.5953 0.8216

The model with the lowest MAE and RMSE values, denoted in bold, indicates superior

performance (lower values represent better performance).

TABLE 5 Blink model performance.

Label AUC F1 ACC

Open 0.9954 0.9666 0.9786

Closing 0.9909 0.9502 0.9663

Closed 0.9985 0.9776 0.9877

TABLE 6 Number of parameters and runtime of the ocular segmentation

models.

Model Number of
parameters

Frames per second

RTX 3060
(12.7 TFlops)

RTX A6000
(38.7 TFlops)

DeepVOG 24,706,387 27.85 100.34

EllSeg 2,181,179 30.40 61.35

RITnet 248,900 53.70 116.32

Our model 10,338,172 94.59 194.69

TFlops, Tera Floating-point Operations Per Second. The model with the highest FPS, denoted

in bold, indicates superior performance (higher values represent better performance).

of 1 for this evaluation. The validation environment was set up

on an Ubuntu 20.04 LTS operating system, AMD Ryzen 5 2600

and Intel Xeon Gold 5218R CPUs, as well as RTX3060 and RTX

A6000 GPUs. The programming languages employed were Python

(version 3.8.13) along with the ONNX Runtime-GPU library

(version 1.14.1).

Remarkably, our model exhibited the swiftest ocular object

segmentation performance. Despite EllSeg and RITnet having

fewer parameters than our model, their runtimes were slower than

ours across both the RTX3060 and RTX A6000 GPUs, as outlined

in Table 6.
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Nystagmus measurement

Finally, we conducted an assessment of the performance of our

trained model using image datasets to detect and classify horizontal

and vertical nystagmus from eye movement videos. To achieve

this, we randomly selected video clips recording the positional

nystagmus of a patient with posterior canal BPPV in a dataset

we had previously collected and curated (7). In this video clip,

eye movements over time in the x (horizontal) and y (vertical)

directions from the pupil center were computed by the ocular

object segmentation model. When we employed the computed eye

movements as the ground truth, representing the genuine reference

data for nystagmus tracking. this reference data was compared

with the predictions made by our model. We observed strong

linear correlations between the ground truth eye movements and

our model’s predictions. Specifically, the correlation coefficient for

horizontal eye movements was 0.9949, and that for vertical eye

movements was 0.9950. Notably, both correlations demonstrated

high statistical significance (Figure 5, p < 0.05), underscoring the

robustness of our model’s predictions. In summary, our model

exhibited a potential possibility to detect and classify nystagmus,

offering promising prospects for applications in clinical diagnosis

and monitoring.

Discussion

In cases of acute vertigo, a significant proportion of patients

initially seek medical attention at EDs or PHCUs. It is worth noting

that careful observations of eye movements can play a critical

role in differentiating posterior circulation stroke, surpassing the

sensitivity of neuroimaging modalities (1–4). However, in many

of these clinical settings, routine evaluations of eye movements

are not standard practice because front-end physicians often lack

familiarity with these specialized tests and may feel uncertain about

accurately interpreting the results (4). Additionally, a challenge

arises from the fact that patients experiencing vertigo may not

always seek medical attention at clinics when symptoms are

actively occurring.

Even though telemedicine concepts using HINTS evaluation

have been introduced for those scenarios (18, 19), it is important

to acknowledge that implementing these concepts comes with

limitations, particularly in terms of the additional resources

required. This includes the need for teleconsultants, specialized

equipment for detecting eye movements, and the establishment

of robust network systems. Our earlier deep learning model,

which classified nystagmus and localized BPPV, demonstrated high

sensitivity and specificity with reasonable diagnostic performance

(7). However, the model was trained using the dataset of positional

tests conducted by experts, and the machine learning required

a high-end GPU and considerable computing time. Thus, we

thought that our earlier model also may not be practical in these

clinical scenarios.

In light of these considerations, our primary objective has

been to simplify and enhance the process of conducting eye

movement examinations and interpreting them in these clinical

scenarios. As a first step, our novel AI-based algorithm was

designed to track eye movements or nystagmus in eye videos,

with future improvements planned to enable compatibility with

recordings from a webcam or smartphone camera. To achieve

this, we have developed three AI models, including the ocular

object segmentationmodel, blink detectionmodel, and pupil center

tracking model, which we subsequently integrated. This multi-

faceted approach has allowed us to accurately identify and monitor

nystagmus, providing valuable diagnostic information from the eye

video itself.

For instance, our model initiates by detecting ocular elements,

including the sclera, iris, and pupil, within eye video footage.

Subsequently, it tracks eye movement by identifying pupil center

coordinates and monitoring blinking over time, allowing us to

measure and analyze eye movement directly from video footage.

In terms of ocular object segmentation, our model achieved

outstandingmIoU scores for different eye components. Specifically,

when we validated our model using the OpenEDS dataset, it

achieved mIoU scores of 0.974 for the sclera, 0.9601 for the iris,

and 0.9281 for the pupil. When we utilized the HUSHH dataset for

validation, the scores remained impressive at 0.9500 for the sclera,

0.9352 for the iris, and 0.9073 for the pupil. These results surpassed

the performance of other open-source models, as summarized in

Table 3.

When validated using the OpenEDS dataset for eye-tracking

performance, it achieved anMAE of 0.42. Similarly, when tested on

the HUSHH dataset, it achieved an MAE of 0.59. In contrast, the

GazeML model (17), when validated on the same datasets, yielded

much higher MAEs of 10.87 for OpenEDS and 7.23 for HUSHH.

These results clearly highlight the superior accuracy and precision

of our model in the context of eye-tracking.

However, it’s important to acknowledge that, despite excluding

frames with similar features from our dataset using a similarity

index during model development, our model has not yet been

validated with a truly independent dataset. This highlights the

necessity for additional validation using an independent dataset to

fully establish the model’s efficacy and generalizability.

Interestingly, despite its initial training involving virtual

eye images—synthetic images generated by UnityEyes within a

virtual reality (VR) environment—our model has demonstrated

remarkable performance when applied to real-world footage In

fact, synthetic data has played a crucial role in augmenting

datasets, particularly in scenarios where generating data within a

clinical setting is difficult. This type of data enables the training

of AI models using realistic simulations, which is especially

beneficial when clinical data is scarce. Therefore, we speculated that

employing synthetic data inmodel training would lead to improved

accuracy in the final AI model for nystagmus tracking.

While it is well-known that open-source models, as outlined

in Table 3, provide segmentation functions by classifying ocular

elements, our model stood out as particularly well-suited for eye

tracking compared to other models for several reasons. Firstly,

the current DeepVOG does not provide predictions for the sclera

and iris (14). Similarly, EllSeg does not offer predictions for the

sclera (15). Even though RITnet provides predictions for the

sclera, iris, and pupil (16), it exhibits very low IoU performance

on benchmark datasets. Moreover, apart from our model, all

other models showed a discrepancy of 0.10 or more in IoU

between OpenEDS and HUSHH, indicating poor generalization

performance. Thus, it is evident that DeepVOG, EllSeg, and RITnet
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FIGURE 4

Flow of the deep learning-based nystagmus-tracking algorithm. Video frames of eye movements were input for segmentation and detection of the

pupil center and blinking (blue quadrangle). Significant eye movements (nystagmus) were plotted on the x (horizontal eye movements) and y axes

(vertical eye movements).

FIGURE 5

Model-predicted and actual pupil coordinates of a patient with BPPV (left) and a graphical presentation (right). Scatterplots were drawn to assess the

similarity between predicted and actual pupil coordinates. Each graph plots the predicted (y-axis) against the actual (x-axis) pupil coordinates. The

red line indicates a perfect match (y = x). The horizontal (x-axis) and vertical (y-axis) centroid pupil coordinates inferred by our model on videos of

BPPV patient eye movements are shown and evaluated on a per-frame basis.

were not suitable models for achieving accurate segmentation for

nystagmus measurement, even when used as backbones. However,

to enhance the robustness of our model’s performance, it is crucial

to incorporate alternative validation strategies, including the use of

additional datasets.

Subsequently, we evaluated the potential performance of

our model. We conducted experiments with the ocular object

segmentation model that we employed in two different systems:

a consumer-grade system equipped with an RTX 3060 GPU and

an AMD Ryzen 5 2600 CPU, and a workstation-grade system

running Ubuntu 20.04 LTS with the RTX A6000 GPU and

Intel Xeon Gold 5218R CPUs. The achieved frame rates were

94.59 FPS for the former and 194.69 FPS for the latter. These

results significantly surpass the performance of existing models.

Although EllSeg (15) and RITnet (16) have fewer parameters

than our model during ocular segmentation tasks, their runtimes

were slower. These results suggest that our model could be

well-suited for potential deployment on low-end computers. Its

efficiency and speed make it a promising choice for such resource-

constrained platforms.

In our final evaluation for nystagmusmeasurement, we adopted

a manual approach to determine the pupil center’s coordinates on

both the x (horizontal) and y (vertical) axes. These coordinates

were extracted from images using our ocular object segmentation

model, derived from video frames of a patient with posterior canal

BPPV. Subsequently, changes in these coordinates over time were

computed and used as the ground truth data, representing the

actual eye movements. The results were highly promising, with

the correlations between our model’s predictions and the ground

truth data demonstrating excellent agreement. Specifically, the

correlations were 0.9949 for horizontal movements and 0.9950 for

vertical movements. Our model showed its capability to accurately

classify both the horizontal and vertical components of nystagmus

within eye videos.

However, it is important to acknowledge the limited scope of

our dataset, which consists of video analysis from a single BPPV
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patient. Despite generating 1,109 segmentation masks from this

patient’s video footage within the BPPV datasets, our approach

should primarily be viewed as a proof-of-concept. It demonstrates

the model’s capabilities in a specific and well-defined condition.

For future clinical applications, this model should be validated

with a larger dataset to ensure its efficacy and reliability in a

clinical context.

We should address that nystagmus or nystagmus-like eye

movements are typically best evaluated using infrared goggles

with an eye tracker or Frenzel’s glasses to diminish visual

fixation. However, tests like the HI test, gaze-evoked nystagmus

observations, and TS are usually conducted in well-lit spaces.

Additionally, spontaneous nystagmus following acute vestibular

function loss or abnormal eye movements due to central lesions

can be observed in situations where there is no precise control

over visual surroundings. In this light, our model’s ability to track

nystagmus from eye videos has significant clinical implications

for remote diagnosis and home-based monitoring, eliminating the

need for additional equipment such as an eye tracker.

Recent advancements have introduced mobile-centric models

for nystagmus tracking, such as ConVNG (9) and EyePhone

(20), which are designed for smartphones. Our model, however,

is not merely a standalone tool for nystagmus detection but

rather a foundational model making significant contributions to

this field. While it shares similarities with models like ConVNG,

key distinctions are in the methods of model inference, the

variety of training datasets utilized, and the methods employed

for validation. Firstly, our model was trained using segmentation

masks for the iris, pupil, and sclera, specifically for nystagmus

tracking. In contrast, ConVNG tracks 17 different landmarks in

the ocular region. Secondly, our model’s training incorporated real-

world data from various vertigo patients and synthetic datasets,

whereas ConVNG was trained with optokinetic stimuli. In terms

of validation, ConVNG has been tested with two independent

clinical datasets covering a range of eye movement disorders,

whereas our validation focused on footage from BPPV patient.

While recognizing ConVNG (9) and EyePhone (20) as a notable

contribution in the field of neurotology, our model with its simpler

design also demonstrated reasonable performance, indicating its

potential for accurate nystagmus classification in clinically relevant

scenarios. However, further validation with diverse datasets is

necessary to fully establish its effectiveness.

In summary, our algorithm showed superior capabilities in

ocular object segmentation and eye-tracking when compared to

conventional algorithms. It excels in providing a high FPS rate

and can perform edge computing to real-time analysis with high

accuracy. Currently, the model effectively tracks horizontal and

vertical eye movements from video clips. Future development

efforts will focus on expanding the model’s capabilities to detect

torsional eye movements and incorporating diagnostic support

functions derived from structured neuro-otological examinations.

This advancement holds the potential to provide patient-

centered solutions by enabling the detection and recording of

eye movements. However, before widespread deployment, it is

essential to conduct an international multi-institutional study for

external cross-validation, adhering to the CONSORT-AI extension

guidelines (21). This rigorous validation process will ensure the

reliability and generalizability of our model’s performance across

different clinical settings and populations, ultimately enhancing its

utility in healthcare applications.
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