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Background: Despite its location near infection-prone areas, the human inner 
ear demonstrates remarkable resilience. This suggests that there are inherent 
instruments deterring the invasion and spread of pathogens into the inner 
ear. Here, we  combined high-resolution light microscopy, super-resolution 
immunohistochemistry (SR-SIM) and synchrotron phase contrast imaging (SR-
PCI) to identify the protection and barrier systems in the various parts of the 
human inner ear, focusing on the lateral wall, spiral ganglion, and endolymphatic 
sac.

Materials and methods: Light microscopy was conducted on mid-modiolar, 
semi-thin sections, after direct glutaraldehyde/osmium tetroxide fixation. The 
tonotopic locations were estimated using SR-PCI and 3D reconstruction in 
cadaveric specimens. The sections were analyzed for leucocyte and macrophage 
activity, and the results were correlated with immunohistochemistry using 
confocal microscopy and SR-SIM.

Results: Light microscopy revealed unprecedented preservation of cell 
anatomy and several macrophage-like cells that were localized in the cochlea. 
Immunohistochemistry demonstrated IBA1 cells frequently co-expressing MHC 
II in the spiral ganglion, nerve fibers, lateral wall, spiral limbus, and tympanic 
covering layer at all cochlear turns as well as in the endolymphatic sac. 
RNAscope assays revealed extensive expression of fractalkine gene transcripts 
in type I  spiral ganglion cells. CD4 and CD8 cells occasionally surrounded 
blood vessels in the modiolus and lateral wall. TMEM119 and P2Y12 were not 
expressed, indicating that the cells labeled with IBA1 were not microglia. The 
round window niche, compact basilar membrane, and secondary spiral lamina 
may form protective shields in the cochlear base.

Discussion: The results suggest that the human cochlea is surveilled by dwelling 
and circulating immune cells. Resident and blood-borne macrophages may 
initiate protective immune responses via chemokine signaling in the lateral wall, 
spiral lamina, and spiral ganglion at different frequency locations. Synchrotron 
imaging revealed intriguing protective barriers in the base of the cochlea. The 
role of the endolymphatic sac in human inner ear innate and adaptive immunity 
is discussed.
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Introduction

The human cochlea contains a complex cell machinery capable 
of converting mechanical vibrations into electric signals, which are 
then sent to the brain via the auditory nerve. The sensory organ of 
Corti (OC) consists of sensitive hair cells and a multitude of 
various specialized supporting cells. Moreover, there are cells that 
generate an electric field potential in the lateral wall on which 
receptor function depends. Considering its proximity to infection-
prone areas, the human cochlea is highly challenged by acute and 
chronic middle-ear infections, but it also demonstrates 
astonishing robustness.

Recent studies have shown that the human inner ear is populated 
by immune system cells (1–5). This refutes the idea that the human 
and mammalian inner ear is “immune-privileged” or lacking the 
ability to mount immune responses (6, 7). Inner ear macrophages 
appear to be resident but also recruited from blood-borne monocytes 
from bone marrow myeloid precursors, rather than through self-
renewal like brain microglia (8–10). The cells may protect the inner 
ear from various pathogens, act as scavenger cells, and optimize tissue 
repair, but they may also cause foreign body responses and potentially 
cause adverse immune reactions and disease (11–13). Recently, the 
human cochlear nerve and lateral wall macrophages were revealed to 
show signs of structural alterations that were highlighted as possible 
sites of aberrant macrophage activity that could lead to age-related 
cochlear pathology and hearing loss (14).

Migratory macrophages could shelter the inner ear via surveillance 
mechanisms through the expression of fractalkine, also known as 
chemokine (C-X3-C motif) ligand 1, a protein in humans encoded by 
the CX3CL1 gene. Fractalkine may interact with the macrophage 
chemokine receptor CX3CR1 to enhance activity (15, 16). Cell-bound 
chemokine also promotes connection of leukocytes to triggered 
endothelial cells (17). It has been proposed that spiral ganglion neurons 
(SGNs) and macrophages could form a neuro-immune link between 
hair cells and neurons which protects the cochlear nerve under various 
conditions. Fractalkine chemokine signaling may promote macrophage 
incursion and survival of auditory neurons after induced hair cell 
damage. Recently, human studies showed the manifestation of the 
production of fractalkine gene transcripts in SGNs, spiral lamina 
regions, and basilar membrane (4). Macrophage function may depend 
on the location and differences in macrophage morphology and 
distribution between the apical and basal regions of the cochlea have 
been described (18). It could explain the different vulnerability of the 
sensory nerves and receptors in the cochlea (19, 20).

In this study, we  extended and correlated prior 
immunohistochemistry data using both confocal and super-resolution 
structured illumination microscopy (SR-SIM), with the micro-cellular 
anatomy of the human cochlea at different frequency locations 
assessed by synchrotron radiation phase-contrast imaging (SR-PCI, 
Figure 1). The study aimed to explore more specifically if there are 
local extrinsic and intrinsic protective features essential for the 
preservation and maintenance of the human sense of hearing.

Ethical approval

The study conformed with the Declaration of Helsinki and was 
approved by the Ethics Review Board (No. 99398, 22/91999, cont., 

2003, no. C254/4; no. C45/72007, Dnr. 2013/190) at the Uppsala 
University Hospital (no. 99308). Written information was given to the 
patients, and informed consent was obtained. Cadaveric samples used 
for SR-PCI were obtained with permission from the body bequeathal 
program at Western University (London, ON, Canada) in accordance 
with the Anatomy Act of Ontario and Western’s Committee for 
Cadaveric Use in Research (Approval # 06092020).

Materials and methods

Surgically obtained tissue

Cochlear tissue was obtained from patients ranging from 40 to 
70 years of age with life-threating petro-clival meningioma and 
compression of the brainstem where surgical removal of one cochlea 
was necessary. Data were collected during the time period of 1997–
2021 with ethical approval and patient consent. The surgery was 
performed as a two-stage operation with facial nerve re-routing 
postero-inferiorly and total petrosectomy, followed by complete 
tumor removal. The operation time was approximately 15–20 h, and 
performed by an oto-neuro-surgical team at Uppsala University 
Hospital. Drilling of the cochlea added an additional 10 min to the 
total surgery time. The cochleae were dissected out, and a small rim 
of bony tissue around the cochlea was saved (22, 23). The specimens 
were immediately placed in fixative in the operating room after 
surgical removal. There was no evidence that the benign tumor had 
infiltrated the cochlea. Trans-cochlear surgery was developed as an 
anterior extension of the trans-labyrinthine approach in the early 
1970s without retraction of the brain, after posterior re-routing of the 
facial nerve and removal of the cochlea and petrous apex (24). The 
technique is also used for clivus lesions, chordomas, petrous apex 
cholesteatomas, and epidermoids located anterior to the internal 
acoustic meatus. The unique preservation offers opportunities to 
analyze the normal fine structure and gene localization using SR-SIM 
of the entire cochlear specimen (25). Analyses of the human 
endolymphatic sac (ES) were based on specimens obtained at surgical 
labyrinthectomy and removal of vestibular schwannoma during the 
period of 1990–2020 at Uppsala University Hospital. Specimens were 
obtained with ethical approval and patient consent. No data on age, 
gender, or audiometric results were retrieved.

Light microscopy

The high-resolution light microscopy data presented here 
(mid-modiolar section) were from one male individual of 50 years of 
age with normal hearing in both ears (specimen NDL75). The 
cochlea was fixed in 13.3% fluorocarbon containing fixative in 2% 
glutaraldehyde solution and 0.05 M sodium phosphate buffer 
(mixing ratio of 2:1) followed by fixation with 1% osmium tetroxide 
at 4°C for 4 h (26). This unique specimen was recently used for 
analyzing the organ of Corti cell architecture at different frequency 
locations (27, submitted for publication). Thereafter, it was placed in 
0.1 mol/L sodium ethylene-diamine tetra-acetic acid (Na-EDTA) for 
4 weeks at room temperature. Decalcification was checked by 
radiography. The tissue was dehydrated and embedded in Epon 
(Resolution Performance Products, Houston, TX, United States). 
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Semi-thin sections were cut with a glass knife perpendicular to the 
long axis of the modiolus and stained with toluidine blue. Frequency 
positions were estimated, and a tonotopic map of the basilar 
membrane/organ of Corti was created by a nonlinear least squares 
fitting of a Greenwood-like function to the data of an equally 
designed cochlea (21, 28, 29) that underwent SR-PCI at the Canadian 
Light Source Inc. (Saskatoon, SK, Canada) using the Biomedical 
Imaging and Therapy beamline (05ID-2). The SR-PCI technique 
used has been previously described (30–32). Open source medical 
imaging software, 3D Slicer (www.slicer.org, version 5.0.3) (33), was 
used to segment and create 3D representations of 10 human 
specimens for analyses of the human round window region, the ES, 
and its periaqueductal bone marrow. Vascular connections were 
analyzed potentially supplying the ES with immune competent cells. 
Moreover, the round window niche was studied for the presence of 
false or pseudo-membranes that conceivably protect the round 
window niche and inner ear.

Immunohistochemistry (SR-SIM)

Immunohistochemistry was performed using super-resolution 
structured illumination microscopy (SR-SIM) on tissue from seven 
patients operated for petroclival meningioma. Hearing thresholds 
(pure tone average (PTA) audiometry) were normal in five patients. 
In those with hearing loss, one patient 40 years of age had 40–80 dB 
hearing loss at 1–8 kHz, and one patient 70 years of age had 50 dB 
hearing loss at 2–4 kHz. The immunohistochemistry procedures used 

were described in previous publications (1, 2). Briefly, the tissue was 
fixed in a 4% paraformaldehyde phosphate buffer solution (PBS). The 
cochleae were decalcified in 10% Na-EDTA solution at pH 7.2 for 4 
weeks. They were embedded in Tissue-Tek O.C.T. embedding 
compound (Polysciences, Inc., Warrington, PA, United States), frozen, 
and sectioned at 8–10 μm using a cryostat microtome. The sections 
were incubated with an antibody solution under a humidified 
atmosphere at 4°C for 20 h. They were then incubated with secondary 
antibodies conjugated to Alexa Fluor (Thermo Fisher Scientific, 
Uppsala, Sweden), counterstained with the nuclear stain 
4′,6-diamidino-2-phenylindole dihydro-chloride (DAPI), mounted 
with ProLong Gold Antifade Mountant (Thermo Fisher Scientific), 
and then covered with cover glass compatible with confocal and 
super-resolution microscopes. Primary and secondary antibody 
controls were made to exclude endogenous reaction products (34). 
Analyses of the human ES were based on over 20 sample specimens 
obtained at surgical labyrinthectomy using the trans-labyrinthine 
approach to remove vestibular schwannoma during the period of 
1990–2020 at Uppsala University Hospital.

For immunohistochemistry of the ES, no data on age, gender, 
or audiometric results were retrieved. The surrounding bone was 
dissected using diamond drills, and a thin shell of bone was saved 
around the sac. Both the intra- and extra-osseous parts of the ES 
were analyzed. The endolymphatic duct and the most distal sac on 
the sigmoid sinus could not be  investigated. The tissue was 
immediately placed in 4% paraformaldehyde in PBS and then 
placed in 0.5 M Na-ethylene-diamine-tetra-acetic acid (EDTA) 
solution for decalcification. The ESs were embedded in Tissue-Tek 

FIGURE 1

Synchrotron 3D reconstruction of a left human ear. The basilar membrane and spiral ganglion were segmented, and the frequency coordinates were 
calculated using Greenwood’s formula (21) and dendrite tracing. The red interrupted line denotes the level of sectioning and estimated frequencies in 
light micrographs 2–6. External pathogens may reach the middle ear and challenge the inner ear function via the Eustachian tube (ET) and the oval 
and round windows (red arrows). The spiral ganglion and lateral wall are highlighted in the present investigation. SSCC, superior semi-circular canal. 
CA, carotid artery. FN, facial nerve.
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O.C.T. (Polysciences, Inc.) for the frozen sections. The 
endolymphatic sacs were sectioned at 8–10 μm using a Leica 
cryostat microtome (35).

Antibodies

Information about the primary and secondary antibodies is 
shown in Table 1. The antibody against type IV collagen labeled the 
basal lamina surrounding Schwann and satellite glia cells, blood 
vessels, and epithelium. For resident macrophages, we  used the 
antibody against IBA1. Specificity was proven by IBA1 antibody 
blotting (36). The fractalkine antibody was a monoclonal antibody. 
This antibody’s specificity was verified in a western blotting 
experiment (37).

RNAscope® protocol

The human protein fractalkine is also known as chemokine 
(C-X3-C motif) ligand 1, and is encoded by the CX3CL1 gene. Our 
technique used for detection of CX3CL1 gene transcripts in the 
human cochlea was recently described (2). The expression and 
distribution of the ATP1B1 gene transcripts encoding the Na/K-
ATPase β1 isoforms in different domains of the cochlea using RNA in 
situ hybridization were also previously outlined (25). These gene 
transcripts were useful as a control since they are selectively expressed 
in the marginal cells of the stria vascularis (Table 2).

Results

Histology showed unprecedented preservation of the cell anatomy 
of the human cochlea including the spiral ganglion, lateral wall, and 
organ of Corti.

The spiral ganglion

The SGNs showed minimal fixation artifacts. The upper central 
modiolus is shown in Figure 2. A perimodiolar plexus with thin-
walled blood vessels sent many small tributaries and capillaries 
centrally, occasionally containing and surrounded by white blood 
cells. These vessels lacked a recognizable muscular wall. The spiral 
ganglion reached the scala tympani between the second and third 
turns at the frequencies of 125–250 Hz, where bundles of myelinated 
dendrites projected into the spiral lamina. The Rosenthal’s canal (first 
turn) and central modiolus contained spirally arranged ganglion cell 
bodies and nerve fibers supplying the three turns (Figures 3–5). The 
type I SGN cell bodies lacked a surrounding myelin layer, and their 
large round nuclei contained prominent nucleoli. Type II SGNs and 
an intra-ganglionic spiral bundle housing efferent nerve fibers could 
be identified. Apically, nerve cell bodies frequently clustered with cells 
physically interacting even without an intervening satellite glia cell. 
Such cell interaction could be  noted occasionally also at 
higher frequencies.

Confocal microscopy and SR-SIM revealed many IBA1-
positive macrophages in the lateral wall in all three turns as well as 

FIGURE 2

The apical region of the human cochlea is endowed with a perimodiolar thin-walled vascular plexus. Occasionally, small vessels contain white blood 
cells (left inset). Both the spiral ganglion and nerve fascicles contain macrophages expressing IBA1 as shown in Figure 9A. Right inset shows CD4 and 
CD8 lymphocytes in the spiral ganglion (3).
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in the entire spiral ganglion. The cells did not express microglia 
markers TMEM119 and P2Y12. SGNs diffusely expressed 
fractalkine. A multitude of IBA1 cells interacted physically with 
both the unmyelinated type I cell bodies and the axonal initial 
segments as well as the myelinated nerve fibers (Figure 4C). These 
conditions could be observed at all levels such as the Rosenthal’s 
canal supplying the first turn and in the central modiolus supplying 
the second and third turns. Figure  3 shows SGN cell bodies 
supplying the 125–250 Hz region surrounded by many capillaries 
branched from perimodiolar vessels. In the upper part of the spiral 
ganglion, IBA1 cells also expressed CD68 and CD11b 
(Figures 3B,C). Some cells had a typical sand-glass appearance. 
Closely related peri-capillary round cells were noted 
microscopically (Figure  3D), and with immunohistochemistry, 
CD19-positive B-cells also expressing MHC II were detected 
occasionally (Figure  3E). SGNs that supplied hair cells in the 
500–1,000 Hz region are shown in Figure 4A. Both type I and type 
II ganglion cell bodies were surrounded by many capillaries. 
Dendritic-like and monocyte-like cells were located around the 
blood vessels (Figures  4A’,A’’). Immunohistochemistry showed 
IBA1 cells closely associated with the type I nerve cell bodies at 
many locations (Figures 4B,C). SR-SIM of type I spiral ganglion 
cell bodies expressed fractalkine gene transcripts (Figure 4D). The 
gene transcripts were mainly expressed in type I  ganglion cell 
bodies as red stained puncta. A few puncta were seen in satellite 
and Schwann cells in the myelinated axons. SGNs supplying hair 
cells in the 8–16 kHz region are shown in Figure 5. Rosenthal’s 
canal was crowded with cell bodies and axon fascicles. Type I and 
type II spiral ganglion cell bodies were seen as well as the 

intra-ganglionic spiral bundle containing thin myelinated and 
unmyelinated efferent nerve fibers. Centrally located capillaries 
were surrounded by round mono-nuclear cells and peripherally 
dendritic-like cells (Figure  5, inset). At this level, CD4- and 
CD8-positive lymphocytes were occasionally identified, mostly in 
the peripheral region of Rosenthal’s canal as earlier described (3).

The lateral wall

The cell architecture of the stria vascularis differed along the 
cochlear partition. Basally, the tri-cellular layer of marginal, 
intermediate, and basal cells was well-defined; apically, the 
arrangement of cells was less regular (Figure 6). Stria length varied 
from 132 μm apically to 244 μm basally at 8–16 kHz. There was no 
suprastrial tissue located most apically in the cochlea in this light-
microscopy specimen. At the base, the marginal cells had a dark 
cytoplasm and displayed extensive basal enfolding reaching the blood 
capillaries and intermediate cells (Figure 6C, inset). The intermediate 
cells had a cubic shape with light cytoplasm and large round nuclei. 
These cells did not morphologically represent the slender IBA1 cells 
present in the stria vascularis. Figure 7 shows confocal microscopy of 
cells co-expressing IBA1 and MHC II in the three turns. Perivascular 
cells in the stria vascularis co-expressed IBA1 and MHC II. MHC II 
was mostly membrane-associated but also seemed intra-cytoplasmic 
(Figures 7G–I).

At the base, the spiral ligament was larger, more cell-rich and 
well-vascularized (Figure  6) with occasional dendritic- and 
monocyte-like cells with folded electron-dense nuclei. In the 

TABLE 1 Antibodies used for studies of the human cochlea and endolymphatic sac.

Primary antibody Type Dilution Host Catalog number Producer

IBA1 Polyclonal 1:100 Rabbit PA5-27436 Thermo Fisher, Waltham, United States

MHC II Monoclonal 1:100 Mouse MA5-11966 Thermo Fisher, Waltham, United States

Collagen IV Polyclonal 1:10 Goat AB769 Millipore, Burlington, United States

CX3CL1 Monoclonal 1:50 Mouse MAB3651-100 R&DSystems, Minneapolis, United States

CD11b Monoclonal 1:50 Rabbit AB52478 Abcam, Cambridge, United Kingdom

CD4 Polyclonal 1:150 Goat AF-379-NA R&DSystems, Minneapolis, United States

CD8α Monoclonal 1:100 Mouse MAB1509 R&DSystems, Minneapolis, United States

CD68 Monoclonal 1:50 Mouse NB100-683 Novus, Littleton, United States

TLR 4 Oligoclonal 1:10 Rabbit 710,185 Thermo Fisher, Waltham, United States

c-Kit/CD117 Polyclonal 1:100 Rabbit PA5-16770 Thermo Fisher, Waltham, United States

Laminin β2 Monoclonal 1:100 Rat #05–206 Millipore

Tuj 1 Polyclonal 1:200 Rabbit #04–1,049 Millipore

P2Y12 Polyclonal 1:50 Rabbit #PA5-34079 Invitrogen

CCR2 Polyclonal 1:100 Rabbit NBP1-48337 Novus Biologicals

CCL2 Polyclonal 1:500 Rabbit NBP1-07035 Novus Biologicals

TABLE 2 Gene information for the RNAscope probe designing or purchase.

Gene name Species Gene ID Chromosome Location Producer

CX3CL1 Human 6,376 16q21 411,261 BioTechne
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spiral ligament, macrophages were found among the type II and 
V fibrocytes, but rarely amid type I fibrocytes. A few cells among 
the type III fibrocytes expressed IBA1. The total number of IBA1 
expressing cells appeared to be  highest in the mid-frequency 
region. A few isolated CD4 and CD8 cells were identified in the 
spiral ligament (not shown). There was diffuse expression of 
CCL2  in the lateral wall, while a few MHC II expressing cells 
seemed to express CCR2 (Figures 8A,B). CD117 was expressed in 
some cells in the spiral prominence (Figure 8C). IBA1 cells lay 
close to and penetrated the capillary basal lamina (Figure 8D). 
Some stria vessels contained IBA1 cells, assumingly representing 
migrating blood monocytes (Figure 8E).

The spiral lamina, limbus and basilar 
membrane

At low-and mid-frequencies, the thin basilar membrane was 
covered underneath by a tympanic covering layer (TCL) consisting of 
free cells and a few blood vessels in an extra-cellular ground substance. 
Blood vessels placed near the habenula perforata were surrounded by 
lymphocyte- and monocyte-like cells. In the lower basal turn, the TCL 
was thin and contained few free cells. The basilar membrane was 
thicker there and consisted of a radial fibrous layer and a homogenous 
extra-cellular layer. Surprisingly, they formed a “zona arcuata-” and 
“zona pectinata-like” structure similar to the basilar membrane 
described in the mouse and guinea pig (38). Occasionally, Reissner’s 

membrane displayed single IBA1 cells. The TCL (except the most 
basal part) contained IBA1-positive cells. A few IBA1 cells could 
be detected in the organ of Corti. The spiral lamina contained many 
IBA1 cells (Figures 9A,B). They interacted with myelinated axons, and 
their cell processes frequently projected deep into the Schwann cell 
layer. Among the myelinated axons, several IBA1-positive cells 
co-expressed MHC II. At the habenula perforata, IBA1 cell processes 
seemed to extend into the organ of Corti as earlier demonstrated (4) 
(Figure 9B). CD117 cells occurred in the TCL beneath the basilar 
membrane (Figure 9A, inset) except basally near the round window. 
Light microscopy of a vessel containing a monocyte-like cell is 
shown at the spiral limbus in the 125–250 Hz region in 
Figure  9C. Immunocytochemistry of the same region shows a 
corresponding vessel containing an IBA1-positive cell (Figure 9D). 
Cells in the TCL and organ of Corti expressed fractalkine (not shown). 
There were no fractalkine gene transcripts expressed in the spiral 
lamina nerve fibers, but they were found in cells surrounding the 
unmyelinated nerve bundles beneath the habenula perforata as earlier 
demonstrated (4). There was a bony secondary spiral lamina (SSL) 
separating the spiral ligament from the scala tympani at the 
round window.

SR-PCI and the round window niche

SR-PCI sectioning and 3D reconstruction of the RWN were 
performed using 10 specimens. The results showed that the external 

FIGURE 3

(A) Light microscopy of human spiral ganglion neuron cells supplying hair cells in the 125–250  Hz region. The cell bodies are surrounded by many 
capillaries derived from the perimodiolar plexus and by free mesenchymal cells belonging to the white blood cell lineages, many of which express 
IBA1. (B) Cell in the upper spiral ganglion co-expressing IBA1 and CD68. (C) Cell in the upper spiral ganglion expressing MHC II and CD11b. 
(D) Perivascular free cells. (E) CD19-positive cells expressing MHC II could occasionally be seen. ST, scala tympani.
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window area contained a false membrane more or less blocking the 
entrance to the round window (Figure 10). It was mostly incomplete 
but also fully isolated the window from the middle ear. Occasionally, 

the extra membrane was concave, bulged inwards, and partly fused 
with the central region of the RWN, thus forming an extra inter-
membranous space external to the round window.

FIGURE 5

Light microscopy of spiral ganglion neurons in the basal turn (type I and type II) supplying hair cells in the 8–16  kHz region. Perivascular round cells 
(encircled) and a peripheral dendritic-like cell (framed) can be seen. Inset shows framed area in higher magnification. I, Type I SGN. II, Type II SGN. 
IGSB, intra-ganglionic spiral bundle.

FIGURE 4

Light microscopy of spiral ganglion neurons (type I and type II) supplying hair cells in the 500–1,000  Hz region. Perivascular dendritic and round cells 
(framed) are seen as well as free cells located around the type I SGNs (encircled). Framed areas are magnified in (A’,A”). (B) Immunohistochemistry 
shows IBA1 cells closely associated with the type I SGN cell bodies (confocal microscopy). (C) An IBA1 cell adheres to the external surface of a type 
I SGN cell body (SR-SIM). (D) Type I SGNs express fractalkine gene transcripts (SR-SIM). I, Type I SGN. SGC, spiral ganglion cell.
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SR-PCI and the vestibular aqueduct

Synchrotron imaging demonstrated a close connection 
between the periaqueductal bone-marrow space and the 
endolymphatic sac with several communicating blood vessels and 
sinusoids. The number of vessels differed depending on the size of 
the intra-osseous portion of the sac. The bone channels interacted 
with the draining vein of the vestibular aqueduct (Figures 11A–D). 
The vessels may produce direct routes for immune cells into and 
out of the ES.

Endolymphatic sac (ES)

The sac contained a large population of IBA1 macrophages 
with migrant behavior, interacting with other immune cells, thus 
confirming the results obtained by Liu et al. (2) and Kämpfe et al. 
(35). IBA1 cells were found in the connective tissue, the epithelium, 
and the lumen of the sac (Figure 12). Some IBA1-positive cells in 
the epithelium seemed to be a part of the epithelium. Many of the 
IBA1 cells co-expressed MHC II. The epithelial cells expressed 
MHC II in the apical membrane but also contained endocytic 
vesicles expressing MHC II. A rich trans-epithelial migration in 
the intermediate portion of the sac was suggested by the irregular 
and fragmented collagen IV immunostaining of the basal lamina. 
Several migrating cells expressed CD68 and CD11b together with 
MHC II. Many epithelial cells of the tubules and sub-epithelial cells 
of the ES expressed toll-like receptor 4 (TLR4) in the cell 
membrane and cytoplasm (Figure 12, inset). CD4 and CD8 cells 
occasionally interacted physically with IBA1 positive cells. The sac 
epithelium and sub-epithelial cells expressed chemokine 
fractalkine and, occasionally, sub-epithelial fibrocytes. Fractalkine 
gene transcripts were not analyzed.

Discussion

The present study demonstrates the wide variations in cellular 
anatomy in the human cochlear partition at different frequency 
locations. Our findings confirm that the human cochlea contains 
numerous IBA1-positive macrophages and that these are broadly 
distributed at all frequencies under steady-state conditions (1, 5). 
IBA1 cells occasionally co-expressed MHC II, indicating that these 
cells had been immunologically challenged. The human cochlea is 
likely surveilled by macrophages derived from activated resident 
cells or externally recruited monocytes differentiating into IBA1-
positive macrophages. Surprisingly, a few CD4 and CD8 
lymphocytes and even CD19 B-lymphocytes co-expressing MHC 
II were present in the spiral ganglion and spiral ligament but not 
inside the sensory epithelium of the organ of Corti as recently 
described (3). The MHC class II molecules present antigens to CD4 
T-lymphocytes and are critical for the initiation of antigen-specific 
immune responses (39). CD19-positive B cells expressing MHC 
class II can act as antigen-presenting cells and amplify CD4 
responses to T cell-dependent antigens (36, 39). The cells have also 
been associated with the development of autoimmune disease (37). 
The human cochlear nerve and spiral ganglion contained IBA1-
positive macrophages of different phenotypes. They physically 
contacted ganglion cell bodies and showed occasional terminal 
dilations, reminiscent of synaptic contacts. Macrophages formed 
contact points at perineural spaces and possibly even at Ranvier’s 
nodes. Axons and dendrites interacted physically with macrophages 
at all frequencies. Their long processes or “antennae” (width of 
0.1–0.2 μm) adhered to surrounding cells, suggesting migratory 
properties and a surveillance or scanning function along the nerve 
fibers. Type I ganglion cell bodies expressed fractalkine, and the 
RNAscope technique revealed CX3CL1 gene transcripts. 
Macrophages were earlier found to express CX3CR1, suggesting a 

FIGURE 6

Semi-thin sections of the lateral wall at the three turns of the human cochlea (same magnification). The length of the stria vascularis in the apex (A), 
mid-turn (B), and base (C) is 132 microns, 204 microns, and 244 microns, respectively. Type I, II, III, and V fibrocytes are visualized. BC, basal cell. IC, 
intermediate cell. MC, marginal cell. Inset in C shows the framed area in higher magnification. MCs show many basal enfoldings. Staining with toluidine 
blue and osmium tetroxide. Scale bar is 25  μm.
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CX3CL1-CX3CR1 or fractalkine signaling pathway in the human 
cochlea (4). This pathway may offer protection under steady-state 
conditions as earlier proposed experimentally (16, 40). In the 
brain, microglia and monocyte-derived macrophages are known to 
mount immune responses and are essential for neuronal regulation, 
synapse organization, and clearance of scavengers and toxic 
products (41–45). Ramified IBA1 cells, such as those observed in 
the human cochlea, may fight pathogens (46, 47) and respond to 
cell injury (48). In the lesioned brain, activation of non-astrocytic 
cells may transform into amoeboid-type microglia (49). Similarly, 
experimental damage to the inner ear elevates the number of 
macrophages in the auditory nerve, spiral ligament, and limbus (9, 
16, 44, 50–52). Interestingly, there is evidence of increasing 
macrophage interactions with the myelinated axonal projections 
and type I spiral ganglion cell bodies in the human cochlea with 
age (19). This may suggest that abnormal macrophage/glia 
interactions may be  linked to age-dependent auditory nerve 
degeneration. In the central nervous system, the importance of 
microglia and macrophages in the regulation and preservation of 
myelin and cognition has recently been highlighted (53). There is 
speculation that the effects of anti-inflammatory drugs can even 

reduce harmful microglial responses in connection to neuro-
inflammation (43).

A remarkable characteristic of the human auditory nerve is the 
un-myelination of type I  ganglion cell bodies, including their 
axonal initial segments. Instead of a compact myelin layer, which 
is essential for fast nerve conduction, thin satellite cells enwrap the 
cell bodies. This may reflect a different signal processing in humans 
and could facilitate a direct physical interaction between 
macrophages and axons. SR-SIM revealed gracile macrophage 
processes directly facing the neuronal cell membrane. Considering 
the potential of macrophages to support regeneration and 
neurotrophin stimulation (54), this may be  significant in 
maintaining human auditory nerve integrity under various 
conditions. It may also partly explain the robustness of the human 
nerve following loss of hair cells and peripheral axons caused by 
noise, ototoxic drugs, or aging (55), and it could also clarify the 
long-term effects of cochlear implants (CIs) (56). Obviously, more 
work is needed to explain fully the role of fractalkine signaling in 
the human cochlear nerve. The immune cells in the human 
auditory nerve may participate both in the removal of damaged 
cells, repair and protection.

FIGURE 7

Confocal microscopy images show IBA1/MHC II immunohistochemistry in the three cochlear turns with single scans (A–C) and rendering (D–F). Most 
perivascular IBA1 cells also express MHC II in the apical turn. Framed areas are magnified in (G–I). (G) Perivascular IBA1 cell co-expressing MHC II. (H) A 
dendritic IBA1 cell expresses MHC II in the basal turn. I. Perivascular cells in the basal turn expressing both IBA1 and MHC II.
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Macrophages in the organ of Corti and the 
effects of noise

The present study confirms that macrophages may reach the 
sensory cell areas of the auditory and vestibular epithelium in assumed 
repair processes playing a role in organ homeostasis (4–6, 57). 
We found migratory macrophages near injured hair cells, possibly 
recruited to dispose of damaged cells (1). Wasted hair cells seem to 
retract beneath the reticular lamina and to be removed by activated 
IBA1-positive macrophages. This was supported by scanning electron 
microscopy that showed dendritic cells enclosing holes in the reticular 
lamina (4). Moreover, SR-SIM showed macrophages on the basilar 
membrane facing the organ of Corti co-expressing IBA1 and MHC 
II. If fractalkine signaling varies in its extent at different frequency 
locations in the human cochlea was difficult to prove. It could explain 
the increased vulnerability of the high-frequency sensory region.

A homing capacity of bone marrow-derived CD45 and CD68 
macrophages to the spiral limbus was demonstrated after acoustic 
trauma (58). High-throughput RNA sequencing and real-time 
quantitative reverse transcription PCR (qRT-PCR) arrays showed 
strong expression of inflammatory genes in the organ of Corti 
associated with acoustic stress. This response was believed to originate 
from supporting cells that constitutively express immune genes and 

not from sensory cells (59). This may be linked to toll-like receptor 
signaling genes that are able to respond to acoustic trauma associated 
with sensory cell damage. The basilar membrane displayed distinct 
immune protein expression, monocyte infiltration, and transformation 
in the apical and basal sections of the cochlea. Only the basal 
monocytes and macrophages displayed increased expression of MHC 
II and class II trans-activator (CIITA), a MHC II production cofactor 
(60). They also showed that monocytes undergo a time-dependent 
transformation into macrophages after acoustic overstimulation 
together with CD4-positive T cells in antigen-presenting activity in 
the basilar membrane. It is reasonable to assume that a similar 
response in the TCL may be established in the apical and middle turns 
of the human cochlea after acoustic stress. At an early phase after noise 
exposure, IL-6 expression in SGNs, spiral ligament and stria vascularis 
were noted before macrophage activation (52). Anti-inflammatory 
cytokine therapy, including IL-6 blockade and antioxidant treatment, 
was suggested as a possible treatment for acute sensorineural hearing 
loss caused by noise (52, 61). Intriguingly, a lack of fractalkine 
signaling in CX3CR1 knockout animals resulted in an impairment of 
the repair of injured ribbon synapses after noise trauma (a model of 
“hidden hearing loss” or auditory synaptopathy), including auditory 
nerve degeneration (62). The authors’ results indicate that 
macrophages are involved in the recovery of ribbon synapses where 

FIGURE 8

(A) Expression of chemokine C-C motif ligand 2 (CCL2), monocyte chemoattractant protein-1. (B) Expression of C-C chemokine receptor type 2 
protein (CCR2) in the apical turn. Some cells bordering the apical stria region show faint immune staining with strong MHC II expression in cells at the 
intermediate portion. (C) IBA1 cells at the spiral prominence together with cells expression CD117 and MHC II. (D) Stria vessels demonstrating collagen 
IV expression with IBA1 cells located in the wall of the vessel as well as subendothelially. (E) A stria blood vessel contains an IBA1-positive cell (arrow).
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lack of a receptor on the macrophages weakens the response. Further 
studies to explore the functional role of these neural macrophages in 
connection with human sensorineural deafness seems mandatory (40).

Protection of the lateral wall of the human 
cochlea

The human stria vascularis forms a unique vascularized, 
tri-cellular epithelium, consisting of marginal, intermediate, and basal 
cells. Together with the adjacent fibrocyte layer, especially well 
developed in the basal cochlea, these cells form an exceptional endo-
cochlear potential (EP) through a complex system of richly expressed 
ion channels, transporters, and isolator proteins (63, 64). The present 
investigation demonstrated the stria vascularis had a more organized 
cell architecture and larger volume in the middle and basal turns. Its 
size was almost double in the base compared with the apex. Spiral 
ligament volume difference might be even larger, possibly more than 
10-fold, which could have functional relevance. This may influence K+ 
concentration and trans-epithelial endolymph transport (65–68). 
Despite the smaller size and reduced suprastrial tissue in the apex, the 
relative number of macrophages was large in the apex. A reliable 
quantitative analysis was difficult to achieve due to the limited number 

of available sections. Variances in lateral wall size and cell structure 
could challenge the idea that an equally high EP exists in the human 
cochlear turns. A gradient in EP, decreasing from cochlear base to 
apex, has been observed in several species (65, 67, 69, 70). Whether 
this relates to the physiological grounds of hair cell tuning and 
low-frequency coding is unknown (71, 72). Collectively, this could 
indicate that the EP generation is more prominent in the base that 
spreads apically, conceivably to fulfill high-frequency dependent outer 
hair cell electro-motility and place-coding. If so, an increased 
vulnerability of the base could also influence cochlear function at 
lower frequency regions.

Some macrophages showed thin cell processes that extended 
between marginal cells, possibly acting as immune sensors monitoring 
endolymph homeostasis (73). Nevertheless, the perivascular 
distribution of macrophages in all three turns suggests that these cells 
play an equally important role, presumably related to regulation of the 
blood–labyrinthine barrier and immune surveillance and protection 
in the entire stria vascularis. Earlier reports show the morphologic 
variety of macrophages ranging from thin, slender “antenna”-like 
processes in the auditory nerve, suggesting surveillance-mode as well 
as branched, amoeboid types often encountered in the lateral wall, and 
interacting with the strial vessels (1, 19). Our results show that both 
types of morphology exist normally in humans. Intriguingly, activated 

FIGURE 9

Expression of IBA1-positive cells in the spiral lamina and spiral limbus. (A) Several macrophages (Ma) are located among the population of neurons. 
Inset shows a CD117-positive cell in the tympanic covering layer (TCL) near the habenula perforata (HP). (B) A thin process from the IBA1 cell extends 
into the habenula perforata and organ of Corti (OC). (C) Semi-thin section of the limbus shows a capillary housing a monocyte-like cell. 
(D) Immunohistochemistry shows a similar located vessel containing IBA1 cells. The spiral limbus also contains several IBA1 cells.
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macrophages were observed in the basal turn of aged cochleae with 
an increased number of macrophages with reduced cellular processes 
in the middle and basal turns of the spiral ligament (19). Acoustic 
trauma was also found to increase cochlear inflammatory responses 
with recruitment of circulating leukocytes and upregulation of 
inflammatory mediators, chemokine, and cytokine in the spiral 
ligament. This also included immunohistochemical expression of the 
adhesion molecule ICAM-1 in the venules and endosteal cells of the 
scala tympani (44, 74). These responses seem to act at different time 
sequences to activate resident CX3CR1/macrophages and lateral wall 
fibrocytes with subsequent infiltration of immune cells (74). Invading 
immune cells after acoustic overstimulation included CD45, CD68, 
stromal-derived factor 1, F4/80, Iba-1, CD11b, and CX3CR1-positive 
macrophages (8, 44, 58). Yoshida et al. (75) speculated about a network 
of inflammatory cells, fibrocytes, and vascular endothelial cells 
interconnected by chemokines and mediators. Such a network could 
be  therapeutically targeted to suppress inflammation and tissue 
damage (75) and seems to be supported by the present findings. The 
increased interest currently directed to spiral ligament fibrocytes is 
motivated by the potential targets for therapy in hearing loss and 
Meniere’s disease, including cell transplantation and genetic 
engineering (76). We found indications of monocyte chemoattractant 
protein-1 CCL2, a member of the CC family of chemokines, weakly 
expressed in the spiral ligament, basilar membrane, and organ of 
Corti. The chemokine receptor CCR2 was present in spiral ligament 
fibrocytes and was co-expressed with some MHC II cells. CCR2 was 

earlier found to be protective for inner ear hair cells after acoustic 
overstimulation independent of CCL2, although neither seemed to 
be necessary for monocyte migration (51). Similarly, spiral ligament 
fibrocytes may secrete CCL2 which has been found to be responsible 
for inner ear inflammation and monocyte attraction in experimental 
otitis media (77). Further analyses are needed to verify these 
preliminary findings in humans.

The spiral prominence showed rare cells expressing CD117 (KIT). 
Recently, mast cells were localized in the mouse and rat modiolus, 
spiral ligament, and stria vascularis using antibodies against c-Kit/
CD117 (78). Their role in cochlear development, homeostasis, and 
pathology was discussed. Their function in the human lateral wall 
remains unknown and further analyses at different regions 
are necessary.

Macrophages and human blood–labyrinth 
barrier

Here, we confirm that human stria vessels are partly surrounded 
by branched or amoeboid macrophages, which appear to 
be monocyte-derived (10). They may control the exchange between 
blood and interstitial space, as suggested by others (79–81). In 
addition to producing the EP, the stria represents an analogous 
“blood–labyrinth” barrier that serves to protect the inner ear under 
various conditions, such as inflammation and aging. The remarkable 

FIGURE 10

(A) Synchrotron section of the round window niche (red arrow at opening) showing possible protection mechanisms such as the shield of the pseudo-
membrane (PM) that completely conceals the round window membrane (RWM). (B) 3D reconstruction of a round window niche with a web-like 
pseudo-membrane partly sealing the niche. (C) The PM incompletely conceals the niche. (D,E) show the RW niche with scalar opacity adjusted to 
reveal/hide RWM and PM, exposing the different compartments before reaching perilymph space. CF, crista fenestra; BM, basilar membrane; SSL, 
secondary spiral lamina; CA, cochlear aqueduct; SL, spiral ligament; BM, basilar membrane; RM, Reissner’s membrane.
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plasticity in macrophage responses has been documented (8, 74, 
82–85). Macrophages did not seem to contain melanin granules, 
suggesting that they are unrelated to intermediate/melanocyte cells 
(1). The intermediate cells express potassium channels (Kir4.1), 
which are essential for the generation of the EP (63, 86–90). This 
contrasts with studies showing perivascular macrophage/
melanocytes co-expressing both macrophage and intermediate cell 
markers F4/80 and Kir4.1 (81). The reason for these discrepancies 
may be  species related. Using high resolution microscopy, the 
human intermediate cells were identified near vessels and showed a 
“light cell” appearance, with large round cell nuclei, different from 
the macrophage phenotypes. The potential role of microglia–
vascular interactions to regulate blood–brain barrier integrity have 
been highlighted (91). Macrophages could similarly play an essential 
role in maintaining the blood–labyrinth barrier but also have a 
sentinel immune defensive role in controlling the trans-endothelial 
passage of various substances into the endolymph. A broken barrier 
caused by several conditions can lead to serious functional 
consequences, and therapies to reconstitute it are considered to 
prevent such consequences. In vitro studies have shown that 
fibrocytes can secrete chemokines and other mediators after 
stimulation of the pro-inflammatory cytokine TNF-α or IL-1β. This 
may extend the inflammation, induce fibrocyte damage, and impair 
EP production. Disturbed immuno-surveillance may influence the 
host defense system and result in increased microbial infections that 

could lead to functional disturbances and immune-pathologic 
conditions (92).

Human round window shield

The inner ear immune cells may initiate immunological 
defensive cascades and protect the ear from invading pathogens, 
conceivably reaching across the RWM. This is considered a major 
route for bacterial toxins and inflammatory mediators in acute and 
chronic middle-ear infections, potentially affecting stria epithelium 
and the spiral ligament fibrocytes causing sensorineural hearing loss 
(93–97). The thickness of the human RWM is less than 0.1 mm, and 
its distance to the sensory cells is less than 1 mm (98, 99). Even 
though permeability of ions and macromolecules is normally 
restricted, which has been shown experimentally (96), the membrane 
may become permeable in otitis media, requiring additional 
protective measures (100, 101). This may involve mechanical barriers 
such as the round window niche (RWN) and “pseudo-membranes” 
sheltering the round window and organ of Corti. Studies have shown 
that the RWN anatomy is highly variable as it is either plugged with 
fibrous tissue or fat or covered by a false RWM. This may explain the 
varied permeability found in ears, which influences drug 
administration therapy to treat inner ear diseases via the middle ear 
(102, 103). The present study using SR-PCI and 3D reconstruction 
presented partly or completely shielded RWMs. Surprisingly, a 

FIGURE 11

(A) SR-PCI and 3D reconstruction of a left human inner ear showing the extra-osseous endolymphatic sac (ES) and its relationship to the common crus 
(CC) and the periaqueductal bone marrow. (B) Section showing connecting vessels between the sac and bone marrow space. (C) Section of the intra-
osseous ES. Bone marrow vessels merge with the perisaccular connective tissue. (D) Vertical section of the vestibule showing the internal aperture of 
the vestibular aqueduct (red arrow) at the medial wall of the vestibule. RWM, round window membrane; BM, basilar membrane (black arrow); PA, 
posterior ampulla; VVA, vein of the vestibular aqueduct; S, saccule; SN, singular nerve.
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cell-containing TCL was not evident in the most basal region of the 
cochlea to prevent noxious substances from reaching the sensory 
organ. Conceivably, this area could be protected by a thicker and 
more impermeable basilar membrane, a secondary spiral lamina, or 
drainage through the cochlear aqueduct constituting additional 
possible defense mechanisms (Figure  13). Remarkably, a local 
immune defense was discovered at RWM rim, in the cynomolgus 
monkey with gland-like structures, lymph channels, and sinusoidal 
veins containing leukocytes, plasma cells and monocytes (100). If a 
similar immune protective system occurs in humans is subject to 
investigation in our laboratory.

Role of human endolymphatic sac in inner 
ear immunity

The results suggest that there is ongoing innate and adaptive 
immune activity in the ES in humans. The sac epithelium and 
peri-saccular tissue contain a large population of IBA1 
co-expressing MHC II. In addition, migrating cells express CD68 
and CD11b together with MHC II, TLR4 with CD4 and CD8 cells 
occasionally interacting with macrophages (35). The sac 
epithelium and sub-epithelial cells expressed fractalkine and, 
occasionally, sub-epithelial fibrocytes. The sac may receive 
antigens and waste material via the endolymphatic duct, which 
activates resident macrophages/monocytes including cells 
conceivably from the surrounding blood vessels (7, 104, 105). 

Synchrotron imaging showed vascular connections between the 
bone marrow and the sac that varied in number; temporal bones 
with a large sac displayed more interconnections. A close 
functional relationship between perisaccular bone marrow-
derived macrophages and the ES was earlier described 
experimentally (106, 107). These cells are believed to migrate into 
the sac lumen followed by phagocytosis, and may return to the 
perisaccular tissue for antigen presentation to CD4-positive 
T-cells and immune processing. These responses may 
be  amplified by MHC class II molecules, TLR4, and IFNγ 
stimulation. Møller et  al. recently showed TLR4 and TLR7 
expressed on the luminal side of the sac epithelium, suggesting 
the ability to identify and trap bacterial antigens and virus RNA 
within the endolymphatic space (108). Conceivably, immune cells 
may reach the sac attracted by chemokine fractalkine signaling. 
From there, they may recirculate to “prime” the inner ear tissue 
acting as perivascular “doormen” in the metabolically hyperactive 
stria vascularis and spiral ganglion tissue. This organization, 
away from the receptor areas, voids a full-scale immune response 
with the release of damaging pro-inflammatory mediators and 
antimicrobial activity near the vulnerable sensory cells. Whether 
sac size variations influence the immune capacity in different 
individuals is unknown. Notably, a smaller ES and vestibular 
aqueduct have earlier been shown in patients with Meniere’s 
disease (109, 110). Protection and possible trajectories for 
pathogens and noxious substances to reach the cochlea and ES 
under various circumstances are shown in Figure 13.

FIGURE 12

Micro-dissection of a right human vestibular aqueduct containing the endolymphatic duct and sac (posterior view). The sac contained IBA1 
macrophages and lymphocytes suggesting an ongoing immune activity. Left inset shows the presence of IBA1 macrophages and expression of the 
chemokine fractalkine in the intra-osseous part of the sac (*). Right inset shows expression of TLR4 in the epithelial cells of the extra-osseous sac. Both 
parts are connected to the surrounding bone marrow by vascular bone channels. It is conjectured that antigens may reach the sac via the duct (bold 
interrupted line) highlighting its role in inner ear adaptive immunity. IAM, internal acoustic meatus; PSSC, posterior semicircular canal; SSCC, superior 
semicircular canal; VVA, vein of the vestibular aqueduct; CC, common crus; ED, endolymphatic duct; TLR4, toll-like receptor 4. Thin interrupted line: 
extra-osseous endolymphatic sac.
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Limitations of this study

Although there were no signs of tumor invasion, all patients had 
pathology in the vicinity of the inner ear that could have influenced 
the composition of the immune cells. Due to the small collection of 
the unique cochlear specimens, the number of control staining was 
limited. Furthermore, the endolymphatic sac was removed in patients 
with acoustic schwannoma, a condition that could influence inner ear 
fluid homeostasis and immune conditions. The sac removed at petro-
clival meningioma surgery showed similar results, where there were 
no obvious inner ear changes.
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Glossary

c-Kit/CD117 Tyrosine-protein kinase KIT, cluster of differentiation 117 or mast/stem cell growth factor receptor

CD4 Cluster of differentiation 4: Glycoprotein co-receptor for the T-cell receptor

CD8 Cluster of differentiation 8: Glycoprotein co-receptor for the T-cell receptor

CX3CL1 C-X3-C Motif ligand 1

CX3CR1 C-X3-C Motif Chemokine Receptor 1 (“fractalkine receptor”)

DAPI 4′, 6-Diamidino-2-phenylindole dihydrochloride

EDTA Ethylene-diamine-tetra-acetic acid

EP Endo-cochlear potential

ES Endolymphatic sac

HP Habenula perforata

IBA-1 Ionized calcium-binding adapter molecule 1,

IGSB Intra-ganglionic spiral bundle containing cochlear efferents

MHC II Major histocompatibility complex type II

MBP Myelin basic protein

P2RY12 Purinergic receptor P2Y12 (microglia marker)

RWM Round window Membrane

RWN Round window Niche

SGNs Spiral ganglion neurons

SL Spiral limbus

SP Spiral prominence

SR-SIM Super-resolution structured illumination fluorescence microscopy

TCL Tympanic covering layer

TLR4 Toll-like receptor 4

TMEM119 Transmembrane protein 119 (“microglia marker”)

Type I ganglion cells Large afferent neurons innervating the inner hair cells

Type II ganglion cells Small afferent neurons innervating the outer hair cells
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