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Objectives: To accurately predict the risk of ischemic stroke, we established a 
radiomics model of carotid atherosclerotic plaque-based high-resolution vessel 
wall magnetic resonance imaging (HR-VWMRI) and combined it with clinical 
indicators.

Materials and methods: In total, 127 patients were finally enrolled and randomly 
divided into training and test cohorts. HR-VWMRI three-dimensional T1-
weighted imaging (T1WI) and contrast-enhanced T1WI (T1CE) were collected. 
A traditional model was built by recording and calculating radiographic features 
of the carotid plaques and patients’ clinical indicators. After extracting radiomics 
features from T1WI and T1CE images, the least absolute shrinkage and selection 
operator (LASSO) algorithm was used to select the optimal features and construct 
the radiomics_T1WI model and the radiomics_T1CE model. The traditional and 
radiomics features were used to build combined models. The performance of 
all the models predicting ischemic stroke was evaluated in the training and test 
cohorts, respectively.

Results: Body mass index (BMI) and intraplaque hemorrhage (IPH) were 
independently related to ischemic stroke and were used to build the traditional 
model, which achieved an area under the curve (AUC) of 0.79 versus 0.78  in 
the training and test cohorts, respectively. The AUC value of the radiomics_
T1WI model is the lowest in the training and test cohorts, but the prediction 
performance is significantly improved when the model combines IPH and BMI. 
The AUC value of the combined_T1WI model was 0.78 and 0.81 in the training 
and test cohorts, respectively. In addition, in the training and test cohorts, the 
radiomics_T1CE model based on HR-VWMRI combined clinical characteristics, 
which is the combined_T1CE model, had the highest AUC value of 0.84 and 
0.82, respectively.

Conclusion: Compared with other models, the radiomics_T1CE model based 
on HR-VWMRI combined clinical characteristics, which is a combined_T1CE 
model, can accurately predict the risk of ischemic stroke.
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Introduction

In 2015, the global mortality rate of ischemic cerebrovascular 
disease rose to second place among all causes of death. At the 
beginning of 2017, the China Stroke Epidemiology Survey team 
reported on the Circulation that the prevalence rate of stroke in China 
reached 1148.3/100000 after age standardization, of which ischemic 
stroke accounted for more than 70%, which has become a major 
disease seriously threatening the health of Chinese people (1–3). 
Atherosclerosis, a major cause of ischemic stroke, is a chronic 
progressive disease characterized by the atherosclerotic plaque 
formation. Embolism caused by carotid atherosclerotic plaque 
shedding has been recognized as accounting for approximately 18 to 
25% of all strokes (4). In 2018, the American Society of Neuroradiology 
(ASNR) Vessel Wall Imaging Study Group published guidelines 
highlighting that the risk and severity of stroke associated with carotid 
plaques are not only related to the extent of luminal stenosis, but also 
related to plaque characteristics (5). An increasing amount of evidence 
indicates that vulnerable plaques are highly likely to lead to ischemic 
stroke and thrombotic complications, independent of the extent of 
luminal stenosis (6, 7). High-resolution vessel wall magnetic resonance 
imaging (HR-VWMRI) can not only assess luminal stenosis, but also 
characterize plaque morphology and different atherosclerotic 
components and identify vulnerable plaques (8). Plaque vulnerability 
imaging features include intraplaque hemorrhage (IPH), lipid-rich 
necrotic cores (LRNC) and thin fibrous caps, plaque inflammation, 
intraplaque neovascularization, plaque surface ulceration, and positive 
vascular remodeling (9). Randomized clinical trials have shown that 
HR-VWMRI is the most suitable and cost-effective imaging technique 
for characterizing plaque vulnerability characteristics. However, there 
are still drawbacks. First, HR-VWMRI has a longer scanning time, and 
image quality is sensitive to motion. Second, identifying vulnerable 
plaques based on HR-VWMRI is qualitative and subjective, and the 
results are greatly influenced by the personal factors of the researchers. 
Third, there is currently a lack of multicenter, large-scale, high-quality 
research on the relationship between vulnerable plaque characteristics 
and the risk of ischemic stroke. However, the relationship between 
carotid atherosclerotic plaque and ischemic stroke should go beyond 
the assessment of the primary imaging characteristics of plaque or the 
degree of vascular stenosis and adopt a new model in which carotid 
plaque imaging combined with artificial intelligence.

As an emerging multidisciplinary research field, radiomics 
integrates digital imaging information, statistics, artificial intelligence, 
machine learning, and deep learning methods to convert medical 
images into high-throughput quantitative features for research. 
Radiomics has been applied to disease diagnosis, tumor staging or 
grading, gene prediction, therapeutic effect evaluation, and prognosis 
judgment and plays an important role in assisting clinical decision-
making. At present, radiomics studies on atherosclerotic plaques focus 
on identifying vulnerable plaques (10–12). The preliminary radiomics 
study of atherosclerotic plaque is based on texture analysis of CT or US 
images (13, 14). Compared with CT and US, VW-HRMRI has 
advantages in high soft tissue contrast and multisequence imaging, 
which can provide more valuable information. Shi et al. (11) conducted 
a radiomic study that was based on VW-HRMRI to distinguish stable 
and vulnerable basilar artery plaques. Subsequently, Shi et  al. (15) 
performed a histogram texture analysis that was based on VW-HRMRI 
to extract the first-order texture features of atherosclerotic plaques in 

the middle cerebral artery and basilar artery, and they explored the 
differences in histogram features between stable and vulnerable plaques. 
Zhang et al. (16) established a high-risk carotid plaque model based on 
MRI radiomic features and evaluated its performance in distinguishing 
stable and vulnerable carotid plaques relative to the model based on 
traditional MRI features. It can be seen that the radiomic model showed 
better performance than the traditional model. These results indicate 
that compared with the traditional subjective qualitative and 
quantitative imaging characteristics, the radiomic method enables 
finding more differential features, showing its higher value in 
determining plaque vulnerability. This study established a radiomics 
model of carotid plaque based on HR-VWMRI and combined it with 
clinical indicators to accurately predict the risk of ischemic stroke.

Materials and methods

Study population

A total of 182 patients with a carotid plaque were consecutively 
recruited in this study between January 2020 and March 2022 in our 
hospital. All of them underwent HR-VW MRI 3D T1WI, T1CE, and 
head MRI (T1WI, T2WI, DWI, FLAIR, and 3D TOF-MRA). The 
study was approved by the ethics review board of our hospital 
(scientific research project ethics approval number: 2022A-695).

The exclusion criteria were as follows: (a) patients with cardiogenic 
stroke; (b) intracranial atherosclerosis, branch atheromatous disease, 
other causes (such as dissection, vasculitis, and vascular 
malformations), and causes remain unknown on ipsilateral infarction; 
(c) primary intracranial diseases; and (d) poor image quality. In total, 
55 patients were excluded because of intracranial atherosclerosis, 
branch atheromatous disease, cardiogenic stroke and dissection on 
ipsilateral infarction (n = 31), vasculitis (n = 16), and poor image 
quality (n = 8), and 127 patients were finally enrolled in our study 
(flowchart in Figure  1). All patients were divided into stroke and 
stroke-free groups according to whether acute/subacute stroke 
(carotid territory) was shown on head MRI. We  recorded the 
demographic and clinical characteristics of all participants including 
gender, age, body mass index (BMI), hypertension, hyperglycemia, 
hyperlipidemia, hyperuricemia, and hyperhomocysteinemia. Eligible 
patients were randomly divided into a training cohort (n = 75) and a 
test cohort (n = 52) with a ratio of approximately 3: 2.

MRI acquisition

The HR-VWMRI and head MRI were performed on a 3.0T MR 
scanner with a 20-channel head-and-neck phased array coil. Carotid 
MRI sequences include 3D TOF-MRA, 3D T1WI, T2WI, and 3D 
T1CE. Head MRI sequences include T1WI, T2WI, DWI, FLAIR, and 
3D TOF-MRA. Detailed scanning parameters are listed in Table 1. The 
total scanning time was approximately 29 min.

Image analysis and segmentation

Independently identified and measured radiological features 
of the carotid plaques including IPH, LRNC, disrupted surface, 
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enhancement, remodeling pattern, maximum wall area (Max WA), 
normalized wall index (NWI), and degree of stenosis by two senior 
radiologists (N.H. and YR.M.) with 8 or more years of experience 
in plaque imaging. If there are differences, the two radiologists 
reached a consensus after an additional reading session. Qualitative 
analysis of carotid plaques was performed on Picture Archiving 
and Communication Systems (PACS). For quantitative analysis of 
carotid plaques, VesselMass software (MEDIS, Version: 2014-
EXP), a semi-automatic image analysis tool, was used. The slice 
with the largest plaque area was chosen, and the outer wall 
boundaries and inner lumen were manually outlined for measuring 
and calculating the total vessel area (TVA), the minimum luminal 
area (Min LA), the maximum wall area (Max WA), the normalized 
wall index (NWI), the remodeling index (RI), and the degree of 
stenosis. The relevant calculation formulas were as follows: (1) 
Max WA = TVA-Min LA (17); (2) NWI = Max WA/TVA (18, 19); 
(3) RI = vessel area at the point of maximum stenosis/reference 
vessel area at the distal portion (7); (4) Stenosis = (normal diameter 
at the distal portion-narrowest diameter at the stenosis)/normal 

diameter at the distal portion (20). If the RI is greater than 1, it is 
defined as positive remodeling; otherwise, it is defined as 
negative remodeling.

The open-source software ITK-SNAP (version 3.8.0)1 was used to 
plaque segmentation for radiomics analysis. Volumes of interest 
(VOIs) were manually drawn layer by layer on different sequences 
including HR-VWMRI 3D T1WI and T1CE by the above two senior 
radiologists along the margin of the plaques, respectively. The images 
of the sample patient are shown in Figure 2.

Randomly selected 40 cases to evaluated interobserver and 
intraobserver reproducibility using intraclass correlation coefficients 
(ICC). Radiologist H manually outlined the VOIs twice within three 
months, ICCs>0.75 indicated good consistency of intraobserver. 
Radiologist M outlined the VOIs once, ICCs>0.75 indicated  
good consistency of interobserver. Radiologist H completed the 
remaining outline.

1 www.itk-snap.org

FIGURE 1

Study inclusion and exclusion flowchart.

TABLE 1 Detailed scanning parameters for the MRI protocol.

Sequence
Carotid plaque MRI Head MRI

TOF T1WI T2WI T1CE T1WI T2WI DWI FLAIR TOF

FOV (mm) 220 × 128 240 × 240 160 × 160 240 × 240 230 × 230 230 × 230 230 × 230 230 × 230 230 × 230

Matrix 292 × 961 344 × 344 268 × 255 344 × 344 296 × 167 288 × 288 152 × 122 256/173 400 × 242

Slice thickness (mm) 1.2 0.8 3 0.8 5.5 5.5 5.5 5.5 1.2

Resolution (mm2) 0.6 × 1.0 0.7 × 0.7 0.6 × 0.6 0.7 × 0.7 1.0 × 1.2 0.6 × 0.6 1.5 × 1.9 0.9 × 0.9 0.6 × 1.0

TR/TE (ms) 15/3.5 500/26 3500/60 500/26 2000/20 4000/97 2887/97 7500/110 22/3.5

NEX 1 1 2 1 1 1 1 1 1

Bandwidth (Hz/pixel) 216 637 273 637 159 439 1448 514 109

Flip angle (°) 18 75 90 75 90 90 90 90 18

Acquisition time 3min10s 6min46s 4min05s 6min46s 1min30s 2min24s 30s 1min21s 2min47s

TOF, time of flight; DWI, diffusion-weighted imaging; FLAIR, fluid-attenuated inversion recovery; FOV, field of view; TR, repetition time; TE, echo time; NEX, number of excitations.

https://doi.org/10.3389/fneur.2024.1343423
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://www.itk-snap.org


Han et al. 10.3389/fneur.2024.1343423

Frontiers in Neurology 04 frontiersin.org

Feature extraction, selection, and model 
development

HR-VWMRI 3D T1WI and 3D T1CE images were used for 
feature extraction by applying the Pyradiomics package of Python 
software.2 The extracted features include shape features, first-order 
statistics features, second-order statistics features, and higher order 
statistics features. In order to standardize and normalize the original 
features of different dimensions, the min–max standardization 
method is used to linearly transform the original feature dataset and 
map the values between 0 and 1. First, the features of p < 0.05 in each 
sequence were selected using Student’s t-test. Second, the LASSO 
algorithm was used for selecting optimal feature subsets by penalty 
function λ adjust and set the corresponding coefficient of features with 
weak correlation to 0. Selection of the tuning parameter (λ) in the 
LASSO model via 10-fold cross-validation based on minimum 
criteria. The final retained features with non-zero coefficients and 
using non-zero coefficient features construct radiomics model. The 
radiomics score (Rad-Score) calculation used a linear combination of 
select parameters weighted by the relevant LASSO coefficients.

We selected the clinical and radiological characteristics with 
p < 0.05  in univariate analysis for multivariate logistic regression 
analysis, by which the odds ratios (ORs) with 95% confidence intervals 
(CIs) were calculated. The variables with p < 0.05  in multivariate 
analysis were finally used to establish the traditional model. The 
traditional model and radiomics features were combined to establish 
the combined model, which were displayed as radiomics nomograms 
(flowchart in Figure 3). In the training process of all models, to avoid 
overfitting of models, a 10-fold cross-validation method was used, and 

2 https://www.python.org

then, the prediction performance of all models in the training and test 
cohorts was evaluated, respectively.

Statistical analysis

All statistical analyses were performed using the IBM SPSS 
Statistics software (version 25.0) and Python software (see text 
footnote 2). The relationship between each variable and stroke status 
was evaluated by univariate analysis. The continuous variables adopted 
the Mann–Whitney U-test, and the categorical variables adopted the 
chi-squared test. Variables with p < 0.05 in univariate analysis were 
enrolled in multivariate logistic regression analysis. Receiver operating 
characteristic (ROC) analysis was used to determine the AUC values 
to evaluate the predictive performance of all models in both the 
training and test cohorts.

Results

Patient characteristics

In total, 127 patients with carotid plaque were enrolled in the final 
analysis, there were 60 stroke patients and 67 stroke-free patients. 
Table  2 lists the demographic and clinical characteristics of the 
enrolled patients.

Traditional model

Univariate analysis showed that gender, BMI, IPH, disrupted 
surface, enhancement, Max WA, NWI, and degree of stenosis were 
significantly associated with stroke (all p < 0.05, Table 2). Multivariate 

FIGURE 2

MRI images showing left internal carotid atherosclerotic plaque in a stroke patient. TOF-MRA (A) demonstrates mild stenosis, and DWI (B) shows the 
acute infarcts which are scattered and patchy in distribution within the left lateral ventricle posterior horn around. Left internal carotid atherosclerotic 
plaque on T1WI and T1CE images shown in panels (C,E). The regions of interest (ROIs) of the carotid atherosclerotic plaque on T1WI and T1CE images 
(D,F).
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FIGURE 3

Flowchart for building the models predicting ischemic stroke.

TABLE 2 Demographic and clinical characteristics of the enrolled patients.

n/total (%) Stroke Stroke-free p-valueb Multivariate OR 
(95 %CI)c p-valuec AUC

Sex 127 60 67 0.015d 0.168 (0.013, 2.205) 0.174

Male 103 54 49

Female 24 6 18

Agea 60.55 ± 9.72 59.90 ± 10.90 61.20 ± 8.52 0.428e

BMIa 24.81 ± 1.59 25.48 ± 1.68 24.22 ± 1.24 < 0.001e 2.564 (1.412, 4.656) 0.002 0.726

Hypertension 82 34 48 0.078d

Hyperglycemia 43 22 21 0.527d

Hyperlipidemia 36 15 21 0.428d

Hyperuricemia 8 5 3 0.598d

Hyperhomocysteinemia 75 39 36 0.197d

IPH 45 36 9 < 0.001d 0.047 (0.005, 0.444) 0.008 0.733

LRNC 64 31 33 0.786d

Disrupted surface 43 33 10 < 0.001d 0.527 (0.112, 2.490) 0.419

Enhancement 41 25 16 0.017d 0.439 (0.082, 2.344) 0.335

Remodeling pattern 127 60 67 0.509d

Positive 80 36 44

Negative 47 24 23

Max WA (cm2)a 0.50 ± 0.23 0.56 ± 0.25 0.45 ± 0.18 0.017e 1.103 (0.047, 25.918) 0.951

NWIa 0.75 ± 0.19 0.83 ± 0.15 0.67 ± 0.18 < 0.001e 0 (0, 119.173) 0.156

Degree of stenosis (%)a 71.00 ± 23.00 81.00 ± 17.00 62.00 ± 23.00 < 0.001e 1.155 (0.994, 1.341) 0.060

AUC, area under the curve; CI, confidence intervals; BMI, body mass index; IPH, intraplaque hemorrhage; LRNC, lipid-rich necrotic core; Max WA, maximum wall area; NWI, normalized 
wall index; OR, odds ratio.
aContinuous variables shown with mean ± standard deviation (SD), others are categorical variables; bunivariate analysis; cresults from multivariate logistic analysis; dchi-squared test; eMann-
Whitney U-test.
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logistic regression analysis indicated the BMI (OR = 2.564; 95% CI, 
1.412–4.656) and IPH (OR = 0.047; 95% CI, 0.005–0.444) were 
independent predictors of ischemic stroke and were used to establish 
the traditional model. When combining BMI and IPH, the AUC 
values were 0.79 and 0.78 in the training and test cohorts, respectively 
(Figure 4).

Radiomics model

A total of 239 and 191 features were extracted from the whole 
plaque region based on T1WI and T1CE sequences, respectively. After 
the LASSO algorithm was applied, 10 and 8 features were finally 
retained, which were used to establish the radiomics_T1WI model 
and the radiomics_T1CE model, respectively. The radiomics_T1WI 
model includes one feature of shape, two feature of first-order 
statistics, and seven features of texture (one gray-level co-occurrence 
matrix (GLCM) features, two gray-level dependence matrix (GLDM) 
features, two gray-level size-zone matrix (GLSZM) features, one 
neighborhood gray-tone difference matrix (NGTDM) features, and 
one gray-level run-length matrix (GLRLM) features). The radiomics_
T1CE model includes two features of first-order statistics and six 
features of texture (three gray-level size-zone matrix (GLSZM) 
features, one gray-level run-length matrix (GLRLM) features, one 
neighborhood gray-tone difference matrix (NGTDM) features, and 
one gray-level dependence matrix (GLDM) features). The screening 
process and final screening characteristics are shown in Figures 5, 6.

The AUC value of the training cohort of the radiomics_T1WI 
model was 0.72, while the AUC value of the test cohort was 0.69. The 
AUC value of the training cohort of the radiomics_T1CE model was 
0.82, while the AUC value of the test cohort was 0.74 (Figure 7).

Combined model

Finally, combined models were constructed and displayed as 
nomograms (Figure 8). In the training cohort, the combined_T1WI 

model exhibited an AUC value of 0.78, which was 0.81 in the test 
cohort. The combined_T1CE model exhibited an AUC value of 0.84 in 
the training cohort and 0.82 in the test cohort (Figure 9).

Table 3 lists the specificity, sensitivity, accuracy, AUC, and negative 
predictive value (NPV) and positive predictive value (PPV) of the 
traditional, radiomics, and combined models. The combined_T1CE 
model showed a higher AUC value than the other models.

Discussion

At present, the research on the relationship between carotid 
atherosclerotic plaque and ischemic stroke mainly focuses on the 
assessment of basic imaging characteristics of plaque or the degree of 
vascular stenosis. Previous studies have reported that the composition 
of atherosclerotic plaque is closely related to the occurrence of 
ischemic stroke (21). However, there are limitations in exploring the 
relationship between plaques and ischemic stroke based solely on their 
basic imaging features. First, clinical risk factors such as age, gender, 
hypertension, hyperglycemia, hyperlipidemia, obesity, smoking, and 
alcohol consumption are closely related to ischemic stroke. Second, 
the evaluation of the basic imaging features of plaques is subjective 
and qualitative, and the results are greatly influenced by the personal 
factors of the researchers. However, beyond this traditional evaluation 
method, carotid plaque imaging combined with artificial intelligence 
to accurately predict the risk of ischemic stroke is needed. Radiomics 
convert medical images to quantitative indicators through high-
throughput extraction by data evaluation algorithms for predicting the 
risk of disease (22, 23). Therefore, carotid plaque VOIs were delineated 
on HR-VWMRI; traditional, radiomics, and combined models for 
predicting ischemic stroke were established.

Multivariate logistic regression analysis between stroke group and 
stroke-free group results showed that BMI and IPH were independent 
predictors of ischemic stroke. Then, the BMI and IPH were used to 
build the traditional model. The results revealed that the AUC of the 
traditional model is 0.79 in the training cohort and 0.78 in the test 
cohort. BMI is a commonly used indicator to measure the degree of 

FIGURE 4

Receiver operating characteristic (ROC) curves of the traditional model in the training and test cohorts, respectively.
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obesity and thinness of the body in the world, mainly used to reflect 
the total body fat (24). High BMI is closely related to hypertension, 
diabetes, and other risk factors, which are collectively called metabolic 
syndrome (25, 26). Studies found that the components of metabolic 
syndrome interacted with each other to promote the progress of 
metabolic disorder in vivo, which not only led to intracranial and 
extracranial atherosclerotic lesions but also led to the impairment of 

cerebrovascular regulation ability and microcirculation, further 
promoting the occurrence and development of cerebrovascular 
diseases dominated by ischemic stroke (27, 28). Atherosclerosis is 
known to be the main cause of ischemic stroke. Research shows that 
fat cells in patients with high BMI significantly increase, promote the 
release of inflammatory cytokines, and change the inflammatory state 
of the body (29, 30). The formation and development of atherosclerotic 

FIGURE 5

Selection of radiomics features using LASSO logistic regression based on T1WI images. (A) Selection of the tuning parameter (λ) in the LASSO model via 
10-fold cross-validation based on minimum criteria. (B) The coefficients have been plotted versus (λ). (C) The final retained features with non-zero 
coefficients.

FIGURE 6

Selection of radiomics features using LASSO logistic regression based on T1CE images. (A) Selection of the tuning parameter (λ) in the LASSO model via 
10-fold cross-validation based on minimum criteria. (B) The coefficients have been plotted versus (λ). (C) The final retained features with non-zero 
coefficients.
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plaque is a chronic inflammatory process (31). Therefore, it is believed 
that high BMI is associated with ischemic stroke (32).

IPH is attributed to fragile neovascularization. The rupture of the 
neovascular endothelium will increase the stress of the plaque wall, 
making the plaque wall easier to rupture and cause thrombosis, which 
is more likely to lead to ischemic stroke (33, 34). Many studies have 
found that IPH is an independent predictor of stroke events. In 
patients with symptomatic atherosclerosis, the incidence of IPH is 
higher than that of asymptomatic patients (35–37). The results of our 
study revealed that the incidence of IPH in the stroke group was 
higher than that in the stroke-free group, which was consistent with 
previous study results. In the training and test cohorts, the AUC value 
of the radiomics_T1WI model is the lowest, but the prediction 
performance is significantly improved when the model combines IPH 
and BMI. In addition, when the radiomics_T1CE model is combined 
with IPH and BMI, the prediction performance of the model is further 
improved. This indicates that IPH and BMI are significantly associated 
with ischemic stroke (38).

The establishment of radiomics_T1WI and radiomics_T1CE 
models is based on HR-VWMRI 3D T1WI and 3D T1CE images, 
respectively. The use of HR-VWMRI 3D imaging can better 
characterize plaque features, including more comprehensive, rich, and 
detailed image information. 3D imaging methods can reduce local 

volume effects in 2D imaging and improve the results of radiomics 
analysis. We found the independent radiomics features from T1WI 
and T1CE images were different. This is because the signal 
characteristics in pre- and post-contrast T1WI reflect different 
pathophysiological characteristics of plaque. For example, the 
hyperintensity on pre-contrast T1WI is possibly IPH; on the other 
hand, the hyperintensity on post-contrast T1WI is attributed to the 
plaque neovascularization or the contrast uptake by active 
inflammation (39). After applying the LASSO algorithm, 10 features 
were finally retained based on T1WI including one shape feature, two 
first-order statistics features, and seven texture features, and eight 
features were finally retained based on T1CE including two first-order 
statistics features and six texture features. The first-order statistics 
features describe the distribution of single voxel value without 
considering the spatial relationship and are obtained based on 
histogram analysis and calculation (12). The second-order statistics 
features are usually described as “texture” features, which describe the 
statistical relationship between voxels with similar (or different) 
contrast values (11). In the 18 final features, only first-order statistics 
features and texture features appeared in the final screening results of 
the two sequences. It means that these two types of features may be the 
most important quantitative features to describe plaques, and these 
features cannot be visually evaluated by radiologists.

FIGURE 7

Receiver operating characteristic (ROC) curves of the radiomics_T1WI model and the radiomics_T1CE model in the training and test cohorts, 
respectively.
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Our study revealed that the prediction performance of the 
radiomics_T1CE model is significantly superior to the radiomics_
T1WI model no matter in training or test cohort. This reflects that 
plaque enhancement is another independent risk factor for 
ischemic stroke (20, 40). The main reason for plaque enhancement 
is the increase in neovascularization and endothelial permeability. 
The contrast agent enters and stays in the plaque through the 
loose endothelium, resulting in plaque vulnerability and different 
degrees of enhancement. Therefore, plaque enhancement is 
closely related to the occurrence of ischemic stroke events (41, 
42). However, it is interesting that the results of multivariate 
logistic regression analysis show that there is no statistically 
significant difference in plaque enhancement between the stroke 
group and the stroke-free group. This further shows that 
radiomics contains more information; for example, enhancement 

is a sign of high-risk plaques, but most previous studies were 
subjective visual qualitative recognition, lacking objective 
quantitative information. However, radiomics can provide 
quantitative information that is not relevant to the reader, which 
is difficult to visualize or too numerous for radiologists to visually 
evaluate (43).

In the training and test cohorts, the combined_T1CE model has 
the highest AUC value. Compared with the radiomics_T1CE model, 
the prediction performance of the combined_T1CE model has been 
improved. However, there is no statistically significant difference 
between the two models in the training cohort. This could be explained 
by the relative weights of the radiomics_T1CE model versus the 
traditional model, and the combined_T1CE model was weighted 
heavily toward the enhancement of radiomics characteristics, which 
produced better performances (10).

FIGURE 8

A nomogram which integrates the radiomics scores and traditional features of the training cohort. From the left to right, the probability scoring of 
ischemic stroke is marked on each axis and increases. An example of how to calculate the total points of a plaque on T1CE and predict the risk of the 
patient’s ischemic stroke was as follows: a carotid plaque with IPH and the BMI of the patient is 25 receives 32.5  +  37.5  =  70 points from traditional 
features. A radiomics score of 0.7 corresponds to 47.5. Therefore, this patient scored 117.5 on the nomogram, which indicates a risk of ischemic stroke 
over 90%. (A) Combined_TICE model nomogram. (B) Combined_TIWI model nomogram.
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This study beyond the assessment of the basic imaging 
characteristics of carotid atherosclerotic plaque or the degree of 
vascular stenosis uses a new model, that is, the combination of carotid 
atherosclerotic plaque imaging and artificial intelligence to explore 
the relationship with ischemic stroke. The study showed that 
radiomics score, IPH, and BMI were independent indicators of the 
risk of ischemic stroke. Combined with these independent risk 

factors, novel radiomics nomograms were generated. The generated 
nomogram based on T1CE had good predictive value, with AUCs of 
0.84 and 0.82  in the training and test cohorts, respectively. These 
encouraging results deserve further multicenter trials applying 
carotid plaque radiomics features based on HR-VWMRI T1CE 
images and clinical characteristics for predicting the risk of 
ischemic stroke.

FIGURE 9

Receiver operating characteristic (ROC) curves of the combined_T1WI model and the combined_T1CE model in the training and test cohorts, 
respectively.

TABLE 3 Predictive ability of all models.

Cohort Sensitivity Specificity Accuracy AUC NPV PPV

Traditional model Training 0.61 0.78 0.70 0.79 0.73 0.69

Test 0.69 0.85 0.77 0.78 0.70 0.85

Radiomics_T1WI model Training 0.59 0.82 0.74 0.72 0.79 0.67

Test 0.32 0.88 0.55 0.69 0.47 0.80

Radiomics_T1CE model Training 0.72 0.82 0.77 0.82 0.80 0.77

Test 0.50 0.88 0.65 0.74 0.54 0.86

Combined_T1WI model Training 0.25 0.80 0.56 0.78 0.57 0.50

Test 0.52 0.94 0.69 0.81 0.57 0.93

Combined_T1CE model Training 0.82 0.78 0.79 0.84 0.86 0.79

Test 0.50 0.88 0.70 0.82 0.57 0.84
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Limitations of this study: First, this study was a single center with 
a relatively small sample size; multicenter and larger data sets are 
needed to evaluate the prediction performance of the model in future 
study. Second, VOIs were manually delineated, despite the excellent 
reproducibility; however, due to the small size of the plaque, manual 
segmentation is a challenging task that takes a lot of time. Automatic 
segmentation would improve segmentation efficiency and accuracy. 
Third, because the boundary of plaque on TOF images is indistinct, 
and T2WI is not a 3D isovoxel sequence, we  did not perform 
radiomics analysis on it. Fourth, there is a lack of multimodal imaging 
indicators such as cerebral blood flow and collateral circulation. In 
future, multimodality imaging combined with artificial intelligence is 
needed to establish a prediction model of ischemic stroke and improve 
the primary prevention strategy of stroke.

Conclusion

As a feasible and exploratory study, this study provides new 
insights into the prediction of ischemic stroke. The above results 
indicate that the combined_T1CE model incorporating clinical 
characteristics and carotid plaque radiomics features based on 
HR-VWMRI T1CE images can accurately predict the risk of 
ischemic stroke.
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