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Acute vestibular syndrome (AVS) is characterised by a sudden vertigo, gait 
instability, nausea and nystagmus. Accurate and rapid triage of patients with 
AVS to differentiate central (potentially sinister) from peripheral (usually benign) 
root causes is a challenge faced across emergency medicine settings. While 
there exist bedside exams which can reliably differentiate serious cases, they 
are underused due to clinicians’ general unfamiliarity and low confidence 
interpreting results. Nystagmus is a fundamental part of AVS and can facilitate 
triaging, but identification of relevant characteristics requires expertise. This 
work presents two quantitative digital biomarkers from nystagmus analysis, 
which capture diagnostically-relevant information. The directionality biomarker 
evaluates changes in direction to differentiate spontaneous and gaze-evoked 
(direction-changing) nystagmus, while the intensity differential biomarker 
describes changes in intensity across eccentric gaze tests. In order to evaluate 
biomarkers, 24 sets of three gaze tests (left, right, and primary) are analysed. 
Both novel biomarkers were found to perform well, particularly directionality 
which was a perfect classifier. Generally, the biomarkers matched or eclipsed 
the performance of quantitative nystagmus features found in the literature. 
They also surpassed the performance of a support vector machine classifier 
trained on the same dataset, which achieved an accuracy of 75%. In conclusion, 
these biomarkers simplify the diagnostic process for non-specialist clinicians, 
bridging the gap between emergency care and specialist evaluation, ultimately 
benefiting patients with AVS.
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1 Introduction

Dizziness accounts for 4.4 million emergency visits in the US alone (1) and is the 
most frequent cause of a physician visit for patients over 75 (2). It is estimated 10%–20% 
of dizzy patients have acute vestibular syndrome (AVS) (3). AVS characterized by a 
sudden and sustained onset of vertigo, gait instability, nausea, and nystagmus which lasts 
for over 24 h. The symptoms exhibited by a patient with AVS are associated with a large 
variety of underlying pathologies, ranging from benign peripheral lesions (e.g., vestibular 
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neuritis) to potentially sinister brain lesions (e.g., stroke) (3). For 
instance, both cerebellar and brainstem strokes can present as 
isolated AVS, where the lack of other neurological symptoms 
complicates their diagnosis (4–6). As such, particularly in 
emergency settings, rapid and accurate triaging of patients with 
peripheral and central lesions is key to improving patient 
outcomes and effective allocation of hospital resources. 
Unfortunately, many clinicians lack confidence in delivering the 
relevant diagnostic tests and struggle to accurately interpret the 
clinical signs (7). This strongly motivates the development of tools 
which reduce the interpretative burden placed on non-specialist 
clinicians and help to identify patients who require urgent medical 
attention. Nystagmus is defined as involuntary eye oscillations 
characterised by a pathological slow drift of the eye (i.e., slow 
phase) followed by fast corrective motion (i.e., fast phase); if 
correctly interpreted it provides significant insight on the cause of 
the AVS (8). Given it is also the most readily recorded and 
analysed of the sets of AVS symptoms, this paper focuses on 
developing biomarkers and features describing horizontal 
nystagmus across eccentric and primary gaze tests.

While many works have investigated the diagnostic relevance 
of the nystagmus, there are few which look at extracting 
quantitative measures for diagnosis or risk stratification. Slow 
phase velocity (SPV) of the eye rotation is the most commonly 
extracted measure and has shown good promise (9, 10). Mouelhi 
et al. (11) have found that combining SPV with additional features 
such as direction, nystagmus period, and measures of variability 
provide better results. Calic et  al. (12) also investigated 
quantitative nystagmus features to differentiate between patients 
with vestibular migraines and vestibular neuritis, but SPV was not 
found to be statistically significant. A further set of 3 papers by 
Young et al. (13–15), analysed nystagmus characteristics of healthy 
controls, patients with vestibular migraine, and patients suffering 
from Meniere’s disease. The authors noted a significant difference 
in SPV between vestibular migraine and Meniere’s disease and 
implemented it in a two variable classification algorithm achieving 
95.7% sensitivity and 85.1% specificity (14).

Despite its known diagnostic relevance no studies evaluating 
changes in nystagmus over gaze directions were found, with all 
papers above limited by features extracted from a single test in one 
gaze direction. As such, this work aims to present nystagmus 
biomarkers which evaluate changes in nystagmus intensity and 
direction across horizontal eccentric gaze directions to differentiate 
central and peripheral origins of AVS. These biomarkers reflect the 
routine clinical assessments of eye movements used by specialists 
to diagnose patients with acute vertigo. Finally, the biomarkers are 
compared to single gaze test features, as well as a support vector 
machine (SVM) to establish a baseline performance of a simple 
machine learning model.

2 Materials and methods

2.1 Data

Nystagmus data was collected from 24 patients (12 peripheral 
and 12 central) who attended their Neuro-otology appointments 
in 2022 and 2023 at the National Hospital for Neurology and 
Neuroscience, London. Patients included in the study were 
retrospectively selected according to final established diagnosis, 
inclusion and exclusion criteria. All patients included in the study 
underwent MRI imaging to confirm final diagnosis as part of the 
study protocol. Adult patients (>18 years) who had presented with 
an AVS, including the presence of nystagmus, and evaluated by the 
acute vertigo service within 2 weeks of symptom onset were 
included in this study. Exclusion criteria included inability to 
express consent, a history of pre-existent vertigo in the last 
6 months, or alternative neurological or ophthalmological 
disorders that affect eye movements. Table 1 shows a breakdown of 
the included patients. For each patient primary (looking straight 
forward), left, and right gaze tests were collected to evaluate 
nystagmus behaviour across gaze directions—Figures 1, 2 show 
these gaze tests for patients with central and peripheral lesions, 
respectively. Each gaze test consists of recording the eye position 
in the horizontal and vertical planes for 15–45 s while the patient 
attempts to maintain a steady gaze direction. Gaze test recordings 
were acquired with fixation, as this more closely resembles the 
bedside clinical assessment in emergency settings.

The gaze tests data were recorded by an experienced audiologist 
using the ICS Impulse system (GN Otometics, Taastrup, Denmark). 
The ICS Impulse is a video oculography tool which uses head 
mounted goggles to record the movements of the patient’s eye. The 
eye tracking is completed using an infrared camera mounted at 
close proximity to the right eye as shown in Figure 3. The infrared 
camera provides improved contrast of the pupil against the iris, 
thus allowing for accurate tracking of the pupil following 
calibration steps taken by the clinician. The camera records eye 
movements at ∼170 frames per second, and will record a position 
of the eyes in all frames unless the patient is blinking. The position 
is encoded by vertical and horizontal rotation measured in degrees, 
generating a time series for each gaze test in a 3× n matrix, 
corresponding to the timestamp, horizontal rotation, and vertical 
rotation for the number of recorded frames in the IR video (n). 
Only the raw positional data was extracted from the ICS Impulse, 
with all further calculations being derived from it—all processing 
of this data was completed using Python v3.9. Before further 
analysis, the time series were cropped to remove segments where 
the gaze was not correctly oriented. This often occurred at the end 
of a gaze test as patients became nauseous when holding gaze in a 
direction causing pronounced nystagmus.

TABLE 1 Patient sex and age distributions, grouped by patient cohort.

Number Sex (M/F) Mean age in years (std 
dev)

Peripheral lesions 12 9 (75%)/3 (25%) 55.2 (9.7)

Central lesions 12 5 (42%)/7 (58%) 70.0 (11.8)

Total 24 14 (58%)/10 (42%) 62.6 (13.0)
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2.2 Segmentation

To extract quantitative measures describing the nystagmus 
behaviour, fast and slow phases need to be segmented. As the fast 
saccades have the strongest signal and best signal-to-noise ratio, they 
serve as the basis of the segmentation algorithm. This forces the 
algorithm to assume the presence of nystagmus in the input timeseries, 
which in turn means the absence of nystagmus can generate 
unpredictable results. The algorithm is specifically engineered to 

overcome the two types of noise present in nystagmus traces: high 
frequency noise caused by errors in eye tracking or mircosaccades 
(eye jitter), and larger non-nystagmus eye saccades (e.g., refocusing or 
blinking) which need to be ignored when extracting features. Firstly, 
the algorithm uses outlier thresholding to locate higher velocity 
points. Then a Sieve filter is applied to extract contextual information 
(16) and group individual points into continuous blocks with higher 
velocities. Once continuous blocks are generated, further filtering 
leveraging known characteristics of fast phases is used to accurately 

FIGURE 1

Example of gaze-evoked nystagmus data, with gaze tests time series in all 3 directions superimposed. Note changing directions of fast phases 
according to direction of gaze.

FIGURE 2

Example of Alexander’s law in nystagmus data, with gaze tests time series in all 3 directions superimposed. Note changing intensity of oscillations 
depending on direction of gaze.

FIGURE 3

Screen shots from left, primary, and right gaze test recorded on the ICS Impulse (GN Otometics, Taastrup, Denmark) mounted headset using infrared 
camera.
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locate the phase boundaries and differentiate genuine fast phases from 
noise and other saccades. The remaining points are then classed as 
being slow phase points, hence providing a final segmentation of the 
time series into fast phase blocks, slow phase blocks, and erroneous 
saccades. The segmentation of the nystagmus time series was validated 
by an expert neurologist for all traces, before proceeding with 
further processing.

2.3 Features and biomarkers

Each individual gaze test was summarised using fundamental 
features to characterise the eye movements. By themselves, the features 
contain important descriptive information, but can also be combined 
to build the proposed biomarkers.

2.3.1 Features
Features consider the primary, left, and right gaze tests 

independently and describe particular aspects of the time series. 
Figure 4 shows a visual representation of features on an idealised 
nystagmus waveform.

2.3.1.1 Amplitude
Amplitude, A, is defined as the rotation of the eye during the fast 

phase (Equation 1)

 A r r= −2 1  (1)

where r1  and r2  are the rotation of the eye at the beginning and 
end of the fast phase. Amplitude of each nystagmus oscillation is 
found individually, from the resulting distribution we extract average, 
minimum, maximum, and standard deviation values. Due to the 
physiological nature of the source data and distribution it is expected 
to have increased variability and noise. To counteract this, the 
minimum and maximum values are measured using the 10th and 90th 
percentiles avoiding non-representative outliers.

2.3.1.2 Frequency
The nystagmus frequency, f , is also found for each individual 

oscillation first before taking the mean, minimum (10th percentile), 

maximum (90th percentile), and the standard deviation. The 
frequency of an individual oscillation is calculated as the reciprocal of 
its period (Equation 2)

 
f

t t
=

−
1

2 1  
(2)

where the t1 and t2 are the timestamp at the beginning and end of 
a whole nystagmus oscillation.

2.3.1.3 Intensity
Intensity, I  is defined as the product of frequency and amplitude 

(Equation 3)

 I A f= ×  (3)

where A is the amplitude and f  is the frequency. The motivation 
behind intensity is to quantify the “amount” of nystagmus in a gaze 
test, in order to identify “dominant” and “weaker” nystagmus in 
eccentric gaze tests. This becomes particularly relevant when dealing 
with patients with peripheral nystagmus which follows Alexander’s 
law. Alexander’s law refers to a pattern of behaviour, where when 
looking in the direction of the fast phase the intensity of nystagmus 
increases, similarly decreasing when looking in the opposite direction 
of the fast phase. Figure  2 shows a clear example of this as the 
intensity of the nystagmus reduces significantly going from the left 
gaze test to primary and right gaze tests. This behaviour is typical of 
patients with peripheral lesions and is caused by a superposition of 
multiple effects which can either combine constructively to increase 
the nystagmus intensity, or combine destructively to decrease the 
intensity (8, 17).

Thus, due to Alexander’s law if two patients have peripheral 
lesions but in opposite affected ears then it is inappropriate to compare 
the two right gaze tests. It would be more appropriate to compare the 
gaze tests in direction of each patient’s lesion. This is where the 
intensity feature can be used to separate the dominant gaze direction 
with higher intensity oscillation (i.e., in the direction of the lesion for 
peripheral patients) from the weaker side with lower intensity 
oscillations. Differentiating dominant and weaker gaze tests is central 
to the development and analysis of features and biomarkers. 
Henceforth, to differentiate features from the dominant and weaker 

FIGURE 4

Synthetic left beating nystagmus waveform with annotated features (A: amplitude, f : frequency, T TSP FP& : period of slow and fast phase, v vSP FP& : 
velocity of slow or fast phase). By convention rightward rotation is positive, and leftward rotation is negative.
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eccentric tests subscripts d  and w  are used, such that in all cases 
I Id w> . Intensity is calculated three times using the average, 

minimum, and maximum measures of amplitude and frequency.

2.3.1.4 Frequency-amplitude
Similarly to intensity, the frequency-amplitude ratio, FA , is a 

feature derived from frequency and amplitude, and is defined in 
Equation 4

 FA = f A  (4)

It characterizes the contribution of frequency and amplitude to 
the intensity of the signal. Hence differentiating between high 
amplitude/low frequency and low amplitude/high frequency 
signals. There are no studies evaluating the differences in this ratio 
between peripheral and central nystagmus. The expected behaviour 
is that peripheral lesions will have lower frequency and higher 
amplitude compared to central lesions, particularly on the 
dominant gaze test (8). The FA  ratio is calculated three times using 
the average, minimum, and maximum measures of amplitude 
and frequency.

2.3.1.5 Slow & fast phase velocity
In the literature, the feature most commonly seen extracted from 

nystagmus time series is the slow phase velocity (vSP ) (9–12). This 
motivated the use of this feature as a “state-of-the art” baseline 
differentiator between peripheral and central lesions, and its expansion 
the fast phase vFP . More accurately, in this paper, the slow and fast 
phase velocities refer to the absolute value of the average velocity over 
a slow or fast phase, as shown in Equation 5

 
v

r r
t t

v
r r
t tSP FP=

−
−

=
−
−

| |
and

| |1 0

1 0

2 1

2 1  
(5)

where ri  and ti refers to the eye rotation and time at increment i, 
with i = 0 1,  at the start and end of the slow phase and i =1 2,  at the 
start and end of the fast phase. The slow and fast phase velocities were 
estimated using the segmented positional data, by dividing the 
position delta by time delta as shown in the equations. Average 
velocity is selected as it reduces the sensitivity of the features to noise; 
unfortunately, this also decreases the sensitivity to peak velocities in 
the slow phases, which are expected to be higher in central lesions due 
to the exponential decay shape of the slow phase (8). The absolute 
value is included to remove the impact of the direction of the 
nystagmus. Only two measures, average and standard deviation, are 
used to summarise the slow and fast phase velocities; however, the 
ratio of average velocities is also recorded.

2.3.1.6 Slow & fast phase periods
Defined as the amount of time from the start to the end of each 

phase, slow and fast phase periods (TSP , TFP ) are expected to have 
a strong inverse correlation with frequency. This is particularly true 
for the slow phase, as it can be considered a proxy for the period of a 
nystagmus oscillation, since the eye is in slow phase for the majority 
of the oscillation. As with velocity, the mean and standard deviation 
is recorded for each gaze test along with the ratio of average periods.

2.3.2 Biomarkers
In contrast to the features where each gaze tests is analysed 

independently, biomarkers draw information from multiple gaze tests. 
The two biomarkers presented below, directionality and intensity 
differential are based on physiological principles known to differentiate 
central and peripheral lesions.

2.3.2.1 Directionality
The directionality biomarker, D, evaluates changes in direction 

when looking in horizontally eccentric gaze directions (i.e., left and 
right gaze tests). In most cases patients with a central lesion will have 
“gaze-evoked” nystagmus, where the direction of the gaze determines 
the direction of the fast phase (see Figure 1). This is because central 
nystagmus is caused by an inability to maintain gaze in the eccentric 
position due to a “leaky” neural integrator (8, 18). This contrasts 
spontaneous nystagmus—typical of peripheral lesions—which is 
unidirectional and triggered by a persistent asymmetry in the firing 
rates of the vestibular nerves (19). Directionality is a binary variable 
defined by Equation 6

 
D =

−
1

1
if no change in nystagmus direction

if change in nystagmuus direction



  

(6)

where the direction of the fast phase, defined as r r2 1−  (i.e., 
amplitude without absolute value), is used as a reference to 
calculate direction changes. The directionality biomarkers is 
expected to be positive in unidirectional spontaneous nystagmus, 
and negative in gaze-evoked nystagmus. Spontaneous and gaze-
evoked nystagmus are heavily correlated with peripheral and 
central lesions respectively, and so directionality is expected to 
be an effective separator. However, central lesions can also present 
with spontaneous nystagmus and in these situations, other ocular 
motor or neurological features (e.g., head impulse test, severe 
truncal ataxia etc.) may be required to better identify the aetiology. 
Directionality is calculated three times using the average, 
minimum, and maximum measures of r r2 1− .

2.3.2.2 Intensity differential
The intensity differential biomarker, Idiff , evaluates variations 

in intensity between horizontally eccentric gaze tests. This 
biomarker is inspired by Alexander’s law, however removes the 
direction element—instead focusing purely on the nystagmus 
intensity of the eccentric gaze tests. The hypothesis being that a 
peripheral lesion, which obeys Alexander’s law, will have a greater 
delta of nystagmus intensity between dominant and weaker gaze 
tests than a central lesion (20). Although it is noted that intensity 
changes in the nystagmus can also be  present in patients with 
central lesions (e.g., Bruns nystagmus), and in such cases this 
biomarker alone may be insufficient. Two versions of the biomarkers 
are proposed below, a difference (Equation 7) and ratio (Equation 8) 
of the dominant and weaker sides’ intensities:

 I I Ivdiff 1 d w( ) = −  (7)

 
I I

Ivdiff 2 d
w( ) =  

(8)
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FIGURE 5

Results of segmentation algorithm on example nystagmus traces. Red highlighting for fast phases, black for other saccades or noise, and blank for 
slow phase.

Given the change in intensity is hypothesized to be noticeably 
larger in peripheral cases than in central cases, in both the proposed 
formulas, peripheral lesions are expected to have larger values than 
central lesions. The ratio version, I vdiff 2( ) , was defined as above to 
set a lower bound of 1 and remove the upper bound. Given I Id w≥ , 
the reciprocal (i.e., I Iw d/ ) limits the distributions between 0 and 1, 
potentially impeding the biomarker’s ability to differentiate between 
central and peripheral lesions. AL is calculated three times using the 
average, minimum, and maximum measures of intensity.

2.4 Evaluation metrics

In order to measure the biomarkers’ and features’ efficacy, we first 
calculate the area under the receiver operating characteristic curve 
(AUC ROC). AUC ROC is a classification metric which measures the 
performance of a variable across a range of thresholds. Using the 
receiver operator curve an optimal threshold to separate classes can 
be  established using the Youden threshold. Using the optimal 
threshold we find the accuracy, positive predictive value (PPV), and 
negative predictive value (NPV) of each feature or biomarker.

2.5 Support vector machine

The gaze test features are also used to develop a support vector 
machine (SVM) with a linear kernel used as a simple machine learning 
model to benchmark the performance of the biomarkers. Given the 
72 total features (24 per gaze test) and only 24 samples, we select the 
two best features per gaze test which are not strongly correlated to 
each other to avoid overfitting; leaving the SVM with six input 

features. The limited number of samples in our dataset prevents the 
typical use of training, validation, and testing datasets—instead we use 
the leave-one-out training scheme. This method entails the training of 
n models for a dataset of n samples where each model is trained using 
all but one sample. The sample which is “left-out” of the training set is 
used as a test sample.

The model uses the squared-hinge loss and a L1 regularization in 
order to minimise coefficients of the less relevant input features as 
efficiently as possible. The accuracy of the model is estimated by 
calculating classification metrics (accuracy, PPV, and NPV) across all 
n models and test sets.

3 Results

3.1 Segmentation

Segmentation of some nystagmus time series can be  seen in 
Figure 5—fast phases highlighted in red, erroneous saccades in black, 
and slow phases left blank. In data with clear nystagmus, the 
segmentation algorithm was effective, accurately locating transitions 
between phases despite at times strong noise. The algorithm was able 
to deal with erroneous saccades well, although struggling with smaller 
blinking saccades in the same direction as fast phases.

3.2 Features

The results of classification metrics of the best six features per gaze 
test are shown in Table 2. Eighteen of 72 (25%) tested features have a 
classification accuracy above 70%. The primary gaze test was the best at 
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differentiating between cohorts producing 11 features with an accuracy 
above 70%, and the features with the highest accuracy (82.6%), PPV 
(1.0), and NPV (1.0). The most prominent features relate to the phase 
velocities and periods. Of particular interest is the slow phase period 
standard deviation which is the overall best performing feature with the 
best AUC ROC, highest accuracy, and a balanced performance across 
both classes (PPV of 0.833, NPV of 0.818). As inputs to the SVM 
we chose the standard deviation of slow phase periods and fast phase 
period from the primary gaze test (marked with * in Table 2).

While the accuracies and AUC ROC values are similar between 
dominant and weaker gaze test features, the most informative features 
from dominant gaze tests relate to fast phase characteristics (i.e., 
period, amplitude, FA ratio) and to intensity and time (i.e., frequency 
and phase periods) for weaker gaze tests. Hence, for the SVM we chose 
the fast phase period and FA ratio as input variables from the 
dominant gaze test, and intensity and slow phase period from 
the weaker gaze test (marked with * in Table 2). Furthermore, the 
dominant gaze test features tend to have higher NPVs and lower PPVs 
compared to the weaker gaze test features—suggesting that the 
dominant gaze test is better at identifying peripheral lesions and the 
weaker is better at identifying central lesions.

For the SVM the selected input features defined above are plotted 
against each other in Figure 6, despite selecting the features which are 
performant and uncorrelated, the classes have poor separability. This 
translates to the performance of the SVM which is unable to 
outperform the individual features with an accuracy of 75.0%, PPV of 
0.8 and NPV of 0.714 (see Table  3). Interestingly, the average 

coefficients for all input features show that the SVM model most 
heavily relies on the SP-FP velocity ratio in the primary gaze test 
(coefficient of −0.63), the fast phase period of the dominant gaze test 
(coefficient of −0.26), and the intensity feature from the weaker gaze 
test (coefficient of 0.21) to classify the samples, with the other three 
features all have coefficients of magnitude below 0.1.

3.3 Biomarkers

As shown in Table 3, the directionality biomarker is a particularly 
strong differentiator, achieving 100% accuracy and 1.0 AUC ROC on 
this dataset irrespective of the metric—average, minimum, 
maximum—used to calculate changes in direction. While the 
performance of Idiff  is distinctly worse, it still matches the 
performance of the best individual gaze test features (four rows in 
Table  3 have accuracies above 75%). Of the two versions of the 
intensity biomarker, I vdiff 1( )  (difference of intensities) is generally 
better than I vdiff 2( ) (ratio of intensities). Surprisingly, Idiff  struggles 
to identify central patients with a max PPV of 0.667, compared to the 
highest NPV of 1.0. From the results, the best intensity differential 
biomarker is I vdiff 1( )  using the maximum amplitude and frequency 
features having an accuracy if 79.2%, although its performance 
between classes is unbalanced with an NPV of 0.917 and PPV of 0.667.

The choice of biomarkers is validated by Figure  7, which 
illustrates nystagmus behavioral patterns across the dataset by 
plotting the average intensity in each gaze test by patient 

TABLE 2 Summary of classification performance of features (PPV, positive predictive value; NPV, negative predictive value).

Gaze test Feature Accuracy (%) PPV NPV AUC ROC

Dominant eccentric

FP period* 78.3 0.667 0.909 0.788

Amp (max) 73.9 0.500 1.0 0.742

FA (max)* 73.9 0.833 0.636 0.735

Amp (std) 73.9 0.500 1.0 0.674

SP vel (std) 73.9 0.833 0.636 0.644

SP period (std) 69.6 0.750 0.636 0.659

Weaker eccentric

I (min)* 78.3 0.833 0.727 0.788

Freq (min) 73.9 0.917 0.545 0.788

Amp (min) 69.6 0.833 0.545 0.682

SP period* 69.6 0.500 0.909 0.667

SP period (std) 69.6 0.583 0.818 0.659

Freq (std) 69.6 0.750 0.636 0.523

Primary

SP period (std)* 82.6 0.833 0.818 0.871

FP period* 82.6 1.0 0.636 0.780

SP-FP vel ratio 78.3 0.583 1.0 0.833

SP vel 78.3 0.667 0.909 0.811

SP-FP period ratio 78.3 0.583 1.0 0.795

Freq (min) 78.3 0.583 1.0 0.780

*Indicates features selected as inputs to the support vector machine. Bold values show highest scores.
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cohort. The figure confirms the results of the classification metrics—
for all central patients, there is a change in nystagmus direction, seen 
in the “negative” directional intensity of the weaker gaze tests. It also 

supports the initial hypothesis of Idiff , with significant changes in 
intensity between eccentric gaze tests for peripheral patients 
(p < 0.05), but none for central patients (p = 0.17).

TABLE 3 Summary of classification performance of biomarkers and SVM model (PPV, positive predictive value; NPV, negative predictive value).

Biomarker Accuracy (%) PPV NPV AUC ROC

Directionality (avg) 100 1.0 1.0 —

Directionality (min) 100 1.0 1.0 —

Directionality (max) 100 1.0 1.0 —

Intensity diff. − v1 (max) 79.2 0.667 0.917 0.750

Intensity diff. − v1 (avg) 75.0 0.500 1.0 0.778

Intensity diff. − v2 (avg) 75.0 0.583 0.917 0.750

Intensity diff. − v2 (max) 75.0 0.667 0.833 0.736

Intensity diff. − v2 (min) 70.8 0.500 0.917 0.701

Intensity diff. − v1 (min) 62.5 0.667 0.569 0.569

SVM model 75.0 0.800 0.714 —

Bold values show highest scores.

FIGURE 7

Average directional intensities across gaze direction by patient cohort. The sign of directional intensity refers to direction, where positive is the 
direction of the dominant gaze test, and the magnitude is the same as intensity feature (I A f= × ). For statistical tests intensity was used rather than its 
directional counterpart as indicated by the dotted bar outline. *Indicates statistical difference to a zero distribution or between two sets of intensities.

FIGURE 6

Scatter plots of selected SVM features by gaze test, colour coded by patient cohort.
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4 Discussion

This work aimed to present quantitative nystagmus biomarkers 
which reflect known clinical assessments used by specialists to 
determine the origin of AVS. In order to test the biomarkers, a pipeline 
starting from eye movement time series to the robust analysis of the 
performance was presented. The results are encouraging although 
limitations remain—particularly with regards to the limited size of the 
dataset and effect this may have on the pipeline’s generalizability.

4.1 Segmentation

The segmentation algorithm was robust and the use of dynamic 
heuristic thresholds to adapt to individual gaze tests proved to be an 
effective method to deal with the natural variability in clear nystagmus 
signals. However, in cases of small amplitude nystagmus the algorithm 
was inconsistent, at times missing nystagmus oscillations when trying 
to avoid noise. Furthermore, as the algorithm assumes the presence of 
nystagmus, some errors arose in its absence. For instance, the 
segmentation algorithm occasionally correctly identified a lack 
nystagmus but incorrectly labeled blinking saccades as nystagmus 
oscillations. While this is not an issue in strong signals with the 
nystagmus behaviour dominating the features, in weaker signals the 
blinking artifacts dominate output features. Alternatively, random 
small eye movements are identified as fast phases, leading to 
particularly unpredictable results.

4.2 Features

A prominent trend emerging from the feature testing is that the 
primary gaze test is the best at differentiating central and peripheral 
lesions. While this was not anticipated, a possible explanation is that in 
this dataset, nystagmus is minimal from the primary gaze test of gaze-
evoked nystagmus caused by central lesions. This contrasts to peripheral 
lesions which tend to have clear nystagmus in the primary gaze test. This 
is further confirmed by independent t-tests in which the primary gaze 
test intensities of peripheral patients were found to be  statistically 
different from a zero distribution (p < 0.05) and those of the central 
patients were not (p = 0.14; Figure 7). This causes the primary gaze test 
to be  the gaze direction with the most pronounced differences 
between cohorts.

In the weaker eccentric gaze test, significant features were frequency 
and intensity, with slow phase velocity also prominent. This can 
be explained by peripheral nystagmus manifesting as a low frequency 
and small amplitude “spontaneous” nystagmus due to tonal vestibular 
imbalance, rather than a “gaze-evoked” central nystagmus that is 
induced with gaze. In the dominant eccentric gaze tests key features 
were amplitude, fast phase period, and frequency-amplitude (FA) ratio. 
This is in line with expected behaviour and is attributed to Alexander’s 
law causing peripheral lesions to trigger lower frequency larger 
amplitude nystagmus oscillations compared to their central counterparts.

The SVM failed to outperform the individual features. However, 
even though the accuracy was low, the models’ coefficients were 
consistent across the leave-one-out models which suggests selected 
features are robust to inter-patient variability. It is important to note 
that, some features selected as inputs to the SVM have little-to-no 

biological reasoning behind them—they are selected purely based on 
their ability to differentiate the classes. This data driven approach to 
classification is representative of typical “black-box” models, and 
contrasts to the clinically-inspired biomarkers. The model’s low 
accuracy can be attributed to two issues; firstly the poor separability of 
the input features made it difficult for the SVM to locate boundaries 
between classes. Secondly, the limited dataset restricted the modelling 
to a linear kernel, more complex kernels were tested, but deemed 
inappropriate as they overfit during training and performed worse on 
the test set. An increased dataset with some improvements to the data 
pipeline could allow for improved features selection with increased 
interclass variation while reducing intraclass variation.

4.3 Biomarkers

Focusing on the novel quantitative biomarkers, the directionality 
biomarker performed particularly well, being able to systematically 
differentiate between gaze-evoked and spontaneous nystagmus, and 
hence the peripheral and central cases present in our dataset. However, 
in a systemic review which included 239 central cases of acute vertigo, 
only 38% presented with direction-changing nystagmus (21), 
highlighting that a directional biomarker alone is insufficient to 
discriminate central from peripheral cases of vertigo. The Idiff  
biomarker also performed well, with accuracy and AUC ROC measures 
comparable to the performance of the best single gaze test features. It is 
thought that biomarkers were able to generally outperform the features 
due to the their robust biological reasoning and greater “access” to 
information by combining features from multiple gaze tests.

4.4 Limitations

The primary limitation inherent to the segmentation algorithm is 
the fundamental assumption that nystagmus is present. A possible 
mitigation is the integration of a classifier which confirms the presence 
of nystagmus before segmentation. The algorithm is further limited by 
its struggles with small amplitude nystagmus in noisy signals. While 
the segmentation struggles impacts all downstream processing, the 
intensity differential biomarker is particularly affected. As 
improvement in measurements of small amplitude nystagmus are 
expected to translate directly to improvement in its performance.

It is also important to emphasise the limited size and homogeneity 
of the dataset. These results are preliminary and the classification 
metrics remain vulnerable to significant changes upon the inclusion 
of a larger and more diverse patient population. This caveat 
underscores the need to expand the size of the dataset and verify the 
generalizability of our results. However, given the biomarkers are 
based on clinically validated nystagmus characteristics there is strong 
cause to expect these results will generalise effectively to a broader 
dataset; comparing favourably to SVMs and other machine learning 
techniques which rely statistical trends found in larger datasets.

5 Conclusion

In conclusion, these results are highly encouraging and strongly 
motivate further investigation into nystagmus biomarkers, such as 
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vertical nystagmus, up and down gaze tests, and wave-shapes which are 
known to be diagnostically relevant (8, 22, 23). While acknowledging 
the limitations of our small sample size, these preliminary findings 
suggest significant potential, with the biomarkers surpassing the 
performance of features conventionally used in nystagmus analysis, 
and a baseline machine learning model. Furthermore, since our 
biomarkers derive from clinically validated characteristics of 
nystagmus, they hold a fundamental advantage over any other 
quantitative measure or model. Precise, quantitative, serial eye 
movements assessment is recommended in patients with AVS given 
evolution of clinical signs within the first 24 h (24) so repeated 
evaluation using AI may shed further diagnostic information in this 
setting. Such a marriage of human and artificial intelligence maybe the 
way forward to reduce burden of interpretation placed on point-of-care 
physicians and bridging the knowledge gap to specialists to the direct 
benefit of all patients.
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