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Objective: Early detection of cognitive impairment in the elderly is crucial 
for diagnosis and appropriate care. Brief, cost-effective cognitive screening 
instruments are needed to help identify individuals who require further 
evaluation. This study presents preliminary data on a new screening technology 
using automated voice recording analysis software in a Spanish population.

Method: Data were collected from 174 Spanish-speaking individuals clinically 
diagnosed as cognitively normal (CN, n = 87) or impaired (mild cognitive impairment 
[MCI], n = 63; all-cause dementia, n = 24). Participants were recorded performing 
four common language tasks (Animal fluency, alternating fluency [sports and 
fruits], phonemic “F” fluency, and Cookie Theft Description). Recordings were 
processed via text-transcription and digital-signal processing techniques to capture 
neuropsychological variables and audio characteristics. A training sample of 122 
subjects with similar demographics across groups was used to develop an algorithm 
to detect cognitive impairment. Speech and task features were used to develop five 
independent machine learning (ML) models to compute scores between 0 and 1, 
and a final algorithm was constructed using repeated cross-validation. A socio-
demographically balanced subset of 52 participants was used to test the algorithm. 
Analysis of covariance (ANCOVA), covarying for demographic characteristics, was 
used to predict logistically-transformed algorithm scores.

Results: Mean logit algorithm scores were significantly different across groups in 
the testing sample (p  <  0.01). Comparisons of CN with impaired (MCI  +  dementia) 
and MCI groups using the final algorithm resulted in an AUC of 0.93/0.90, with 
overall accuracy of 88.4%/87.5%, sensitivity of 87.5/83.3, and specificity of 
89.2/89.2, respectively.

Conclusion: Findings provide initial support for the utility of this automated 
speech analysis algorithm as a screening tool for cognitive impairment in 
Spanish speakers. Additional study is needed to validate this technology in larger 
and more diverse clinical populations.
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Introduction

Alzheimer’s disease (AD) is the most common form of dementia 
and constitutes a significant public health problem worldwide due to 
the increasing need of social and economic services for patients and 
their support systems (1). A particular clinical challenge in AD and 
related dementias is identifying the early stages of cognitive decline 
due to its insidious onset and progression. AD is characterized by 
neuropathological features that can occur 15 to 20 years prior to 
noticeable changes in cognition or daily function (2, 3). Mild cognitive 
impairment (MCI) often represents a transitional stage between 
normal aging and dementia, and these individuals are at a greater risk 
of developing incident AD (4–8). Detecting early stages of cognitive 
decline is paramount for identifying those at greatest risk of 
progression to dementia and who may benefit from further evaluation 
and treatment (9). Improving the detection of early cognitive decline 
may lead to earlier initiation of disease modifying treatments to 
preserve independent functioning, which is crucial to a patient’s 
quality of life.

There currently exist numerous tools to help detect early clinical 
or pathological signs of MCI/dementia, including thorough clinical 
workups, neuropsychological evaluations, neuroimaging, and blood 
and cerebrospinal fluid biomarkers. While imaging and biomarker-
based techniques can detect some neuropathological features 
associated with AD, some are invasive and not widely accessible for 
the purpose of early detection, and others are still in development. 
Formal neuropsychological evaluation is often an intrinsic part of the 
diagnostic process for detecting subtle changes in cognitive function 
in many centers. However, access to neuropsychological services may 
be limited due to various geographic, economic, and/or psychosocial 
factors, including limited access to healthcare resources, and therefore 
cannot be  utilized effectively on a large scale. For these reasons, 
cognitive screening instruments are used as brief and cost-effective 
methods to identify individuals who require further evaluation and 
can be implemented across both primary care and specialized clinical 
settings. Primary care providers often serve as the first line of medical 
care for older adults concerned about their cognitive performance, yet 
physicians in primary care settings report feeling ill-equipped to 
recognize or document signs of cognitive decline (10, 11), contributing 
to gross under-detection of MCI in primary care settings (12). 
Nonetheless, current screening methods are not sufficiently sensitive 
or reliable in identifying clinical signs in the very early stages of 
dementia (13), and more precise screening techniques that can capture 
subtle changes in cognition are needed to identify individuals who 
may benefit from further evaluation.

Novel technologies and automated software systems to assess 
cognitive functioning in older individuals are emerging as new 
methods for early detection. In recent years, artificial intelligence (AI) 
and machine learning (ML) methods have surfaced as promising tools 
to aid in the early detection and diagnosis of AD and related disorders 
(14). More specifically, several studies have proposed the use of 
linguistic biomarkers for clinical classification and screening purposes 
(15–17). Identification and classification of language abnormalities 
play an important role in the diagnosis of AD, as subtle changes in 
various aspects of language have been identified in the early stages of 
the disease, including changes in number of between-utterance pauses 
(18), verbal fluency (19) and confrontation naming (20). Language 
impairment is typically defined by difficulties with word finding, 

comprehension, naming, and/or spontaneous speech. Simple tasks 
such as naming or verbal fluency can capture changes in language, and 
these markers of language impairment have been associated with early 
cognitive impairment in various neurodegenerative disorders and in 
some cases may precede other diagnostic clinical features (21, 22). 
However, these measures focus on the content of language rather than 
distinctive linguistic processes that may also be  impacted in 
neurodegenerative disorders, such as speech rate, frequency and 
duration of pauses, and discourse efficiency (23). Furthermore, 
language tasks involve other cognitive processes that are relevant to 
the onset of dementia, including verbal working memory, attention, 
and processing speed (24). Therefore, sophisticated speech analyses 
might provide clinically relevant information, pertaining to both 
linguistic functions and different aspects of cognition (25). Moreover, 
the relative ease with which linguistic information can be accessed in 
a clinical context further favors the use of speech biomarkers as an 
accessible early detection tool.

In fact, machine learning (ML) techniques have been developed 
utilizing various speech and linguistic biomarkers to identify 
individuals with MCI (26), early AD (27, 28), dementia (29), 
Parkinson’s disease (30), and frontotemporal disorders (31). For 
instance, Hajjar and colleagues (27) found both acoustic and lexical-
semantic biomarkers to be  sensitive to cognitive impairment and 
disease progression in the early stages of AD. Several additional 
studies have demonstrated efficacy of computer-assisted linguistic 
processing algorithms in detecting speech differences between normal 
and impaired individuals in the English language (32, 33). Similar 
efficacy has been illustrated in other languages, including Chinese 
(34), Hungarian (26) and Swedish (35). While dementia-related 
linguistic changes in Spanish speakers continue to be an emerging area 
of research (36–38, 39), they remain understudied. Few investigations 
have explored automated speech analysis for detection of cognitive 
decline in a Spanish speaking sample (40, 41), and even so, published 
findings have limited interpretability for clinical use. Furthermore, 
several of these studies have been rated for high risk of bias due to 
sample selection (42), as measured by the QUADAS-2 checklist for 
quality assessment of diagnostic accuracy studies (43), potentially 
limiting its clinical applicability.

According to the Alzheimer’s Association, Hispanic individuals 
are disproportionately more likely to develop Alzheimer’s disease and 
related dementias (44) than their non-Hispanic White counterparts. 
Furthermore, this population is estimated to have the largest projected 
increase in ADRD over the next several decades (45). However, older 
adults in the Hispanic community frequently face challenges in 
receiving timely and accurate diagnoses. This is often attributed to the 
limited availability of bilingual providers and culturally validated 
neuropsychological tests, compounded by systemic barriers that 
hinder access to high-quality healthcare and specialized services (46). 
Survey findings revealed that Hispanic Americans rely on primary 
care or community health providers to screen for and address 
cognitive concerns, though standardized cognitive screening remains 
variable in such settings. Furthermore, in a scoping review of available 
cognitive screening tools for Spanish speaking populations, Burke and 
colleagues (47) suggested that some of the most frequently used 
cognitive screening tools may be  less valid in this heterogenous 
population. As such, developing inclusive and culturally sensitive 
screening tools to detect cognitive impairment in this and other ethnic 
groups is crucial.
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In the present study, we  aimed to contribute to this area of 
exploration by presenting preliminary data on a novel cognitive 
screening technology that uses automated linguistic analysis software 
to quickly screen for MCI and dementia in a Spanish population. 
Furthermore, this study addresses a gap in the literature by introducing 
a brief, cost-effective, and readily available screening tool via 
web-based platform that is fully automated, highlighting its ease and 
accessibility in primary care and community health settings. The goals 
of the current manuscript were to (1) Validate a machine learning 
algorithm in a training sample, and (2) Test this algorithm in an aging 
Spanish-speaking testing sample to validate model performance when 
comparing cognitively normal (CN) with impaired (MCI + dementia) 
and MCI groups.

Method

Sample

Data were collected from 195 Spanish-speaking individuals 
recruited as part of a Multicenter Clinical Trial in Madrid, Getxo, 
and Quiron Salud, Spain. Participants were assessed by a 
neuropsychologist and neurologist and completed a series of 
cognitive tests as part of the initial evaluation: The Mini Mental State 
Examination (MMSE) (48), the 7-min screen test (49), Clock 
Drawing Test (50), Trail Making Test Parts A and B (51), the Blessed 
Dementia Scale (52), and four verbal tasks described below. Clinical 
diagnosis of normal cognition, MCI, or dementia was made by 
participating neurologists and neuropsychologists based on a full 
clinical work-up that included neurological and neuropsychological 
evaluation (without consideration of the speech processing 
variables). For a diagnosis of MCI, Petersen criteria (53) were 
utilized, and all subtypes of MCI were included (i.e., amnestic; 
multiple-domain; single-domain, non-amnestic). All-cause 
dementia was diagnosed in accordance with the DSM-IV criteria 
(54), requiring a notable decline in complex instrumental activities 
of daily living. Participants were considered eligible for the study if 

they (1) were proficient in the Spanish language, and (2) had been 
clinically diagnosed with either cognitive impairment (e.g., MCI or 
dementia) (7) or considered to have normal cognition. Exclusion 
criteria included prior diagnosis of a significant psychiatric disorder, 
cognitive impairment not due to a neurodegenerative process, and 
significant visual, hearing, or expressive language impairment that 
would impact the ability to complete cognitive tasks. Data from 21 
participants were discarded due to incomplete cognitive data (n = 8), 
missing demographic information (n = 10), or poor text 
transcription quality on the audio recording used for algorithm 
modeling (n = 3). The sample was divided into a training set 
(N = 122), and a validating/testing set (N = 52; see Table  1 for 
sample characteristics).

Measures

Cognitive assessments
The current study utilized four language tasks for capturing 

neuropsychological performance and audio recording variables for 
each participant, including (1) Picture Description Task (PDT), using 
the “Cookie Theft” picture from the Boston Diagnostic Aphasia 
Examination which assesses spoken language (55); (2) Phonemic 
Verbal Fluency (PVF), measured by the letter (F) word generation 
task; (3) Alternating Verbal Fluency (SVF-Alt), measured by 
alternating fruits and sports word generation task; and (4) Semantic 
Verbal Fluency (SVF), measured by animal naming fluency (see 
Figure 1). Tasks were administered and audio files were recorded and 
stored through the AcceXible platform, a proprietary instrument 
developed for disease detection through speech analysis. AcceXible is 
a web-based platform that can be accessed via web browser or mobile 
application designed for Apple® devices, and utilizes cloud-based data 
processing and storage features (56; see Supplementary Figure S1). 
Once the initial task was initiated by the clinician or administrator, 
participants followed instructions presented on the computer interface 
for each of the four tasks. Total administration time was 
approximately 5 min.

TABLE 1 Demographic characteristics of the sample.

Cognitively 
normal

Mild cognitive 
impairment

All-cause 
dementia

Impaired 
(MCI  +  Dementia)

p-value Total

Training sample n = 59 n = 51 n = 12 n = 63 n = 122

Age, years M (SD) 75.06 (8.14) 76.44 (8.08) 75.71 (5.35) 76.30 (7.64) 0.39[1] 75.71 (7.91)

Education, M (SD) 12.30 (5.40) 12.80 (5.40) 14.40 (4.70) 13.10 (5.20) 0.77[1] 12.20 (4.99)

Sex (% female) 58 49 25 44 0.20[2] 51.00

Clinical center (%) 34, 56, 1 29, 45, 25 75, 8, 17 38, 38, 24 0.06[2] 47, 36, 17

MMSE, M (SD) 28.58(1.32) 25.78(3.17) 23.33(1.97) 25.31(3.13) <0.01[1] 26.90 (2.92)

Test sample n = 28 n = 12 n = 12 n = 24 n = 52

Age, years M (SD) 65.54 (5.98) 77.09 (6.28) 73.12 (9.87) 75.11 (8.51) <0.01[1] 70.04 (8.71)

Education, M (SD) 12.75 (3.47) 13.50 (4.54) 13.17 (4.34) 13.33 (4.44) 0.61[1] 13.02 (3.96)

Sex (% female) 89 42 5 46 <0.01[2] 69

Clinical center (%) 54, 32, 14 58, 25, 17 92, 0, 8 75, 12, 12 0.21[2] 63, 23, 13

MMSE, M (SD) 28.32 (1.58) 26.33 (2.78) 22.08 (1.89) 24.21 (3.19) <0.01[1] 26.42 (3.20)

[1]: two sample (Welch’s) t-tests and [2]: Chi-square test for proportions were computed between cognitively normal and impaired (MCI + Dementia) groups. Clinical centers included Getxo, 
Madrid, and Quiron, respectively.
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Acoustic and linguistic feature extraction

Recordings were processed via speech-to-text transcription 
(Google Cloud’s Speech-to-Text) and digital-signal processing 
techniques to capture neuropsychological variables and audio 
characteristics, respectively. SVF, SVF-Alt and PVF tasks were 
restricted to 1 min each to ensure that all audio files had a uniform 
duration of 1 min (mean length of ~61 s). Due to the nature of the 
task, the Picture Description Task (PDT) was not limited based on 
time, and audio recording concluded based on provider’s clinical 
judgment. Audio recordings were segmented into 25 ms windows, a 
practice commonly seen in audio segmentation literature 
(Supplementary Table S1) (57). Audio segments were then 
preprocessed by normalizing the amplitude, to minimize bias toward 
signals with higher or lower energy levels, and using Butterworth 
low-pass filter, to attenuate high frequencies and eliminate impact of 
environmental noise (58, 59). Variables were computed and used for 
voice model training using the Python library “librosa” (60). 
Extracted variables from verbal tasks included consecutive 
repetitions, mean duration and standard deviation of silences, 
number of repeated words, and other task-specific variables. An 
exhaustive list of extracted speech features and verbal task variables 
used for model training can be found in Tables 2, 3.

Algorithm development and model training

Clinical diagnosis served as the target variable for training the ML 
model. In the current study, this variable contained three diagnostic 
categories: CN, MCI, and dementia. The model considered the 
objective variable as dichotomous, with a score of zero indicating 
cognitively normal and a score of one indicating impairment 
(MCI + dementia or MCI, depending on the impairment group of 
interest). The model’s objective was to identify the earliest stages of 
cognitive decline, as well as overt dementia. As previously mentioned, 
the initial dataset was separated into a training and testing set using a 
70%/30% split to ensure a socio-demographically balanced training 
sample. The training procedure was applied to the training set and the 
testing set was used to test the final model. To train a model that had 
the same predictive power when including sociodemographic 

information, a demographically similar subsample (age, sex, 
education, and clinical center) across groups of diagnoses was used.

First, the linguistic and acoustic features were extracted and 
preprocessed using text transcription techniques and digital-signal 
preprocessing, respectively. In the case of acoustic features (see 
Table 3), a feature selection step was added in each iteration of the 
Cross Validation due to the high number of features. The feature 
selection was based on the F-statistic value obtained in the analysis of 
variance. The number of selected features was added as a 
hyperparameter in the Grid Search CV, so that the best “k” features 
were selected based on F-statistic results, given a grid (5, 10, 15, 20). 
In other cases (e.g., SVF, SVF-Alt, PDT, and PVF), all computed 
features described in Table  2 were used to train the ML models. 
Features were standardized before building the models. The detailed 
descriptions of these variables are presented in Tables 2, 3. For each 
variable described in Table 2, including neuropsychological variables, 
a Python-based function was defined to perform its extraction and 
calculation, allowing for automatic computation when the 
transcription was carried out (61–63). All predictive models used in 
this study were classic ML models registered in scikit-learn software 
(64). These models include Logistic Regression, Supported Vector 
Machines, K-Nearest Neighbors, Random Forest and Gradient 
Boosting. The strategy used to build models was Grid Search 10-fold 
Cross Validation (CV), where model selection was performed by 
maximizing AUC score (Supplementary Data).

Subsequently, five independent ML models were trained: one for 
each task, using the extracted linguistic variables and another one with 
the digital-signal processing features, as demonstrated in Figure 2. 
When building the model based on acoustic features, a Support Vector 
Machine (SVM) with a linear kernel and regularization strength of 10 
was used. A feature selection step was incorporated to address the 
high number of acoustic features, with the optimal number of features 
determined to be 15 by the SVM (see Supplementary Table S2). Each 
one of the five independent models followed the same training 
procedure. A 10-fold CV was performed 10 times to increase 
robustness and avoid overfitting. The algorithm development 
procedure began by first defining a list of candidate ML classical 
models and identifying their respective hyperparameter grids. For 
each model candidate, the sample was randomly stratified into a 90/10 
split, a commonly used train/test ratio when implementing a 10-fold 

FIGURE 1

Five classifiers combined to create machine learning algorithm.
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CV procedure (65). Next, model parameters were calculated on the 
training set and scores were calculated for the new testing set, ranging 
from zero to one. Sensitivity, specificity, accuracy, area under the curve 
(AUC), and mean squared error (MSE) were calculated for each 
possible cutoff point from zero to one. These steps were repeated 10 
times and the mean of each calculated metric was reported, at which 
point this step was completed 10 more times to report the mean and 
variance of each obtained result. The model and cutoff point that 
demonstrated superior performance based on all calculated metrics 
was then manually selected. Finally, the parameters of the selected 

model were calculated for the training set sample. The threshold was 
chosen during the training phase. For each candidate threshold 
(ranging from 0 to 1 in increments of 0.01), we computed the mean 
accuracy, mean sensitivity, and mean specificity using a 10-fold CV 
approach. The optimal threshold point for detecting impaired 
(MCI + dementia) and MCI groups was determined by (1) maximizing 
the sum of mean sensitivity and mean specificity by way of Youden’s J 
statistic (66) [calculated as (sensitivity + specificity – 1)] and (2) 
ensuring that the mean sensitivity exceeded the mean specificity at 
that point. If multiple threshold points met these conditions, the 

TABLE 2 Verbal task variables extracted for model training.

Variable Variable description Verbal task

Mean repetitions Total and consecutive repeated animals divided by the number of listed animals SVF

Consecutive repetitions Number of consecutive repetitions divided by the number of words SVF

Number semantic clusters Number of semantic clusters. Cluster is defined as a group of animal words consisting of successively 

generated words belonging to the same subcategory

SVF

Average cluster size Average number of animals in semantic clusters SVF

Average switches The number of switches in semantic clusters divided by the total number of animals SVF

Not animals Number of words that are not animals, divided by the total number of listed words SVF

Mean silence Mean duration of silences SVF, SVF-Alt, PVF, PDT

Std. silence Standard deviation of duration of silences SVF, SVF-Alt, PVF, PDT

Number of temporal clusters Number of temporal clusters or “spurts” of animal words SVF

Average cluster size Average number of words in temporal clusters SVF

Count sports/fruits Total number of sports/fruits said by the participant SVF-Alt

Not alternate Total number of words out of alternate sequence SVF-Alt

Not in list Total number of words that are neither fruits nor sports SVF-Alt

Number of words Total number of animals/words that start with “F”; Total number of words SVF, PVF

Total repetitions Total number of repeated words PVF

Count consonant Proportion of consonant letters in words that start with “F” PVF

Vocabulary size Number of unique lemmas said by the patient PDT

Percentage of parts of speech Number of verbs/nouns/pronouns/determinants/adjectives, divided by the number of words PDT

Number of words 30″ Number of words said in the first 30 s PDT

Number of keywords Number of detected keywords. List of keywords formed by the main parts of image PDT

SVF, Semantic Verbal Fluency; SVF-Alt, Alternate Semantic Verbal Fluency; PVF, Phonemic Verbal Fluency; PDT, Picture Description – Cookie Theft.

TABLE 3 Speech Feature Variables Extracted for Model Training.

Variable Variable description Model task

Chromagram Represents the tonality of the voice using a vector of 12 parameters Speech

MEL Represents the spectral information of a voice signal using a vector of 13 parameters Speech

RMS (Root Mean Square) Represents the average amplitude of the voice signal (volume) Speech

ZCRS (Zero Crossing Rates) The number of times the voice signal crosses the horizontal axis (zero) during a specific time period, normalized by the 

duration of that time period.

Speech

Tempo The frequency of rhythmic pulses in the audio signal, measured in beats/min (speed) Speech

OENV (Onset Envelope) Represents the audio signal that highlights rapid changes in amplitude, also known as onsets. Onsets refer to abrupt 

changes in the energy level of an audio signal, which can indicate the beginning of a musical note or a syllable in spoken 

voice.

Speech

Spectral bandwidth Represents the frequency bandwidth that contains a certain fraction of the total spectral energy of the audio signal. Speech

Spectral bandwidth Represents the center of the frequency spectrum of a voice signal. Speech

Variables extracted using the Python library librosa.
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FIGURE 2

Model training and testing scheme.

smallest threshold value was selected to prioritize sensitivity 
over specificity.

Once this procedure was performed for the various models (see 
Figures 1, 2), the predicted scores were computed for each model (i.e., 
four tasks and one speech) to create five individual scores for each 
participant. Finally, an ensemble ML model was trained in which the 
input included the five individual scores, and the output was one 
unique score. Before training the ensemble model, logit transformation 
was applied to each obtained score to create a continuous value in the 
range of negative infinity to infinity to obtain a final model.

Statistical analyses

Demographic characteristics for the training and testing 
samples are presented in Table 1. Comparisons between cognitively 
intact and impaired groups were calculated using two sample t-test 
in case of continuous variables (i.e., age, education, MMSE) and 
chi-square test for proportions in case of categorical variables (i.e., 
sex, clinical center). General linear modeling was used to test 
whether age, sex, and education significantly predicted logistically 
transformed algorithm scores in the training and testing sets. 
Receiver operating characteristic (ROC) curves were constructed 
for the testing set when discriminating CN and impaired 
(MCI + dementia) or MCI groups, and areas under the curves 
(AUC) were used as measures of overall classification accuracy. 
Accuracy, sensitivity, specificity, and F-scores were calculated for 
various threshold values for impaired and MCI groups. F-scores 
represent a common machine learning metric used to measure 
model accuracy by way of balancing precision and recall, with 
precision representing the proportion of correct “positive” 
predictions made by the model, or positive predictive value, and 

recall representing the proportion of actual positive samples 
correctly identified by the model, or sensitivity (67). An F-score 
value ranges from 0 to 1, with a 1 indicating perfect precision and 
recall. ANCOVA was used to examine differences in mean logit and 
algorithm scores by CN, MCI, and all-cause dementia groups, 
controlling for age, sex, and education. Before performing this test, 
logit transformation was applied to better meet the assumptions of 
the test, since the outcome variable might be the prediction of a 
non-linear ML model, and residuals might show a non-constant 
spread. Finally, we computed accuracy, sensitivity, and specificity 
across different MMSE score thresholds for both impaired and MCI 
groups to compare the classification accuracy with that of the 
presented model. Statistical analyses were conducted using the 
statsmodels and pingouin packages in Python.

Results

Descriptive statistics

Demographic and clinical data of the 174 participants are described 
in Table  1. The cohort had a mean age of 74.03 years (SD = 8.55), 
completed an average of 12.45 years of education (SD = 4.72), and 
included slightly more females than males (56%). Demographic 
characteristics were similar across groups in the training set, but age and 
sex were significantly different between clinical groups in the testing 
sample. MMSE scores were different across groups in both samples 
(Supplementary Figure S2). A one-way ANCOVA, controlling for age, 
sex, and years of education, demonstrated a significant difference in 
mean logit and algorithm scores for every independent model’s 
prediction across CN, MCI, and all-cause dementia groups, except for 
phonemic verbal fluency (see Table 4).
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Model performance

The final algorithm in the testing sample with the presented tool 
resulted in an AUC of 0.93 with an overall accuracy of 88.4%, 
sensitivity of 87.5%, specificity of 89.2%, and F-score of 0.87  in 
discriminating CN and impaired groups. The final algorithm in the 
testing sample obtained an AUC of 0.90 with an overall accuracy of 
87.5%, sensitivity of 83.3%, specificity of 89.2%, and F-score of 0.80 in 
discriminating CN and MCI groups. Using Youden’s Index, the 
optimal threshold value was determined to be  0.45 for impaired 
(J = 0.767) and MCI (J = 0.725) groups. Figures 3, 4 present accuracy, 
F-score, sensitivity and specificity for each threshold value when 
discriminating CN versus impaired and MCI groups in the whole 
testing set. Since the selected optimal ensemble ML model is 
RandomForest, the distribution of scores was non-normal and scores 
fell close to 0 or 1. Therefore, metrics remained constant between the 
thresholds of 0.23 and 0.70. The mean squared error obtained in the 
testing set was 0.10 when distinguishing impaired from non-impaired 
and 0.114 when distinguishing MCI from non-impaired.

Table 5 presents the performance of each machine learning model 
in the testing sample. Accuracy, sensitivity, and specificity were 
identical across SVF and ensemble models. Nonetheless, the final 
ensemble model demonstrated the best overall performance 
(AUC = 0.93) compared to each individual ML model, with the 
speech-only model performing the worst (AUC = 0.64). For 
comparison, when differentiating impaired from non-impaired 
groups, the MMSE demonstrated an accuracy range of 71.1 to 80.7%, 
sensitivity range of 41.6 to 66.6%, and specificity range of 75 to 100% 
across cut-offs of 24 to 28, with an optimal cut-off of 27 yielding an 
accuracy of 76.9%, sensitivity of 66.6%, and specificity of 85.7%. When 
differentiating MCI from non-impaired, the MMSE demonstrated an 
accuracy range of 62.5 to 77.5%, sensitivity range of 8.3 to 33.3%, and 
specificity range of 75 to 100% across cut-offs of 24 to 28, with an 
optimal cut-off of 27 yielding an accuracy of 70%, sensitivity of 33.3%, 
and specificity of 85.7%.

Discussion

Novel automated technologies are emerging to allow methods to 
screen for subtle cognitive changes in older adults, as early detection 
is critical for diagnosis and initiation of appropriate care. This is 
especially important for historically marginalized racial and ethnic 
groups, who often experience delayed diagnosis of cognitive disorders 
and face barriers in accessing specialists for evaluation and treatment. 
Furthermore, these evolving technologies hold promise as brief, 
accessible, and scalable means of capturing emerging cognitive 
deficits. The current study explored the utility of an automated speech 
analysis algorithm to quickly and effectively screen for cognitive 
impairment in a Spanish speaking population.

Model performance

This speech analysis algorithm was able to accurately differentiate 
CN from impaired (MCI + dementia) and MCI groups with an overall 
accuracy of 88.4 and 87.5% in the testing set, respectively (Table 5). 
Examination of the associated AUC values of CN versus impaired and 
MCI groups in Figure  5 reveals close similarities between 
classification curves, both falling in the outstanding range (0.93 for 
impaired and 0.90 for MCI). Furthermore, F-scores for the final 
algorithm in both impaired and MCI groups were considered good, 
indicating that both precision and recall of the ML model were high. 
Therefore, this automated speech analysis algorithm holds promise 
for distinguishing both early and more advanced cognitive decline 
from those who are cognitively normal in the studied sample. Prior 
efforts toward developing speech analysis tools for early detection of 
cognitive impairment have demonstrated similar differentiating 
abilities, with initial results exhibiting high accuracy (80–95%) in the 
detection of subtle changes in speech of those diagnosed with MCI 
and AD (42). Previous ML studies have demonstrated promising 
diagnostic ability when using similar verbal tasks in various 

TABLE 4 Mean logit and algorithm scores by clinical diagnosis in the testing sample.

Cognitively 
normal

Mild cognitive 
impairment

All-cause 
dementia

Impaired 
(MCI  +  Dementia)

p-value, F

Logit score, M (SD) n = 28 n = 12 n = 12 n = 24 –

Semantic verbal fluency −0.99 (0.83) 0.55 (1.01) 1.65 (0.86) 1.10 (1.09) <0.01, 18.97

Semantic verbal fluency-alternating −0.46 (0.57) −0.06 (0.65) 0.14 (0.46) 0.04 (0.57) <0.01, 15.41

Picture description task −0.22 (0.22) −0.06 (0.30) 0.28 (0.32) 0.11 (0.36) <0.01, 7.99

Phonemic verbal fluency −0.25 (0.40) 0.18 (0.32) 0.69 (0.39) 0.43 (0.44) 0.06, 2.84

Speech −0.10 (0.48) −0.04 (0.64) 0.45 (0.59) 0.20 (0.66) 0.02, 4.20

Final score −2.83 (2.81) 2.29 (2.38) 3.39 (1.94) 2.84 (2.24) <0.01, 15.78

Algorithm score, M (SD) n = 28 n = 12 n = 12 n = 24 –

Semantic verbal fluency 0.29 (0.16) 0.62 (0.21) 0.81 (0.14) 0.71 (0.20) <0.01, 21.14

Semantic verbal fluency-alternating 0.39 (0.13) 0.49 (0.15) 0.53 (0.11) 0.51 (0.13) <0.01, 15.36

Picture description task 0.45 (0.05) 0.49 (0.07) 0.57 (0.08) 0.53 (0.09) <0.01, 8.01

Phonemic verbal fluency 0.44 (0.10) 0.54 (0.08) 0.66 (0.09) 0.60 (0.10) 0.06, 2.93

Speech 0.48 (0.11) 0.49 (0.15) 0.60 (0.13) 0.55 (0.15) 0.02, 4.13

Final score 0.14 (0.29) 0.79 (0.32) 0.90 (0.21) 0.85 (0.27) <0.01, 22.56

ANCOVA compared differences in mean logit and algorithm scores across cognitively normal, MCI, and all-cause dementia groups, controlling for age, sex, and years of education.
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languages, including spontaneous speech (68), picture description 
task (69), and fluency tasks (70), in combination with acoustic and 
linguistic features of speech. The current approach adds to the 
literature by utilizing numerous verbal tasks in one ML model for a 
Spanish-speaking population, while simultaneously maintaining a 

brief administration time, though future research may clarify which 
task and/or tasks contribute most to the success of the model. For 
instance, given that the semantic verbal fluency model with associated 
verbal characteristics performed similarly to the final ensemble 
model in the current study, abbreviated versions of this task with 

FIGURE 3

Accuracy, F-score, sensitivity and specificity for each threshold value in discriminating cognitively normal and impaired groups in the testing set.

FIGURE 4

Accuracy, F-score, sensitivity and specificity for each threshold value in discriminating cognitively normal versus mild cognitive impairment groups in 
the testing set.
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similar screening abilities may be  possible and should 
be further explored.

Strengths, limitations, and future directions

The current study provides support for the utility of a quick, 
5-minute assessment that analyzes responses to language measures to 
investigate aspects of speech that may not be  easily detectable to 
examiners. Early screening and detection of cognitive impairment in 
at-risk populations may allow for the proper allocation of time and 
resources to individuals identified as requiring more extensive 
assessment (e.g., biomarker analysis, comprehensive 
neuropsychological evaluation, neuroimaging, etc.). Additionally, this 
speech analysis tool may outperform current standard-of-care 
screening measures such as the Mini-Mental State Examination. In 
this study, the technology outperformed the MMSE in screening for 
MCI and dementia among Spanish speakers. The tool demonstrated 
superior accuracy (87.5/88.4), sensitivity (83.3%/87.5%), and 

specificity (89.2%/89.2%) when compared to an MMSE cut-off of 24 
or 25, two thresholds well-established in clinical practice (71). While 
qualitatively different, the current model’s performance seems 
comparable, if not superior, to the MMSE.

Blesa and colleagues developed age and education-adjusted 
cut-off scores for the MMSE in a Spanish speaking cohort, identifying 
the optimal cut-off score to be 24/25 which yielded a sensitivity of 
87.32% and specificity of 89.19% in detecting dementia (72). Similar 
results have been demonstrated using the Montreal Cognitive 
Assessment (MoCA) in the detection of MCI among Spanish speakers, 
with a sensitivity of 80.48% and specificity of 81.19% (73). Beyond its 
superior sensitivity, this technology fills a gap in the existing literature 
as a concise, cost-effective screening tool that is available through a 
web-based platform. The tool is fully automated, partially addressing 
issues related to the frequent incongruence between the patient and 
examiner’s native language, and ultimately emphasizing its ease and 
accessibility in primary care and community health settings. 
Furthermore, the impact of the current model is a promising avenue 
to increase cognitive screening, as it could be easily adapted to mobile 

TABLE 5 Machine learning models’ performance in the testing sample for cognitively normal versus impaired and MCI groups.

AUC Accuracy Sensitivity Specificity

Semantic verbal fluency – animals 0.91/0.85 88.40/87.50 87.50/83.3 89.20/89.20

Semantic verbal fluency - alternating 0.87/0.79 78.70/72.50 87.50/75.00 71.40/71.40

Picture description 0.76/0.64 69.20/65.00 79.00/58.30 67.80/67.80

Phonemic verbal fluency 0.73/0.68 65.30/62.50 70.80/66.60 60.70/60.70

Speech 0.64/0.52 59.60/55.00 58.30/41.60 60.70/60.70

Final ensemble 0.93/0.90 88.40/87.50 87.50/83.30 89.20/89.20

Results are obtained in the testing set, using CN versus Impaired / CN versus MCI groups, respectively. Model training derived from verbal task and speech feature variables outlined in 
Tables 2, 3.

FIGURE 5

Receiver operating characteristic (ROC) curves and associated AUC values for cognitively normal (CN) versus mild cognitive impairment group, and CN 
versus impaired (MCI  +  dementia) group in the testing set.
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phones, the feasibility and efficacy of which has been demonstrated in 
prior studies (74, 75). Thus, the current technology may allow for 
screening of more individuals that may be  otherwise unable to 
access care.

Despite the promising findings for advancing the detection and 
monitoring of cognitive impairment, certain limitations must 
be  noted. First, the current state of machine learning research 
emphasizes the need for standardization of training set size 
determination. Future studies would benefit from an increased sample 
size to improve robustness and minimize bias of the clinical model. 
Second, speech analysis software relies on high-quality audio 
recording and transcription to ensure accurate interpretation of 
speech. This study experienced varied audio-quality during data 
collection, requiring three cases with poor quality to be excluded from 
analyses. Nonetheless, speech-to-text transcription models should 
continue to be  updated with technological advances to further 
improve efficacy in future machine learning and technology studies. 
Third, this study included only Spanish speaking individuals from 
selected sites in Spain, and thus, the generalizability of the algorithm 
in other populations will require additional validation. To extend the 
utility of the current technology, future research may focus on other 
Spanish-speaking populations from various geographic locations 
which could represent dialectical differences. To this point, 
preliminary data utilizing this technology with a U.S.-based sample of 
Spanish speakers demonstrated the impact subtle variations in 
Spanish expressive language may have on accuracy of transcriptions 
(76). However, modification of the transcription tool to include these 
language variations resulted in an overall transcription accuracy of 
95%. Therefore, differences in cultural exposure and regional dialect 
should be  considered in the development and use of automated 
speech software.

While certain aspects of the current model are inherently more 
naturalistic than simple quantitative assessments of speech 
production, it can be  argued that elements of the task are not 
entirely naturalistic (e.g., listing animals). Furthermore, the speech 
samples are somewhat constrained by the assessment setting, and 
thus may not accurately reflect an examinee’s naturalistic speech 
qualities. Various forms of spontaneous speech have shown to 
be  sensitive to cognitive decline, including analysis of informal 
conversations with others (77) and detailed recollections of the 
preceding day’s events (78) or patients’ daily routine (79). Therefore, 
further research would be helpful in determining how the presented 
model’s assessment of these variables compares between the test 
setting and a more natural speech interaction, and how that might 
influence clinical interpretation.

Though speech analysis technology would provide an affordable 
and accessible option for identification of cognitive impairment, it is 
critical that investigations integrate biomarkers, more detailed 
neuropsychological evaluations, and neuroimaging findings to 
demonstrate incremental validity and increase our confidence in the 
clinical models. Additionally, as promising as the current model 
appears, future research may focus on the utility of the tool in 
predicting those at risk of conversion from MCI to dementia. For 
example, current stand-alone single-administration screening tools 
such as the MMSE are not effective for this use and may depend upon 
serial assessments, ideally with more comprehensive evaluations (80). 
Similarly, the tool may be  further validated for use in differential 

diagnosis of neurodegenerative and other neurological conditions. A 
critical review on the role of connected speech in neurodegenerative 
diseases revealed numerous studies highlighting unique speech 
features in clinical populations, including amnestic MCI, primary 
progressive aphasia, movement disorders, dementia due to Alzheimer’s 
disease, and amyotrophic lateral sclerosis (23). Such detailed 
assessments of speech samples may add further value to traditional 
language assessment instruments.

Conclusion

The current findings provide initial support for the utility of an 
automated speech analysis algorithm to quickly and efficiently detect 
cognitive impairment in an older Spanish-speaking population. 
Results suggest that the algorithm has a robust ability to detect early 
stages of cognitive decline and clear dementia. Further research is 
needed to validate this methodology in additional languages and 
clinical populations, as this may be a valuable cross-cultural screening 
method for MCI and dementia.
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