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A nomogram for predicting 
cerebral white matter lesions in 
elderly men
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Yi-Han Wang , Ming-Rui Chen  and Hui-Sheng Chen *

Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China

Objective: This study aimed to develop a nomogram tool to predict cerebral 
white matter lesions (WMLs) in elderly men.

Methods: Based on a retrospective cohort from January 2017 to December 
2019, a multivariate logistic analysis was performed to construct a nomogram 
for predicting WMLs. The nomogram was further validated using a follow-up 
cohort between January 2020 and December 2022. The calibration curve, 
receiver operating characteristics (ROC) curves, and the decision curves analysis 
(DCA) were used to evaluate discrimination and calibration of this nomogram.

Result: A total of 436 male patients were enrolled in this study, and all 436 
patients were used as the training cohort and 163 follow-up patients as the 
validation cohort. A multivariate logistic analysis showed that age, cystatin 
C, uric acid, total cholesterol, platelet, and the use of antiplatelet drugs were 
independently associated with WMLs. Based on these variables, a nomogram 
was developed. The nomogram displayed excellent predictive power with the 
area under the ROC curve of 0.951 [95% confidence interval (CI), 0.929–0.972] 
in the training cohort and 0.915 (95% CI, 0.864–0.966) in the validation cohort. 
The calibration of the nomogram was also good, as indicated by the Hosmer–
Lemeshow test with p-value of 0.594  in the training cohort and 0.178  in the 
validation cohort. The DCA showed that the nomogram holds good clinical 
application value.

Conclusion: We have developed and validated a novel nomogram tool for 
identifying elderly men at high risk of WMLs, which exhibits excellent predictive 
power, discrimination, and calibration.
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Introduction

Cerebral white matter lesions (WMLs) are not only an important part of cerebral small 
vessel disease (SCVD), but also one of the most common causes of cognitive impairment in 
the elderly, and considered to be an early sign of brain damage (1, 2). The incidence of WMLs 
in the elderly has been reported to range from 11% to 21%, with rates reaching as high as 94% 
in advanced-aged individuals (3). Given the increasing global aging population, research on 
WMLs has gained significant attention (4). Growing evidence showed that heavier WMLs 
burden was closely associated with more severe cognitive impairment (5, 6). Some studies have 
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shown that the location of WMLs was closely related to the prognosis 
of patients with acute ischemic stroke (7), and the severity of WMLs 
may affect the functional prognosis of ischemic stroke (8). Other 
studies suggest that WMLs can increase the risk of dementia and 
death in stroke patients (3). Furthermore, a prospective study revealed 
that severe WMLs can predict composite endpoints of death, 
pneumonia, and falls (9).

Some studies have identified the correlations of age, hypertension, 
female gender, high density lipoprotein (HDL) levels, and the use of 
antihypertensive medications with occurrence of WMLs (10, 11). 
However, accurately predicting the occurrence of WMLs remains a 
challenge. Only one recent study reported a prediction model focused 
on the elderly (10). However, constructing models that incorporate a 
wider range of clinically relevant variables could help enhance the 
accuracy of WMLs prediction, which is crucial for identifying the 
appropriate population for early intervention.

In this context, the current study aims to develop a predictive 
nomogram based on comprehensive baseline characteristics of 
elderly men.

Methods

Patients and study design

We retrospectively enrolled consecutive patients who underwent 
comprehensive medical examination including brain magnetic 
resonance imaging (MRI) between January 2017 and December 2019. 
Eligible patients were used as a training cohort to develop a nomogram 
for predicting WMLs. After this time, all these patients were 
retrospectively followed up for 3 years (between January 2020 and 
December 2022) as the validation cohort. Patients fulfilling the 
following eligibility criteria were included for analysis: (a) 
age ≥ 60 years; (b) complete brain MRI including T2-weighted images 
and fluid-attenuated inversion recovery (FLAIR); (c) complete 
medical examination. The exclusion criteria: (a) incomplete clinical 
data; (b) large area cerebral infarction, cerebral hemorrhage, 
subarachnoid hemorrhage and craniocerebral trauma; (c) severe liver 
dysfunction, severe cardiac dysfunction, hypothyroidism, gout, 
autoimmune system diseases, severe systemic infection; (d) taking 
immunosuppressant recently; (e) taking B vitamins and folic acid 
recently; (f) taking uric acid-lowering drugs recently; (g) other 
conditions known to cause WMLs, such as carbon monoxide 
poisoning, hypoxic encephalopathy, various types of hydrocephalus, 
immune white matter demyelination and so on; (h) diseases that may 
interfere with the analysis of WMLs, such as brain tumors, cysts and 
history of craniocerebral surgery, etc. This study was approved by the 
Ethics Committee of General Hospital of Northern Theater 
Command, Shenyang and waived the need for informed consent from 
all subjects.

Data collection

The following demographic and clinical characteristics were 
recorded: age, weight, smoking and drinking history, admission 
systolic blood pressure (SBP) and admission diastolic blood pressure 
(DBP), medical comorbidity [hypertension, diabetes, coronary heart 

disease (CHD), atrial fibrillation (AF), left heart failure (LHF) and 
tumor]; the use of statins, antiplatelet drugs and anticoagulants. 
Laboratory test values including serum total cholesterol (TC), 
triglyceride (TG), high density lipoprotein (HDL), low density 
lipoprotein (LDL), lipoprotein-A (LP-A), albumin (ALB), total protein 
(TP), high-sensitivity C-reactive protein (h-CRP), platelets (PLT), 
glycosylated hemoglobin (HbA1C), total bilirubin (TBIL), direct 
bilirubin (DBIL), indirect bilirubin (IBIL), alanine aminotransferase 
(ALT), gamma glutamyl transpeptidase (GGT), homocysteine (Hcy), 
cystatin C (Cys C), uric acid (UA), creatinine (CREA), urea nitrogen 
(UREA) and brain natriuretic peptide (BNP).

WMLs assessment

The WMLs were evaluated utilizing the Fazekas scale on MRI 
(12), and were defined as any occurrence of WMLs (namely a Fazekas 
score of at least 1 point). In the scale, periventricular and deep WMLs 
were rated separately, and periventricular WMLs were graded 
according to the following patterns: 0 = absent; 1 = caps or pencil-thin 
lining; 2 = smooth halo; and 3 = irregular periventricular WMLs 
extending into a deep WMLs. Deep WMLs were graded according to 
the following patterns: 0 = absent; 1 = punctate foci; 2 = beginning 
confluence of foci; and 3 = large fused areas. A total Fazekas score, 
ranging from 0 to 6, was acquired by summing the periventricular and 
deep WMLs scores. Based on the Fazekas scale, WMLs did not include 
old lacunar infarctions and/or white matter lesions at some other 
locations such as basal ganglia, deep gray matter and cortical/
subcortical areas. The neuroimaging data were evaluated 
independently by two experienced neurologists who were blinded to 
the clinical data. Any disagreement between the two assessors was 
resolved by discussion until a consensus was achieved.

Statistical analysis

The patient data in the training cohort were used to develop the 
prediction model, and the patient data in the validation cohort were 
used to validate the model. Gaussian distributed data were expressed 
as means ± standard deviation (SD) and compared by student’s t-test, 
while non-Gaussian distributed data were expressed as medians 
(interquartile range, Q2–Q3) and compared by the Mann–Whitney U 
test. Categorical data are expressed using frequencies and ratios (%) 
and Fisher’s exact tests or the χ2 tests were used for categorical 
variables. SPSS 26.0 was used for statistical analyses. All variables with 
a probability value < 0.10 in the univariate analysis entered into a 
multivariate logistic regression analysis using a backwards stepwise 
method. Stata software (version 17.0) was used to build the nomogram 
prediction model. The nomogram converts each independent risk 
factor included in the model into an assessment point system. The 
total points obtained determine the final risk assessment value. The 
odds ratio (OR) and 95% confidence interval (CI) of each significant 
risk factor in the final logistic regression model were calculated. 
Performances of the nomogram were assessed in the validation 
cohort. Discrimination of the nomogram was assessed using the area 
under the ROC curve (AUC). An AUC of 0.51–0.7 indicates low 
accuracy, 0.71–0.9 indicates moderate accuracy, and 0.91–1.0 indicates 
high accuracy to discriminate between patients with WMLs and 
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without WMLs. The calibration of the nomogram was evaluated by 
the Hosmer-Lemeshow test (p > 0.05 indicates good calibration). In 
addition, a decision curve analysis (DCA) of the model was developed 
to quantify the net benefit rate at different threshold probabilities to 
assess the clinical validity of the model. All statistical tests were 
2-tailed. We deemed statistical significance at p = 0.05.

Results

Demographic and clinical features

As shown in Figure 1, 1,276 patients were screened for eligibility 
and 436 patients were included in the training cohort after excluding 
840 individuals. The patients in the training cohort were followed for 
3 years. However, due to incomplete follow-up information, 273 
patients were subsequently excluded. As a result, a total of 163 

follow-up patients were included in the validation cohort. The 
demographics and clinical characteristics of the patients in the two 
cohorts were shown in Table  1. There was a good balance in the 
baseline characteristics between the training and validation cohort 
except for tumor history, statins history, uric acid and serum total 
protein. The average age of patients in the training cohort and 
validation cohort were 73.93 ± 14.15 and 75.22 ± 11.84 years old, 
respectively. The prevalence rate of WMLs in the training cohort was 
65.6%, whereas in the validation cohort was as high as 82.6%.

Predictors for WMLs and nomogram 
construction

In the training cohort, a univariate analysis was conducted to 
investigate the association of several variables with WMLs. These variables 
include age, medical comorbidities (hypertension, CHD, tumor), SBP, use 

FIGURE 1

Flowchart of participant recruitment.
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of statins, use of antiplatelet drugs, laboratory tests (Hcy, Cys C, UA, 
CREA, UREA, h-CRP, TC, TG, HDL, LDL, TP, ALB, BNP, HbA1C, PLT; 
Table 2). Finally, six variables remained significant in the multivariate 
logistic model, including age, cystatin C, total cholesterol, platelet, uric 
acid and use of antiplatelet drugs (Table 2). The predictive nomogram for 
WMLs that integrated these six variables was constructed and depicted in 
Figure 2. Based on this nomogram, the probability of predicting WMLs 
in patients can be  calculated as follows: PWMLs = 1/(1 + ex), x = −
(−15.29 + 0.099 × age − 0.174 × antiplatelet drugs (yes) + 0 × antiplatelet 

drugs (no) + 6.455 × cystatin C − 0.611 × total cholesterol +0.023 × platelet 
+0.006 × uric acid).

Assessment, validation of predictive 
accuracy of the nomogram for WMLs

The ROC (Figures  3A,B) and calibration curve were plotted 
(Figures  3C,D) to verify the accuracy and discrimination of this 

TABLE 1 Demographic and clinical features of the participants.

Variables Training cohort (n  =  436) Validation cohort (n  =  163) p

Age (year) 73.93 ± 14.15 75.22 ± 11.84 0.243

Weight (kg) 71.69 ± 9.75 71.84 ± 9.48 0.867

Coronary heart disease (%) 194 (44.5) 73 (44.8) 0.949

Hypertension (%) 290 (66.5) 108 (66.3) 0.953

Diabetes mellitus (%) 143 (32.8) 60 (36.8) 0.356

Atrial fibrillation (%) 46 (10.6) 19 (11.7) 0.699

Tumor (%) 97 (22.2) 49 (30.1) 0.047

Left heart failure (%) 40 (9.2) 17 (10.4) 0.461

Smoking (%) 146 (33.5) 52 (31.9) 0.714

Drinking (%) 173 (39.7) 65 (39.9) 0.965

Statins (%) 315 (72.2) 135 (82.8) 0.008

Antiplatelet drugs, n (%) 151 (34.6) 49 (30.1) 0.291

Anticoagulants, n (%) 41 (9.4) 15 (9.2) 0.940

Systolic blood pressure (mmHg) 133.98 ± 13.34 133.85 ± 15.19 0.919

Diastolic blood pressure (mmHg) 74.73 ± 9.35 73.94 ± 9.19 0.357

Homocysteine (umol /L) 12.04 ± 4.49 12.08 ± 3.57 0.926

Cystatin C (mg/L) 1.09 ± 0.66 1.15 ± 0.42 0.346

Uric acid (umol /L) 345.76 ± 75.59 366.80 ± 74.58 0.002

Creatinine (mmol/L) 81.01 ± 57.80 80.64 ± 19.84 0.937

Urea nitrogen (mmol/L) 6.09 ± 2.45 6.37 ± 1.91 0.188

h-CRP (mg/L) 1.82 ± 2.19 1.99 ± 2.97 0.457

Total bilirubin (umol /L) 11.29 ± 4.75 11.50 ± 5.01 0.629

Direct bilirubin (umol /L) 3.62 ± 1.85 3.34 ± 3.44 0.193

Alanine aminotransferase (U/L) 20.68 ± 11.56 20.33 ± 9.36 0.729

GGT (U/L) 29.02 ± 17.70 30.31 ± 39.25 0.579

Total cholesterol (mmol/L) 4.07 ± 0.95 4.05 ± 1.01 0.826

Triglyceride (mmol/L) 1.45 ± 1.14 1.46 ± 0.78 0.861

High density lipoprotein (mmol/L) 1.17 ± 0.29 1.13 ± 0.31 0.181

Low density lipoprotein (mmol/L) 2.23 ± 0.68 2.18 ± 0.73 0.415

Lipoprotein-A (g/L) 209.20 ± 196.70 212.32 ± 213.73 0.866

Total protein (g/L) 66.67 ± 5.55 65.25 ± 5.33 0.005

Albumin (g/L) 39.88 ± 15.49 38.39 ± 4.11 0.226

Brain natriuretic peptide (pg/mL) 208.16 ± 387.89 226.01 ± 443.10 0.630

Glycosylated hemoglobin (%) 5.96 ± 0.75 5.99 ± 0.85 0.562

Platelet (×109/L) 202.38 ± 65.24 211.23 ± 76.18 0.159

Cerebral white matter lesions (%) 286 (65.6) 134 (82.2) <0.001

Values are mean SD or n (%). h-CRP, high-sensitivity C-reactive protein; GGT, gamma glutamyl transpeptidase. Numerical variables were analyzed with Student’s t-test. For categorical 
variables, chi-square or Fisher exact test was used.
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model. The AUC in the training cohort was 0.951 (95% CI, 0.929–
0.972), while 0.915 (95% CI, 0.864–0.966) in the validation cohort, 
which suggested that our model had good accuracy. The calibration 
curve of the training cohort and validation cohort showed that there 
was excellent consistency between the predicted survival probability 
and the actual survival probability. The Hosmer-Lemeshow test for the 
training cohort yielded a p-value of 0.594, suggesting that the 

nomogram had a perfect fit. The calibration of the nomogram was 
further confirmed with the validation cohort, for which the Hosmer-
Lemeshow test yielded a p-value of 0.178, suggesting no departure 
from the good fit of the nomogram. DCA was also plotted to evaluate 
the usefulness of the nomogram in the clinical utility (Figures 4A,B) 
and the results showed that the predictive nomogram provided sound 
clinical guidance with a good net benefit.

TABLE 2 Univariate and multivariable logistic regression analysis of the variables associated with white matter lesions in the training cohort.

Variables Univariate analysis Multivariable analysis

OR (95% CI) p OR (95% CI) p

Age 1.142 (1.11–1.18) <0.001 1.11 (1.06–1.15) <0.001

Weight 0.986 (0.97–1.01) 0.211 - -

Coronary heart disease 0.318 (0.2–0.51) <0.001 - -

Hypertension 0.378 (0.24–0.59) <0.001 - -

Diabetes mellitus 0.657 (0.41–1.05) 0.077 - -

Atrial fibrillation 0.426 (0.19–0.98) 0.044 - -

Tumor 0.231 (0.12–0.46) <0.001 - -

Left heart failure 0 0.997 - -

Smoking 0.744 (0.47–1.18) 0.209 - -

Drinking 1.283 (0.84–1.97) 0.254 - -

Statins 0.466 (0.29–0.74) 0.001 - -

Antiplatelet drugs 2.12 (1.37–3.27) 0.001 0.34 (0.17–0.70) 0.003

Anticoagulants 0.51 (0.22–1.18) 0.116 - -

Systolic blood pressure 1.035 (1.02–1.05) <0.001 - -

Diastolic blood pressure 0.99 (0.97–1.01) 0.388 - -

Homocysteine 1.361 (1.24–1.49) <0.001 - -

Cystatin C 15545.91 (1918.72–125956.33) <0.001 636.06 (55.07–7346.72) <0.001

Uric acid 1.007 (1–1.01) <0.001 1.006 (1–1.01) 0.025

Creatinine 1.045 (1.03–1.06) <0.001 - -

Urea nitrogen 1.369 (1.19–1.58) <0.001 - -

h-CRP 1.16 (1.03–1.31) 0.019 - -

Total bilirubin 0.989 (0.95–1.03) 0.63 - -

Direct bilirubin 1.07 (0.95–1.2) 0.253 - -

Alanine aminotransferase 0.99 (0.97–1.01) 0.296 - -

GGT 1.003 (0.99–1.01) 0.518 - -

Total cholesterol 0.47 (0.37–0.59) <0.001 0.54 (0.37–0.80) 0.002

Triglyceride 0.765 (0.59–0.99) 0.049 - -

High density lipoprotein 0.251 (0.13–0.51) <0.001 - -

Low density lipoprotein 0.362 (0.26–0.5) <0.001 - -

Lipoprotein-A 1 (0.99–1.01) 0.823 - -

Total protein 0.921 (0.89–0.96) <0.001 - -

Albumin 0.818 (0.77–0.87) <0.001 - -

Brain natriuretic peptide 1.006 (1–1.01) <0.001 - -

Glycosylated hemoglobin 1.913 (1.33–2.76) 0.001 - -

Platelet 1.011 (1.01–1.02) <0.001 1.02 (1.01–1.03) <0.001

OR, odds ratio; CI, confidence interval; h-CRP, high-sensitivity C-reactive protein; GGT, gamma glutamyl transpeptidase. Results of the univariate and multivariable logistic regression model 
for cerebral white matter lesions using variable selection based on p-value significance of backward stepwise regression.
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Discussion

In the current study, we developed and validated a predictive 
nomogram to identify the increased risk of WMLs in the male elderly 
patients over 60 years old. The newly developed model incorporated 
several key factors, including age, TC, PLT, Cys C, UA, and use of 
antiplatelet drugs. The resulting nomogram showed excellent 
predictive power as well as good discrimination and calibration.

Among these six variables, age, Cys C, and platelet were found to 
have a greater impact on WMLs. It was expected that age was found 
as a main contributor of this model, because age has been well 
demonstrated to be  associated with WMLs (13–15). Given the 
inhibitory effect of increased serum Cys C on the contractile function 
of arterioles (16), and the damaging effect on the blood–brain barrier 
(17), the close association of Cys C with WMLs was explainable in the 
current study. In agreement with prior studies, platelet was found to 
be associated with WMLs in this study. Kuriyama et al. (18) found that 
the risk of WMLs in the elderly with high platelet activity increased 
by about threefold. Higher platelet aggregation rate have been linked 
to a higher incidence of WMLs, with a risk significantly higher than 
classical vascular risk factors such as hypertension, diabetes, and age 
(19). In addition, aspirin administration in patients with WMLs not 
only prevent cerebral infarction, but also curb the progress of WMLs 
(20), which was in agreement with the current finding that antiplatelet 

drug was independently associated with WMLs. Collectively, these 
results suggest the potential association of platelet and use of 
antiplatelet drug with WMLs.

In the current study, UA was also found to be associated with 
WMLs. Prior studies have found that hyperuricemia was an 
independent risk factor for WMLs (21). The underlying mechanisms 
included its effect on vascular endothelial cell dysfunction and 
atherosclerosis (22). Remarkably, our study found that lower TC levels 
may lead to an increased risk of WMLs, which seems contradictory 
with previous studies reporting that high cholesterol levels increased 
the risk of WMLs (23, 24). We argue that there are two possible reasons. 
First, as the main components of cell membrane and nerve myelin 
sheath, cholesterol plays a fundamental role in the development of the 
central nervous system and the creation and maintenance of new 
synapses (25, 26). This could explain the effect of significantly lower 
cholesterol levels on chronic cerebral injury, such as the developments 
of WMLs. Second, many studies have confirmed that intensive lipid 
reduction will greatly increase the risk of cerebral micro bleeds (CMBs) 
(27, 28), while there was a close correlation between CMBs and the 
formation of WMLs (29), which may explain the association of 
significantly lower cholesterol levels with WMLs. Furthermore, the 
current finding was supported by some studies reporting that the 
increase of TC was considered to be a protective factor of WMLs (30, 
31). In addition, some studies did not find a correlation between TC 

FIGURE 2

Nomogram for predicting cerebral white matter lesions in training cohort. Points are assigned based on age, cystatin C, total cholesterol, platelet, uric 
acid and antiplatelet drugs by drawing a line upward from the corresponding values to the “Points” line. The sum of these six points, plotted on the 
“Total points” line, corresponds to prediction of cerebral white matter lesions.
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FIGURE 3

Receiver operating characteristic curves and calibration curves. ROC curve and area under the curve (AUC) in training cohort (A) and validation cohort 
(B) of the nomogram; calibration curve of training cohort (C) and validation cohort (D) of the nomogram.

FIGURE 4

Decision curve analysis of the risk prediction model of white matter lesions. Decision curve of training cohort (A) and validation cohort (B); the net 
benefit was plotted vs. the threshold probability. The horizontal black dash line depicts net benefit of a strategy of treating no patients. The blue dash 
line depicts net benefit of a strategy of treating all patients. The red solid line represents the nomogram.
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and WMLs (32). Although there was a higher prevalence of diabetes 
and hypertension in the current study, we did not find the association 
of diabetes, hypertension and blood pressure with WMLs, which were 
known to be associated with WMLs (33–35). One possible explanation 
is that the blood pressure and blood glucose were well controlled in this 
cohort (36, 37). In addition, high prevalence of WMLs in both cohorts 
due to elderly patients (older than 60) and high prevalence (>60%) of 
hypertension may mask their associations, so their associations with 
severity of WMLs deserve to be further investigated. However, some 
studies did not find a correlation between diabetes and WMLs (38, 39), 
which was in line with our findings.

Our study possesses two potential strengths. First, our nomogram 
was created based on analysis of comprehensive and routinely available 
baseline variables in a training cohort, which was further validated in a 
follow-up cohort. Second, Cys C, UA, TC, platelet, and the use of 
antiplatelet drugs were incorporated into the prediction model for the 
first time and had excellent predictive power, and good discrimination 
and calibration. Nevertheless, we acknowledge several limitations. First, 
this was a retrospective observational study, which had common 
limitations including bias, potential lack of baseline data and inevitable 
confounding effect, although baseline data were comprehensively 
collected. Second, this was a single-center study without an external 
validation cohort, but it was validated by a follow-up cohort. Third, as 
almost all the patients in our center were male, our study did not include 
female patients. So, this finding is only applicable to male patients. 
Fourth, we  did not collect the data about other brain lesions or 
underlying disease, which might have effect on this finding given their 
associations with WMLs. Finally, further confirmation of these findings 
in non-Chinese populations would be needed, given the differences in 
body mass and comorbid factors compared with other populations.

Conclusion

A novel nomogram tool has been developed to predict WMLs 
with excellent predicting power, good discrimination and calibration. 
The model should be helpful to identify elderly men at high risk of 
cerebral WMLs.
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