
Frontiers in Neurology 01 frontiersin.org

Relationship between sodium 
level and in-hospital mortality in 
traumatic brain injury patients of 
MIMIC IV database
Xiaoliang Wang 1, Xin Li 1, Jiahao Sun 1, Mengmeng Wang 1, 
Wenjuan Lang 1 and Xin Xu 2*
1 Neurology Department of Qingdao Municipal Hospital, Nanjing Medical University, Qingdao, 
Shandong Province, China, 2 Neurology Department of Affiliated Hospital of Qingdao University, 
Qingdao, Shandong Province, China

Background: An association between prognosis and high sodium levels in 
Traumatic Brain Injury (TBI) patients in Intensive Care Units (ICUs) has been 
noted, but limited research exists on the ideal sodium level in these patients or 
the impact on early mortality, using the MIMIC-IV database.

Methods: A retrospective survey was conducted on TBI patients from the MIMIC-
IV database. Patients were divided into two categories based on their highest 
serum sodium level within 24  h of admission exceeding 145  mmol/L: those 
with hypernatremia, and those with moderate-to-low sodium levels. Collected 
covariates encompasses demographic, clinical, laboratory, and intervention 
variables. A multivariate logistic regression model was implemented to forecast 
in-hospital mortality.

Results: The study included 1749 TBI patients, with 209 (11.5%) experiencing 
in-hospital deaths. A non-linear test exposed an L-shaped correlation between 
sodium level and in-hospital mortality, with mortality rates increasing after a 
turning point at 144.1  mmol/L. Compared to the moderate-to-low group’s 9.3% 
mortality rate, the hypernatremia group had a significantly higher mortality rate 
of 25.3% (crude odds ratio  =  3.32, 95% confidence interval: 2.37  ~  4.64, p  <  0.001). 
After adjusting for all covariates, the hypernatremia group continued to show 
a significant correlation with higher mortality risk (adjusted odds ratio  =  2.19, 
95% confidence interval: 1.38  ~  3.47, p  =  0.001). This trend remained consistent 
regardless of the analyses stratification.

Conclusion: The study reveals an L-shaped relationship between sodium 
levels and in-hospital deaths, with a pivotal point at 144.1  mmol/L. TBI patients 
displaying hypernatremia were independently linked to higher in-hospital 
mortality, underlining the need for further studies into targeted management of 
sodium levels in these patients.
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Introduction

Traumatic brain injury (TBI) affect nearly 69 million people per 
year, often resulting in long-lasting disability and mortality (1). 
Despite the pervasiveness of this issue, effective treatments for TBI are 
limited. Hypernatremia is commonly identified in TBI patients 
admitted to Intensive Care Units (ICUs) (2). The mechanisms 
contributing to hypernatremia in these patients are complex, 
encompassing central diabetes insipidus, osmotic agent 
administration, high sodium infusion and imbalance of fluid intake 
and output (3). Several studies suggest an independent correlation 
between hypernatremia and mortality following severe TBI (3, 4). The 
causal relationship, however, remains indistinct as hypernatremia can 
indicate both disease severity and a therapeutic target for fundamental 
medication such as mannitol and/or hypertonic saline (5). Additional 
research is imperative to understand the prognostic implication of 
sodium levels in TBI patients and to clarify the optimal sodium level 
for these patients during ICU admission although the causal 
relationship cannot be established. The aim of the current study is to 
evaluate the impact of sodium levels on in-hospital mortality among 
patients with severe TBI.

Method

Study population

This retrospective study exploits patient data from the 
Medical Information Mart for Intensive Care-IV (MIMIC-IV) 
cohort, a single-center, longitudinal cohort from 2008 to 2019. 
The MIMIC-IV database comprises diverse patient information 
from ICUs. We completed a training programme facilitated by the 
PhysioNet team and secured official approval to use the 
MIMIC-IV database from the review boards of the “Massachusetts 
Institute of Technology and Beth Israel Deaconess Medical 
Center” (ID: 11744558). Because the patient data utilized in this 
study was anonymized within the database, informed consent was 
unnecessary. The data extraction code, available on GitHub1 (6), 
was employed, and the study was conducted in adherence to the 
STROBE (“Strengthening the Reporting of Observational Studies 
in Epidemiology”) guidelines (7).

Inclusion and exclusion criteria

TBI patient data extracted from the database using the 
diagnostic codes of ICD-9 or ICD-10 (International Classification 
of Disease, Ninth and Tenth Versions; ICD-9: 85*; ICD-10: S06*) 
were included in this study. The criteria defined for inclusion 
were: (1) patients aged 18 years or older; (2) patients with an ICU 
length of stay (LOS) lasting 24 h or more; and (3) consideration 
only of the initial ICU stay record. Meanwhile, the exclusion 
criteria consisted of: (1) patients younger than 18 years and (2) 
patients with an ICU stay less than 24 h.

1 http://github.com/MIT-LCP/mimic-iv

Data extraction

Structured Query Language (SQL) was employed for data 
extraction. Variables, collected within 24 h of ICU admission, were 
extracted. If repeated test results presented themselves, only the worst 
was selected. These variables include:

 1. Basic patient characteristics such as sex, admission age, race, 
admission time, ICD code, and in-hospital death.

 2. Vital signs like temperature, mean blood pressure (MBP), heart 
rate, and SpO2.

 3. Illness severity scores, which included the SOFA score, SAPS 
II, GCS, and Charlson comorbidity index.

 4. Laboratory results such as WBC count, creatinine levels, 
HCT, etc.

 5. Treatment methods, such as mechanical ventilation, 
hypersaline infusion.

 6. Comorbidities—myocardial infarction, peripheral vascular 
disease, dementia, COPD, malignant cancer, renal disease, and 
severe liver disease, among others.

Variable definition and outcomes

The Hypernatremia group was characterized by a sodium level 
exceeding 145 mmoL/L during the first 24 h after ICU admission, 
while the moderate to low group had a sodium level of 145 mmoL/L 
or below. The primary objective of this study was to explore in-hospital 
mortality as the chief outcome.

Statistical analysis

Patient baseline characteristics were stratified by differing sodium 
level groups. Continuous data were represented as either 
mean ± standard deviation or median (inter-quartile range), while 
categorical variables were depicted as numbers (percentages) where 
suitable. Statistical comparisons between the two groups employed the 
chi-square test or Fisher’s exact test for categorical variables, and 
continuous variables were assessed via the analysis of variance test or 
rank-sum test. No imputation methods were used for missing data. 
Patients with missing data (with a missing rate below 1%) on variables 
like mean glucose level, WBC, BUN, and GCS were excluded. If a 
patient was intubated and could not provide a verbal score for the 
Glasgow Coma Scale (GCS), it was estimated from the eye and motor 
scores, as reported in previous studies (8).

Univariable logistic regression was utilized to assess the potential 
effect of sodium levels on in-hospital-death and to screen for 
confounders. To further analyze the relationship between 
Hypernatremia and in-hospital death, a multivariable logistic regression 
model was adopted, with models adjusted by potential confounders.

A restricted cubic spline was applied to investigate potential 
nonlinear relationships between sodium level and in-hospital 
mortality, adjusting the analysis for factors including age, gender, 
MBP, heart rate, spo2, glucose, platelets, hematocrit, hemoglobin, 
WBC, potassium, BUN, creatinine, Charlson comorbidity index, 
SAPSII, GCS, and length of stay (LOS) in ICU. Inflection point 
analysis was undertaken to identify the optimal serum sodium level 
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corresponding to the lowest mortality. A likelihood ratio test was 
conducted to gauge how closely in-hospital death and sodium levels 
were related. Heterogeneity across subgroups was examined through 
logistic proportional hazards analysis, and a likelihood ratio test 
evaluated the interactions.

A two-tailed test with a threshold of p < 0.05 determined statistical 
significance. The data were analyzed using the R software package (R 
version 4.0.3) and Free Statistics software version 1.7.

Result

Baseline characteristics

We identified 2,422 individuals diagnosed with Traumatic Brain 
Injury (TBI) who were first admitted to the ICU. Out of these, 421 
patients had an ICU stay shorter than one day. With missing data cases 
excluded, 1,749 records remained for our final cohort analysis. The 
process of participant admission and exclusion is depicted in Figure 1.

Table  1 outlines the clinical characteristics of the selected 
participants. The cohort comprised of 1,749 patients, with an average 
age of 65.9 ± 20.3 years. The majority were males (62.1%; n = 1,087). A 
total of 202 patients (11.5%) did not survive their hospital stay. 
We classified 249 patients with higher sodium levels into a hypernatremia 
group. This group showed younger patient age and lesser prevalence of 
comorbidities such as malignant cancer but higher White Blood Cell 
(WBC) count and potassium levels. The Simplified Acute Physiology 
Score II (SAPSII) was higher and Glasgow Coma Scale (GCS) lower in 
the hypernatremia group, which also contained most of the mechanically 
ventilated patients. More frequently administered with hypertonic 
saline, the hypernatremia group had a longer ICU-Length Of Stay (LOS) 
and a higher mortality rate compared to the moderate-to-low group 
(25.3% vs. 9.3%). Refer to Table 1 for details.

Relationship between sodium level on 
in-hospital mortality

Our univariate logistic regression analysis (Table 2) indicates an 
increasing in-hospital mortality in line with rising sodium levels. 
Specifically, each unit (mmol/L) increase in sodium level corresponded 
to a 10% rise in the odds of in-hospital death (OR:1.1; 95%CI:1.071.14; 
p < 0.001). The hypernatremia group exhibited a 3.32 times higher 
mortality rate relative to the reference group (crude odds ratio = 3.32, 
95% confidence interval: 2.374.64, p < 0.001).

After accounting for confounding factors in the multivariate 
logistic models (Table 3), patients in the hypernatremia group were 
found to have 2.17 times the risk of in-hospital mortality compared to 
the reference group (adjusted odds ratio = 2.17, 95% confidence 
interval: 1.36 ~ 3.46, p = 0.001).

Further investigation into the relationship between sodium levels 
and in-hospital mortality was conducted through multivariable-
adjusted restricted cubic spline analyses. There emerged a J-shaped 
association, indicative of a non-linear relationship between sodium 
levels and mortality (Figure 2). The inflection point for sodium levels 
was about 144.1 mmol/L (95% confidence interval: 143.505 ~ 144.785, 
p = 0.05) (Table 4). Beyond this threshold, every additional 1 mmol/L 
of sodium level led to a 9.7% rise in in-hospital mortality odds 
(OR = 1.097; 95%CI:1.002 ~ 1.202, p = 0.05). Below this point, sodium 
level increases did not impact in-hospital mortality rates (OR = 0.992 
(0.936 ~ 1.051), p = 0.7856).

Sensitivity analysis

Through multivariable logistic models, we carefully adjusted 
for diverse confounding factors to gauge the relationship between 
sodium levels and in-hospital mortality. Intriguingly, this 
association remained consistent across all models (refer to 
Table  3). To validate the resilience of our results, subgroup 
analyses were performed based on a variety of confounding 
variables such as age, gender, GCS, and comorbidities like COPD, 
congestive heart failure, and renal disease (depicted in Figure 3). 
These analyses reaffirmed our preliminary findings. The potential 
interaction within the COPD subgroup could be attributed to its 
relatively small size. No significant interactions were detected in 
any other sub-groups (all p > 0.05) (see Figure 3).

To delve deeper into the relationship between sodium levels and 
in-hospital mortality, we reclassified our cohort into three categories: 
the hyponatremia group (n = 117), which includes patients with 
sodium levels below 135 mmol/L; the hypernatremia group (n = 249), 
comprising patients with sodium levels above 145 mmol/L; and the 
normonatremia group (n = 1,383), consisting of patients with sodium 
levels ranging from 135 to 145 mmol/L. We employed both univariate 
and multivariate logistic regression analyses to examine this 
association, as presented in Table 5. Compared to the normonatremia 
group, the hyponatremia group did not exhibit a significant association 
with in-hospital mortality (crude OR = 1.02, 95% CI: 0.53–1.94, 
p = 0.958; adjusted OR = 0.75, 95% CI: 0.34–1.63, p = 0.466). In 
contrast, the hypernatremia group demonstrated a significant 
association with increased in-hospital mortality (crude OR = 3.32, 95% 
CI: 2.37–4.66, p < 0.001; adjusted OR = 2.11, 95% CI: 1.32–3.38, 
p = 0.002).

FIGURE 1

Detailed flowchart illustrating the participant recruitment process. 
GCS, Glasgow Coma Scale; WBC, white blood cell count; ICU, 
intensive care unit.
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Discussion

In this investigation of adult Traumatic Brain Injury (TBI) patients 
from MIMIC-IV, we observed a higher in-hospital mortality rate for 
those patients with hypernatremia. Restricted Cubic Splines (RCS) 
analysis revealed an L-shaped dose–response correlation between 
serum sodium concentration and mortality risk. We determined the 
ideal serum sodium concentration for TBI patients to 

be  ≤144.1 mmol/L. Our study reveals that hypernatremia 
independently correlates with mortality during hospitalization and 
that a serum sodium level of ≤144.1 mmol/L might be an effective 
target for TBI treatment management. To the best of our 
understanding, this report distinguishes itself as a pioneering effort in 
establishing a patient-specific threshold for serum sodium levels, 
exclusive to Traumatic Brain Injury (TBI) patients admitted to the 
Intensive Care Unit (ICU).

TABLE 1 Characteristic of patients categorized by sodium level.

Total (n =  1749)
Moderate to low 
group (n =  1,500)

Hypernatremia group 
(n =  249)

p

Demographics

Age, Mean (SD), year 65.9 (20.3) 66.8 (20.0) 60.7 (21.3) <0.001

Sex, n (%) 0.647

  Male 1,087 (62.1) 929 (61.9) 158 (63.5)

  Female 662 (37.9) 571 (38.1) 91 (36.5)

Vital signs, Mean (SD)

MBP, mmHg 81.9 (10.1) 81.8 (10.1) 82.6 (10.1) 0.227

temperature, °C 37.0 (0.5) 37.0 (0.5) 37.1 (0.7) 0.006

SpO2, % 97.4 (1.7) 97.4 (1.7) 97.8 (1.8) <0.001

Lab test, Mean (SD)

Glucose, mg/dl 132.8 (40.8) 132.5 (40.6) 134.8 (42.2) 0.396

Hematocrit, % 36.8 (5.7) 36.8 (5.6) 37.3 (5.9) 0.2

Hemoglobin, g/dL 12.3 (2.0) 12.3 (2.0) 12.3 (2.1) 0.948

Platelets, 109/L 221.8 (97.3) 223.4 (98.3) 212.1 (91.1) 0.092

WBC, 109/L 12.9 (7.4) 12.7 (7.5) 14.1 (7.0) 0.004

BUN, mg/dl 20.8 (14.1) 20.7 (14.2) 21.4 (13.3) 0.451

Creatinine, mg/dl 1.2 (1.0) 1.2 (1.0) 1.2 (0.8) 0.331

Potassium, mmol/L 4.4 (0.8) 4.4 (0.8) 4.5 (0.8) 0.023

Sodium, mmol/L 140.6 (4.8) 139.4 (3.5) 147.7 (4.9) <0.001

Severity score, Mean (SD)

charlson_comorbidity_index 4.3 (2.8) 4.4 (2.8) 3.9 (2.9) 0.004

SAPSII 33.4 (11.8) 32.8 (11.6) 36.9 (12.5) <0.001

GCS 11.1 (3.6) 11.4 (3.4) 9.4 (4.2) <0.001

Commodities, n (%)

myocardial_infarct 140 (8.0) 122 (8.1) 18 (7.2) 0.626

congestive_heart_failure 232 (13.3) 198 (13.2) 34 (13.7) 0.845

Diabetes 300 (17.2) 267 (17.8) 33 (13.3) 0.078

renal_disease 214 (12.2) 185 (12.3) 29 (11.6) 0.759

malignant_cancer 74 (4.2) 70 (4.7) 4 (1.6) 0.026

Interventions, n (%)

Ventilation 711 (40.7) 556 (37.1) 155 (62.2) <0.001

Hypertonic saline 112 (6.4) 74 (4.9) 38 (15.3) <0.001

Brain surgery 398 (22.8) 343 (22.9) 55 (22.1) 0.786

Outcomes

In-hospital death, n (%) 202 (11.5) 139 (9.3) 63 (25.3) <0.001

LOS-ICU, Mean(SD) 4.9 (6.0) 4.5 (5.2) 7.1 (9.3) <0.001

SAPS, simplified acute physiology score; COPD, chronic obstructive pulmonary disease; MBP, mean blood pressure; WBC, white blood cell count; BUN, blood urea nitrogen. GCS, Glasgow 
coma scale; LOS-ICU, length of stay in intensive care unit; SD, standard derivation; SASPII, Simplified Acute Physiology Score II. Bold values indicate statistical significance (p < 0.05).
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Hypernatremia, often induced by water loss due to ventilation, 
sedation therapy, or osmotic diuretic administration, frequently 
occurs in TBI patients (9). The use of hypertonic saline and mannitol 
to manage intracranial pressure commonly exacerbates hypernatremia 
especially when it becomes a treatment target for elevated ICP (5, 10). 

Additionally, hyperosmolar therapy-related acute kidney injury can 
intensify hypernatremia (3). It can also result from hypothalamic or 
pituitary gland dysfunction post-TBI, known as central diabetes 
insipidus, potentially indicating disease severity (5).

Maggiore et  al. corroborated the association between the 
prevalence of hypernatremia and increased mortality rates in 
individuals suffering from severe traumatic brain injury. They 
identified that the emergence of hypernatremia was, in part, 
attributable to central diabetes insipidus (4).

We acknowledge that our study has the significant limitation like 
previous study’s that we  also cannot establish causal relationship 
between hypernatremia and outcome. In an expansive healthcare 
database encompassing data from over 90,000 patients with traumatic 
brain injury (TBI), there was a clear correlation between 
hypernatremia and less favorable outcomes in this patient population 
(11). Previous studies reported hypernatremia and mortality 
associations in various neurological critical conditions. In neurologic 
ICUs, severe hypernatremia (serum sodium >160 mmol/L) was 
independently linked to in-hospital mortality (12). This observation 
was consistent with findings in pediatric study focusing on severe 
traumatic brain injury(TBI) (13). Serum sodium concentration has 
been used to predict ICU deaths in the neurological ICU, with an 
optimal cut-off at 147.55 mmol/L (14). Takahiro et  al. found an 
L-shaped dose–response association between serum sodium 
concentration and mortality in cerebrovascular diseases, identifying a 
147 mmol/L maximum threshold through restricted cubic splines 
analysis (15). These findings align with our study, though the slightly 
higher cut-off value may result from the different population studied. 
The discrepancy between the results observed by Tan and colleagues 
and our own can primarily be attributed to differences in patient 
demographics and injury severity within their study (16). Specifically, 
patients in their research cohort presented with a more severe average 
Glasgow Coma Scale (GCS) score (11.1 compared to our cohort’s 6) 
and were of a younger median age (52 versus 34 years, respectively). 
Recent meta-analyses further bolster the conclusion that 
hypernatremia is associated with heightened mortality risk (17).

The reason of hypernatremia on higher mortality can be listed as 
follows: Hypernatraemia is associated with various neuromuscular 
manifestations, such as muscle weakness, that can prolong the length 
of ICU stay and duration of mechanical ventilation which may 
increase mortality (18). Hypernatremia can lead to organ dysfunction, 
including abnormal hepatic function, disturbance of insulin resistance, 
cardiac dysfunction and muscle injury (14, 19). Hypernatremia can 
injure myelin and even cause secondary brain injury by increased 
cellular dehydration and decreased cerebral edema (3).

Mild hypernatremia induced by hyperosmolar agents that can 
effectively decrease ICP may result in a favorable prognosis (20, 21). 
Thus, maintaining sodium levels within an acceptable range is crucial. 
In our study, we  determined the optimal target serum sodium 
concentration for TBI patients to be  ≤144.1 mmol/L, offering a 
valuable therapeutic outlook for TBI. The lack of a lower sodium level 
threshold observation could be due to the inclusion of data within 24 h 
of ICU admission since hyponatremia often occurs days after TBI (22).

This study had several limitations. Primarily, the dataset’s nature 
prevented us from ruling out the specific etiology of hypernatremia, 
or adjusting properly for baseline factor influences on 
hypernatremia. This study is constrained by the limitation that 
in-hospital mortality was the sole outcome variable utilized in our 

TABLE 2 Univariate logistic regression evaluating the association 
between baseline characteristics and in-hospital mortality.

Variable OR_95CI p_value

Sodium level 1.1 (1.07 ~ 1.14) <0.001

Hypernatremia group 3.32 (2.37 ~ 4.64) <0.001

Sex 1.19 (0.89 ~ 1.61) 0.245

Age 1.02 (1.01 ~ 1.03) <0.001

GCS 0.67 (0.63 ~ 0.7) <0.001

Heart_rate 1.02 (1.01 ~ 1.03) <0.001

MBP 0.97 (0.96 ~ 0.99) <0.001

SpO2 1.31 (1.19 ~ 1.45) <0.001

Glucose 1.01 (1 ~ 1.01) <0.001

Hematocrit 0.95 (0.92 ~ 0.97) <0.001

Hemoglobin 0.85 (0.79 ~ 0.92) <0.001

Platelets 1 (1 ~ 1) 0.236

WBC 1.03 (1.01 ~ 1.05) 0.001

BUN 1.03 (1.02 ~ 1.03) <0.001

Bicarbonate 0.94 (0.9 ~ 0.98) 0.006

Creatinine 1.19 (1.06 ~ 1.32) 0.002

Charlson comorbidity 

index
1.14 (1.08 ~ 1.2) <0.001

SAPSII 1.08 (1.07 ~ 1.1) <0.001

Ventilation 6.06 (4.29 ~ 8.56) <0.001

Brain surgery 1 (0.71 ~ 1.42) 0.995

Hypertonic saline 2.96 (1.88 ~ 4.64) <0.001

SAPS, simplified acute physiology score; COPD, chronic obstructive pulmonary disease; 
MBP, mean blood pressure; WBC, white blood cell count; BUN, blood urea nitrogen. GCS, 
Glasgow coma scale; SASPII, Simplified Acute Physiology Score II. Bold values indicate 
statistical significance (p < 0.05).

TABLE 3 Multivariable logistic regression models evaluating the 
association between hypernatremia and in-hospital mortality.

Model
crude.

OR_95CI
crude.p_

value
adj.

OR_95CI
adj.p_
value

Model 1

3.32 

(2.37 ~ 4.64)
<0.001

3.85 

(2.72 ~ 5.44)
<0.001

Model 2 2.33 (1.5 ~ 3.6) <0.001

Model 3
2.28 

(1.44 ~ 3.6)
<0.001

Model 4
2.17 

(1.36 ~ 3.46)
0.001

Model 1: Adjusted for sex and age.
Model 2: Adjusted for Model 1 + GCS, Charlson comorbidity index and SASPII.
Model 3: Adjusted for Model2 + heart rate + MBP+ SpO2+ 
hematocrit + hemoglobin + platelets + WBC+ BUN+ bicarbonate + Creatinine + glucose.
Model 4:Adjuste for Model3+ ventilation, hypertonic saline and brain surgery.
OR, odd ratio; CI, confident interval.
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analyses. More significant outcome measures, such as the Glasgow 
Outcome Scale-Extended (GOSE), which provide a more 
comprehensive evaluation of patient functionality beyond mortality, 
could not be  obtained from the MIMIC-IV database. Another 
critical limitation of our research is the absence of intracranial 
pressure (ICP) values, which are a pivotal confounder for analysis. 

The omission of these values is due to an excessively high percentage 
of missing data, rendering their use infeasible for our study. Also, 
being a retrospective study, the test timing was not randomly 
planned potentially leading to the exclusion of some hypernatremic 
patients and the failure to use sodium over time to analyze the 
association to the outcome. Furthermore, MIMIC-IV being a 
single-center cohort may inherently carry biases related to specific 
medical practice styles. Therefore, validating our findings across 
different populations would require prospective studies in 
multiple ICUs.

Conclusion

The current investigation conclusively establishes hypernatraemia 
in 24 h as a mortality marker in critically ill TBI patients. Additionally, 
it designates a specific cut-off point for serum sodium concentration 
at 144.1 mEq/L, beyond which the mortality risk escalates. These 

FIGURE 2

The nonlinear relationship between sodium level and in-hospital mortality. This curve illustrates the mortality fluctuation across varying sodium levels 
within the cohort, using the median level of 141  mmol/L as a reference point. The curve notably demonstrates a significant uptick in mortality 
commencing within the 141–150  mmol/L sodium range (P for non  −  linearity  =  0.051). Adjusted sex, age, stroke type, GCS, heart_rate, MBP, SpO2, 
hematocrit, hemoglobin, platelet, WBC, BUN, bicarbonate, creatinine, Charlson_comorbidity_index, SAPSii, glucose, ventilation status. GCS, Glasgow 
Coma Scale; WBC, white blood cell count; BUN, blood urea nitrogen; MBP, mean blood pressure.

TABLE 4 The nonlinear relationship between sodium level and in-
hospital mortality.

Threshold OR(95% CI) p

Threshold point 144.145 (143.505,144.785) –

Slope<144.145 0.992 (0.936 ~ 1.051) 0.7856

Slope ≥ 144.145 1.097 (1.002 ~ 1.202) 0.0459

Likelihood ratio test – 0.05

Adjusted: sex + age + GCS+ heart rate + MBP+ SpO2+ 
hematocrit + hemoglobin + platelets + WBC+ BUN+ bicarbonate + creatinine + Charlson 
comorbidity index + glucose + ventilation + SASPII+ brain surgery. OR, odd ratio; CI, 
confident interval.

https://doi.org/10.3389/fneur.2024.1349710
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al. 10.3389/fneur.2024.1349710

Frontiers in Neurology 07 frontiersin.org

FIGURE 3

Effect size of hypernatremia on in-hospital mortality in different subgroups. Subgroup analyses were executed to assess patients with varied 
demographics, including age, gender, Glasgow Coma Scale (GCS) scores, and the presence of comorbid conditions such as Chronic Obstructive 
Pulmonary Disease (COPD), congestive heart failure, and renal disease. These analyses were conducted within the hypernatremia group (comprising 
249 patients) and compared with those in the moderate-to-low sodium level group. The results from this subgroup analyses have demonstrated 
consistent and robust findings. COPD, chronic obstructive pulmonary disease; GCS, Glasgow Coma Scale, WBC, white blood cell count; BUN, blood 
urea nitrogen. Adjusted: MBP, heart rate, SpO2, hematocrit, hemoglobin, platelets, WBC, BUN, bicarbonate, creatinine, Charlson comorbidity index, 
SAPSii, glucose.
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insights are instrumental for healthcare professionals tending to such 
critically ill TBI individuals.
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