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Introduction: CACNA1S related congenital myopathy is an emerging recently

described entity. In this report we describe 2 sisters with mutations in the

CACNA1S gene and the novel phenotype of congenital myopathy and infantile

onset episodic weakness.

Clinical description: Both sisters had neonatal onset hypotonia, muscle

weakness, and delayed walking. Episodic weakness started in infancy and

continued thereafter, provoked mostly by cold exposure. Muscle imaging

revealed fat replacement of gluteus maximus muscles. Next generation

sequencing found themissense p.Cys944Tyr variant and the novel splicing variant

c.3526-2A>G in CACNA1S. Minigene assay revealed the splicing variant caused

skipping of exon 28 from the transcript, potentially a�ecting protein folding

and/or voltage dependent activation.

Conclusion: This novel phenotype supports the notion that there are age

related di�erences in the clinical expression of CACNA1S gene mutations. This

expands our understanding of mutations located in regions of the CACNA1S

outside the highly conserved S4 segment, where most mutations thus far have

been identified.

KEYWORDS

congenital myopathy, episodic weakness, CACNA1S, Cav1.1, DHPR, splice minigene
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1 Introduction

In skeletal muscle, action potential propagation results in muscle contraction, a process

mediated by calcium ions and known as excitation-contraction coupling (ECC) (1).

Specialized proteins take part in ECC, including the dihydropyridine receptor (DHPR),

a voltage gated calcium channel located on T-tubule membranes and RyR1, located on

the sarcoplasmic reticulum (SR). T-tubules tightly associate with terminal cisternae of the

SR; the close association between one T-tubule and two terminal cisternae form the triad

and the interaction between DHPR and RyR1 upon depolarization activates opening of

RyR1 (1).
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The α1 subunit of the DHPR contains the basic functional

elements of the L-type Ca2+ channel 1.1 (Cav1.1) and is encoded by

the CACNA1S gene. The α1 subunit is formed by four homologous

domains (DI-DIV) and each domain contains six transmembrane

segments (S1–S6) (2). In each domain, segments S1–S4 form

the voltage-sensing domain, whereas S5 and S6 from all four

domains form the pore with its activation gate. The activation of

DHPR triggers a rapid elevation of cytosolic Ca2+ thus coupling

membrane excitation to muscle cell contraction (3).

The classical adult skeletal muscle L-type calcium currents

are small, activate slowly and open only at 30mV more positive

membrane potentials than EC coupling (4). In embryonic tissues,

the major isoform expressed lacks exon 29 (Cav1.1e) and exhibits

high current amplitude, fast activation kinetics and normal voltage

sensitivity compared to the adult isoform (5). After birth the

embryonic isoform is rapidly substituted by the adult isoform

containing exon 29 (Cav1.1a) (6).

Mutations in the CACNA1S gene have been previously

associated with malignant hyperthermia susceptibility (7) and

hypokalemic periodic paralysis (HypoPP) (8, 9). A recent

report correlated CACNA1S mutations to both recessive and

dominant forms of congenital myopathy (10). Only few patients

have been described so far having recessive CACNA1S-related

congenital myopathy.

Here, we describe 2 sisters from a consanguineous family who

presented with the novel phenotype of congenital myopathy and

early onset episodic weakness. Two likely pathogenic variants in the

CACNA1S gene were identified in both sisters.

2 Case report

2.1 Clinical description

The two probands are sisters of consanguineous healthy parents

(second degree cousins). In addition to the two probands, there are

two healthy sisters. The parents gave written informed consent for

genetic and research studies in accordance with guidelines provided

by the Institutional Review Board of North Jordan, King Abdullah

University Hospital, Irbid, Jordan.

Proband 1 was a term newborn, via normal vaginal delivery. At

birth she had significant head lag and hypotonia. She continued to

have poor head control requiring support, poor limb movements,

and poor weight bearing. There were no feeding or breathing

concerns. Walking was delayed till after 2 years of age. Cardiac

evaluation was normal. Around seven to 10 months of age,

episodes of weakness, and flaccidity manifesting as “falling over”

while seated started, particularly with cold exposure. Episodes

were around 10min duration, and continued to occur once or

twice a month, more so in the winter period and with cold

ambient temperature. With advancing age, she continued to have

episodic loss of ambulation, particularly with cold exposure, but

also with physical exertion. Her neurological exam at 12 years

of age was notable for weakness involving neck flexion and

proximal limb muscles (shoulder abduction, forearm flexion, hip

flexion) MRC grade 4/5. Deep tendon reflexes were normal.

Cranial nerve examination revealed mild facial weakness, without

ophthalmoplegia, ptosis, or bulbar weakness.

The younger sister of proband 1 (II.4) presented at 4 years of

age. She was the product of a full-term uncomplicated pregnancy

via normal vaginal delivery. She, also, was noted to have significant

hypotonia shortly after birth, with poor head control, and very little

antigravitymovements.Walking was delayed till after 2 years of age.

There were no concerns regarding feeding and breathing. Around

7 months of age, she started having episodes of flaccidity and falling

over if seated, particularly with cold exposure or cold ambient

weather. These episodes lasted around 10min. Her neurological

examination at 4 years of age was notable for a weak myopathic

appearing face, but otherwise no clear weakness or fatigability were

observed. There was no clinical myotonia. Deep tendon reflexes

were normal. For both probands, there was poor response to

treatment with either acetazolamide or a low carbohydrate diet for

prevention of episodic weakness. A timeline of the clinical course is

presented in Table 1.

2.2 Diagnostic assessment

Proband 1: Laboratory evaluation revealed normal creatine

kinase (CK). Electrophysiological evaluation revealed normal

motor and sensory nerve conduction studies. Long exercise

testing for median nerve/abductor pollicis brevis muscle and ulnar

nerve/abductor digiti minimi muscle was normal. Limb cooling

and cold provocation test did lead to clinical weakness, and

significant drop in motor response.

A previous EMG of right tibialis anterior, extensor indices,

and deltoid muscles performed when she was 6 years old

revealed myotonic discharges in tibialis anterior and extensor

indices muscles.

Repeat EMG of right tibialis anterior, vastus lateralis, first

dorsal interosseus, extensor indices and biceps muscles at age 12

was normal.

For proband 1, around 6 weeks after last clinical evaluation

detailed above, MRI of the pelvis, thighs, upper limbs, and neck

was performed using a 1.5T scanner (Toshiba, USA). Axial and

coronal T1 and STIR sequences were obtained and showed atrophy

and symmetrical fat replacement of the gluteusmaximusmuscles in

a tigroid pattern, of an estimated 30–60% replacement (Figure 1).

The rest of the examined muscles were uninvolved.

Proband 2: CK was normal. Limited neurophysiological

evaluation revealed normal motor nerve conduction studies, with

evidence of myotonic discharges in the tibialis anterior muscle.

Serum potassium status during the episodes of weakness is

unknown; this proved to be a challenging aspect of their care due

to the short duration of episodes, coupled with their rural residence

and distance from medical facilities.

2.3 Genetic evaluation

Genetic evaluation was not available in Jordan till proband

1 was 12 years of age, with the availability of next generation

sequencing (NGS) utilizing sputum samples which made it feasible

to ship overseas. Sanger sequencing and minigene assay was

possible through the cooperation with Biochemistry and Genetic
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TABLE 1 Timeline of clinical events for proband 1 and proband 2.

Year (age of patient) Clinical event Diagnostic procedure

Proband 1 Newborn period Floppy, poor head control, muscle weakness and poor limb

movements

7–10 months of age Episodic “falling over,” 10min duration of weakness and

inability to sit up, aggravated by cold exposure

2 years of age Noted delayed walking Normal CPK

6 years of age Continued episodic weakness, exam notable for weak

myopathic face

Nerve conduction studies: normal motor and sensory

responses

Electromyographic myotonic discharges

12 years of age Mild proximal muscle weakness

Continued episodic weakness

Nerve conduction studies: normal motor and sensory

responses

Long exercise test: no drop of baseline CMAP over time or

in relation to exercise

Muscle MRI: symmetrical tigroid pattern fat replacement,

muscle atrophy

NGS: two variants in CACNA1S gene

Proband 2 Newborn period Floppy, poor head control, muscle weakness, and poor limb

movements

7–10 months of age Episodic “falling over,” 10min duration of weakness and

inability to sit up, aggravated by cold exposure

2 years of age Noted delayed walking Normal CPK

4 years of age Continued episodic weakness, exam notable for weak

myopathic face

Nerve conduction studies: normal motor and sensory

responses

Electromyographic myotonic discharges

NGS: two variants in CACNA1S gene

lab of the Neurology Unit of IRCCS Ospedale Maggiore Policlinico

(Milan, Italy).

NGS analysis was performed by Invitae using the Invitae

Comprehensive Neuromuscular Disorders Panel customized to

include 109 genes (the complete gene list is available at

https://www.invitae.com/us/providers/test-catalog/test-03280). In

proband 1 two variants in CACNA1S were revealed: c.2831G>A

(p.Cys944Tyr) in exon 22 and c.3526-2A>G at the acceptor splice

site of intron 27. Sanger sequencing confirmed the segregation

of both variants in the two affected sisters: c.3526-2A>G was

inherited from the unaffected mother and c.2831G>A from the

unaffected father, thus revealing a recessive pattern of inheritance

(Figure 2A). p.Cys944Tyr replaces a highly conserved cysteine

residue with tyrosine at codon 944 in the DIII-S5 of Cav1.1.

Cys944Tyr is described in GnomAD with allele frequency 1.59

× 10−6; Clinvar and dbSNP assigned ID codes 1017723 and

rs1661217137, respectively. In silico analysis predicted a deleterious

impact of this variant on channel function (Figure 2B). funNCion,

an online tool which predicts functional effects of missense

variants in voltage-gated sodium and calcium channels, predicted

p.Cys944Tyr to be pathogenic with a probability of 0.95 and

to be loss-of-function with a probability of 0.69. ACMG rules

classified p.Cys944Tyr as likely pathogenic (PM2_supporting, PM3,

PP1, PP3_strong). c.3526-2A>G lay on the acceptor splice site

of intron 27 and is described in GnomAD with allele frequency

1.20 × 10−6. Clinvar and dbSNP assigned ID codes 209137 and

rs797045031, respectively. In silico prediction programs suggested a

damaging effect causing a possible alteration of pre-mRNA splicing

(Figure 2B). ACMG rules classified this variant as likely pathogenic

(PS3, PM2_supporting, PM4, PP1, PP3).

To analyze the effects of c.3526-2A>G we used a minigene

assay. Genomic fragments comprising exons 26 to 30 were

amplified from Proband II.1 (Figure 3A). After transfection, RNA

was analyzed by reverse-transcription PCR. The PCR product

belonging to the plasmid containing the c.3526-2A>G had a lower

molecular weight than that obtained from the plasmid with the

WT sequence (Figure 3B). Sequencing revealed loss of exon 28

in the lower band and absence of exon 29 in both transcripts

(Figures 3C, D). Thus, the mutation disrupts the acceptor splice

site of intron 27 and causes the skipping of exon 28. Exon 28

is in-frame and codes for 28 amino acids that correspond to

the transmembrane segment S3 of domain IV that is part of

the voltage-sensing domain. The skipping of exon 28, though

resulting in an in-frame deletion in the transcript, could have

functional consequences: (i) the loss of a transmembrane segment

which can disrupt proper protein folding and trafficking to the

membrane; (ii) the alteration of the region around DIV S3-S4

linker that regulates the voltage dependence of activation through

alternative splicing of exon 29 (11). Furthermore, DIV-S3 contains

negatively charged D1186 (D3) and D1196 (D4) which interact

with the positively charged arginines of DIV-S4 throughout the

conformational changes that occur during the transition from

the resting state to the activated state of Cav1.1 (5). Thus, the

lack of exon 28 could affect both the embryonic and the adult

Cav1.1 isoforms.

In our in vitro model, exon 29 is skipped both

in the mutant and in the WT transcripts. We

used HEK cells that are of embryonic origin, and

exon 29 is physiologically skipped in embryonic

tissues (6).

Frontiers inNeurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2024.1359479
https://www.invitae.com/us/providers/test-catalog/test-03280
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Aburahma et al. 10.3389/fneur.2024.1359479

FIGURE 1

MRI of the pelvis, thighs, upper limbs, and neck was performed on proband 1 using a 1.5T scanner (Toshiba, USA). Axial and coronal T1 and STIR

sequences were obtained using a sense neuro vascular coil for the neck, and a multi coil for the rest. Axial T1 image at the level of the pelvic floor (A),

and coronal T1 image of the thigh, (B) show symmetrical fat replacement of both gluteus maximus muscles (M), red and green arrows, respectively.

The pelvic and thigh muscles bilaterally appear uninvolved. (C) Axial STIR images show suppression of the intramuscular fat (M).

FIGURE 2

(A) Pedigree. Sanger sequencing was used to study segregation in family members. Asymptomatic sister II.2 showed only c.3526-2A>G in

heterozygosity while asymptomatic sister II.3 showed neither of the two variants. The arrow indicates Proband 1. (B) Bioinformatic analysis of novel

variants.
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FIGURE 3

Minigene assay. (A) Both c.3526-2A>G allele and WT allele from one of the patients were cloned in pcDNA3.1 plasmid and were transfected in tsA

human epithelial kidney (HEK) cells. The genomic region cloned encompassed exons 26–30. (B) Agarose gel showing RT-PCR products derived from

minigenes. The product from c.3526-2A>G allele is smaller than that of the WT allele. (C) Sequence electropherograms showing the e�ect of

c.3526-2A>G in the alteration of physiological splicing of exon 28. Two independent transfections are shown. (D) Schematic representation of

minigene products. Both transcripts lacked exon 29 which is alternatively spliced into embryonic tissues.

2.4 Patient perspective

The patients’ mother relayed challenges to the girls being able

to participate in daily domestic activities and societal activities that

are a significant aspect of their self-identity within the community.

She was particularly fearful the disease would affect their ability to

care for their families in the future.

3 Discussion

The clinical presentation of congenital myopathy phenotype

compounded by very early onset episodic weakness and electrical

myotonia is distinct from previous phenotypic descriptions

reported with CACNA1S mutations. Atypical features included

episodic weakness prior to 1 year of age, short duration of

episodes, normal short and long exercise testing, and exacerbation

by cold exposure. Genetic testing revealed two mutations in the

CACNA1S gene, which encode the α1 pore-forming subunit of the

DHPR, a voltage-gated calcium channel responsible for ECC along

with RyR1.

The diagnosis of a congenital myopathy in our probands

rested on the clinical picture, considering normal CPK levels

and the absence of muscle pathology evaluation. This was

based on the presence of weakness and hypotonia noted shortly

after birth, coupled with the static nature of the weakness,

and a genotype associated with congenital myopathy. Previously

described CACNA1S-related congenital myopathy patients all had
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normal CPK levels, and non-specific muscle biopsy findings

including fiber size disproportion and a non-specific myopathic

appearance (Supplementary Table 1). However, a muscle pathology

description would have had a positive impact on the interpretation

of our observed phenotype and added further insight into the

phenotypic expression of CACNA1S related mutations.

Historically, congenital myopathies have been classified on

the basis of major morphological features seen on muscle biopsy

(12). As more genes are identified, newer classification systems

will likely be necessary taking into consideration the underlying

genetic etiology.

In vitro minigene splicing assay demonstrated that the c.3526-

2A>G mutation disrupts the acceptor splice site of intron 27,

leading to skipping of exon 28, an in-frame exon that codes for S3 in

the fourth domain. The fourth voltage-sensor domain comprises a

functionally critical intramolecular interaction between oppositely

charged residues of the S3 and S4 transmembrane helices; this

interaction is required for proper voltage sensitivity of Cav1.1 (13).

It has also been demonstrated that the structure and length of the

fourth S3–S4 linker is critical in regulating the voltage sensitivity

of the fourth voltage-sensor domain (5). Moreover, alternative

splicing of exon 29 controls the length of the DIV S3–S4 linker and

regulates voltage dependence of activation (14). Thus, thismutation

is expected to affect channel function by disrupting the integrity

of the interaction between the S3 segment and the voltage sensor

S4, and by altering the S3–S4 linker region and thus affect voltage

dependence of activation (15).

In CACNA1S-related congenital myopathy cases, truncating

mutations leading to a premature termination codon, or missense

mutations leading to decreased protein stability all lead to absence

or reduction of protein amounts (10). Although the deletion caused

by the mutation in our patients does not alter the reading frame,

the lack of an entire transmembrane segment could prevent the

correct folding of the protein and its trafficking to the membrane,

likely leading to reduction in Cav1.1 level. The decreased content

of Cav1.1 also impairs ECC (10) thus, changes in excitation-

contraction coupling are likely to contribute to the weakness and

myopathy features encountered (4, 11). The in vitro minigene

splicing assay is a powerful tool for predicting consequences in

pre-mRNA maturation, however a functional assay that directly

evaluates the impact of a variant on channel function is the only tool

capable of revealing whether this variant is pathogenic. Different

mechanisms of genetic regulation, such as activation of alternative

splice sites, could intervene and change the expected effect.

While most mutations thus far identified in the CACNA1S as

causes of HypoPP have been in the highly conserved S4 segments

(16), novel mutations located in new regions of the CACNA1S are

increasingly being identified (15). Two of these mutations fall into

the third domain near p.Cys944Tyr: p.His916Gln, located in the

DIII S4-S5 linker, and p.Glu989Lys, located in the DIII S5–S6 linker

(17, 18). The p.Cys944Tyr variant can contribute to the episodic

weakness phenotype in the two sisters. So far, only one patient

has been described as having congenital myopathy plus episodes

of periodic paralysis starting at the age of 5 years which aggravated

the congenital phenotype (10, 19).

Our patient’s phenotype included electrical myotonic

discharges without clinical myotonia. This is not a feature

characteristic of the hypokalemic periodic paralysis associated

with mutations in CACNA1S. However, our patients’ phenotype

is mainly that of a congenital myopathy, compounded by

superimposed episodic weakness. As such, myotonic discharges

in the absence of clinical myotonia have been reported in several

genetic muscle disorders and congenital myopathies, involving

genes not typically correlated with myotonia (20, 21).

To date, 13 patients from 9 unrelated families have been

described with CACNA1S-related recessive congenital myopathy

(Supplementary Table 1) (10, 19, 22–26). The phenotypes described

are characterized by antenatal or neonatal onset of symptoms (9/9

families), delayed motor development (7/7 families), respiratory

involvement (6/8 families), feeding difficulties (8/8 families), and

facial involvement often characterized by ophthalmoplegia (7/7

families). Periodic weakness was reported in 1/13 patients. All

had normal CK levels. The alveolar aspect of the intermyofibrillar

network seen on muscle biopsy was described as a possible

pathophysiological hallmark for both recessive and dominant

CACNA1S-related congenital myopathy. However, in recessive

patients this feature has only been described in 2/8 families.

Although this is a small series of patients, there is considerable

variability in the severity of the phenotype and no genotype-

phenotype correlation emerges. The phenotype of our patients

ranks among the less severe on the phenotypic spectrum.

This report expands our knowledge on CACNA1S-related

congenital myopathy, an entity described only a few years ago, and

supports the notion that various phenotypes represent a continuum

on the clinical spectrum associated with these mutations.
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