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Damage-evoked signals in 
cochlear neurons and supporting 
cells
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In addition to hearing loss, damage to the cochlea can lead to gain of function 
pathologies such as hyperacusis. It has been proposed that painful hyperacusis, 
noxacusis, may be  carried to the central nervous system by type II cochlear 
afferents, sparse, unmyelinated neurons that share morphological and 
neurochemical traits with nociceptive C-fibers of the somatic nervous system. 
Also like in skin, damage elicits spreading calcium waves within cochlear epithelia. 
These are mediated by extracellular ATP combined with IP3-driven release from 
intracellular calcium stores. Type II afferents are excited by ATP released from 
damaged epithelia. Thus, the genesis and propagation of epithelial calcium 
waves is central to cochlear pathology, and presumably hyperacusis. Damage-
evoked signals in type II afferents and epithelial cells have been recorded in 
cochlear explants or semi-intact otic capsules. These efforts have included 
intracellular electrical recording, use of fluorescent calcium indicators, and 
visualization of an activity-dependent, intrinsic fluorescent signal. Of relevance 
to hyperacusis, prior noise-induced hearing loss leads to the generation of 
prolonged and repetitive activity in type II neurons and surrounding epithelia.
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1 Introduction

The mammalian cochlea has a problem. The evolution of sensitive hearing over a wide 
frequency range has produced a biomechanically complex sense organ, but one vulnerable to 
irreparable damage. Adding insult to injury, the associated pathology of hyperacusis can 
undermine quality of life as much or even more than partial hearing loss per se. Thus, efforts 
continue to identify the underlying pathological mechanisms of hyperacusis. A single row of 
inner hair cells and their associated type I afferents encode and transmit acoustic information 
to the brain. Three rows of outer hair cells are inhibited by cholinergic efferent neurons. A 
much smaller number (5% of the total) of unmyelinated type II afferents extend hundreds of 
microns along the cochlear length to contact dozens of outer hair cells. Previous work has 
examined the hypothesis that type II cochlear afferents may be not only acoustic sensors (1–3), 
but additionally respond to tissue damage as potential inner ear nociceptors (4–6). Their role 
in activation of the medial olivocochlear (MOC) neurons remains to be delineated fully (7–9), 
although type II afferents are unlikely to provide the dynamic range and frequency selectivity 
of the MOC efferents (10, 11). Of equal importance, it is known that local damage in cochlear 
explants can trigger intercellular calcium signals that propagate through surrounding epithelia 
(12, 13). These calcium waves may share features with the epithelial waves (14, 15) that 
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modulate hair cell driven afferent activity (16–18) prior to the onset 
of hearing (19). This mini-review describes the propagation of 
damage-evoked epithelial calcium waves and relates them to the 
activity of type II cochlear afferents.

2 Calcium waves

Experiments on cochlear damage can be  informed by the 
extensive studies of neural and epithelial mechanisms of somatic pain 
(20). Relevant to this review are those that have examined the 
propagation of damage-evoked calcium waves in skin epithelia (21, 
22) that modulate or activate pain-sensing C-fibers (20). A particularly 
informative in vivo study was carried out on earlobe skin of mice 
expressing a genetically-encoded calcium indicator (23). Calcium 
waves triggered by laser ablation of single keratinocytes were recorded, 
subjected to pharmacological blockade and used to inform a model of 
propagation. This model combined ATP release through connexin 
hemi-channels with IP3-evoked release of calcium from internal 
stores. The model accurately described experimentally-observed 
calcium waves whose velocity fell with time and distance from the site 
of lesion, with initial speeds averaging ~25 μm/s, then falling to zero 
within ~13 s elapsed time, or 70 μm traveled. Calcium imaging also 
has been used to characterize damage-evoked epithelial waves in 
cochlear explants (12, 13, 24, 25). As in skin, these intercellular 
calcium waves depend on released ATP as an extracellular signal, and 
IP3-dependent release of calcium from cytoplasmic stores (26). 
Similarly to those in living skin, ex vivo cochlear calcium waves slow 
from an initial velocity of 10–15 μm/s with distance from the site of 
lesion (13, 24). These commonalities suggest that cochlear epithelial 
waves may activate type II afferent neurons to drive painful percepts, 
by analogy to the role of C-fibers in skin. Thus it would be informative 
to record damage-evoked activity simultaneously in both epithelial 
and type II afferents in cochlear explants.

3 Activation of type II cochlear 
afferents

Type II cochlear afferents have small caliber, unmyelinated 
processes that extend hundreds of microns toward the cochlear base, 
contacting dozens of outer hair cells enroute (27–29). Type IIs make 
up only a small fraction (~5%) of cochlear afferents, the great majority 
being myelinated type I afferents postsynaptic to inner hair cells (30, 
31). Given the scarcity and small size of type II afferents, it is not 
surprising that only few extracellular recordings have been obtained 
in vivo, showing limited acoustic sensitivity (2, 3); although c-FOS 
labeling of brainstem targets of type II afferents did find activity 
induced by loud, non-damaging, sound (1). Whatever the acoustic 
sensitivity of type II afferents, they must be far less able to support 
discriminative hearing than type I afferents whose activity accounts 
for acoustic intensity, frequency and timing (32). Intracellular tight-
seal recordings from type II afferents in cochlear explants revealed 
that glutamatergic transmission from one OHC was orders of 
magnitude weaker than that provided by each IHC to type I afferent 
ribbon synapse (4, 33, 34). But in addition, type II afferents are 
strongly depolarized by direct application of ATP (4), a known 
algogenic mediator in skin  (35). Acute mechanical damage to OHCs 

(produced by a glass probe) caused a large, long-lasting depolarization 
of the type II afferent that could trigger bursts of action potentials (5). 
The underlying inward current was ATP and connexin dependent and 
resulted from the activation of both P2X and P2Y purinergic receptors. 
The proposed hypothesis was that ATP released from surrounding 
supporting cells activated the type II afferent. Testing this hypothesis 
further requires a tissue-wide method for recording type II activity 
from mature animals.

4 Calcium imaging of type II afferents

Dissection damage and tissue degradation make intracellular 
recording from type II afferents limited largely to explants from the 
apical turn of early postnatal cochleas. Thus, subsequent studies have 
turned to fluorescence imaging in semi-intact cochlear capsules (‘half-
shells’) (24). Using multi-photon microscopy, it is possible to 
interrogate any region of cochleas removed from adult mice (36). 
Several transgenic mouse lines have been developed to provide 
expression of the calcium indicator GCaMP6f in type II cochlear 
afferents (37–39). Calcium indicators can be expressed in apical type 
II afferents employing a tyrosine hydroxylase promoter (39). The 
dopamine type 2 receptor promoter functions preferentially in basal 
type II afferents (38). A third line utilizing the Tac1 promoter drives 
expression in type II afferents throughout the cochlea, combined with 
a tonotopic gradient of expression in epithelial cells (36). For the 
velocity measurements described below, the floxed GCaMP6f mouse 
(C57BL/6N-Gt(ROSA)26Sortm1(CAG-GCaMP6f)Khakh/J IMSR 
catalog #JAX:029626, RRID:IMSR_JAX:029626) was crossed with a 
tyrosine hydroxylase promoter Cre-recombinase mouse, Th2ACreEr 
(40). Following laser ablation of one to three OHCs, type II afferents 
had increased GCAMP6f fluorescence that decayed over 40–50 s, 
similar to the time course of damage-evoked inward current observed 
in tight-seal, whole-cell recordings (5). This time course also is similar 
to that of calcium signals evoked in neonatal cochlear and vestibular 
tissue by pulsed application of ACh or ATP (41). The ATP receptor 
antagonist PPADs reduced the spatial spread of the type II afferent 
GCaMP6f response, accounting for the reduced duration of 
ATP-evoked current observed in voltage clamp of type II afferents (5) 
(i.e., less delayed excitation from distant regions). These observations 
are consistent with an hypothesis whereby ATP released during 
damage-evoked epithelial calcium waves drives the type II 
afferent response.

How does the type II afferent response relate to previously 
described epithelial calcium waves? It is not possible to answer this 
question by GCaMP expression alone, since epithelial cell signals 
would obscure the type II neuron’s response (but see Tac1 below). 
Fortunately, there is a much weaker but still visible damage-evoked 
fluorescence signal in epithelia not expressing GCaMP (as confirmed 
by negative immunolabeling, and presence in mice without GCaMP 
expression) that could serve as an indicator of epithelial damage. The 
possible genesis of Non-GCaMP Associated Fluorescence (NGAF) 
will be discussed below (36). The validity of NGAF measures was 
supported by the Tac1 mouse model that drives GCaMP expression 
in most, if not all type II neurons, but in a declining gradient of 
epithelial cells from apex to base, providing direct comparison of 
GCaMP fluorescence from type II afferents and NGAF in epithelial 
cells stochastically-expressing GCaMP in middle cochlear segments. 
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These showed similar durations for the neuronal/epithelial GCaMP 
responses and NGAF. The occurrence of NGAF and neuronal 
responses was strongly correlated across all mouse models and 
experimental conditions (36). Moreover, PPADS reduced the 
integrated magnitude of the NGAF response as well as the spatial 
spread of the type II afferent GCaMP6f response (36). Thus, the 
NGAF signal was used as a proxy for damage-evoked epithelial waves 
described previously using calcium indicators (12, 13, 24, 25), and in 
particular whether these activities were altered by noise-induced 
hearing loss.

4.1 The effect of prior noise damage

Everyone has type II afferents, but not everyone has hyperacusis. 
Hyperacusis can be associated with a number of factors ranging from 
traumatic brain injury to autoimmune disease. Most commonly, it is 
related to prior acoustic trauma.1 Thus, any pathogenic mechanism 
should reflect this sensitization by previous trauma, akin to allodynia 
in skin. To that end, the cochlear damage response was examined in 
adult mice suffering noise-induced hearing loss (NIHL) (36). A 
striking feature of these NIHL cochleas was the occurrence of 
substantially delayed signals in both type II afferents and epithelial 
cells (NGAF). In both neurons and epithelia these could be repetitive, 
on the order of 1–2 per minute. These delayed damage responses were 
absent from immature (pre-hearing) cochlear tissue, and four times 
more likely in noise-exposed, compared to control adult tissue. Taken 
together these results support a hypothesis whereby tissue damage or 
stress activates ATP release from cochlear epithelia that can activate 
type II afferent neurons. Furthermore, prior trauma sensitizes the 
tissue leading to longer-lasting activity.

4.2 NGAF wave velocity

An unresolved issue concerns the use of NGAF for comparison to 
calcium waves. While there are a number of correspondences to 
support that assumption, further quantitative analysis is helpful. The 
velocity of calcium waves measured in both skin and cochlear tissue 
(see section 1, “calcium waves”) provides a useful measure for 
comparison to NGAF waves in the cochlea. Wave velocity following 
laser ablation was measured by first visualizing a standard deviation 
image of the entire time sequence to establish regions of interest 
(ROIs) for local measurement (Figure 1A1).

Average pixel intensity throughout the time series was recorded 
for exemplar ROIs then displayed as a function of distance and time 
from the initial lesion (Figure 1B). The change in distance with time 
between wave fronts (measured at the transition to the steepest part 
of the rising signal in each ROI, approximately 10% of the peak 
amplitude) was used to calculate the velocity as a function of distance 
and time (Figure 2). Initial wave speed could reach 13 μm/s but then 
fell to 2–4 μm/s with distance and time from the initial response to 
damage. Wave speed was negatively correlated with both distance 
(Spearman’s r = −0.39) and time (Spearman’s r = −0.56). Camera 

1 https://hyperacusisresearch.org/

saturation prevented imaging for the first 9 s after laser ablation so the 
very first (fastest) waves were not captured, weakening the correlation. 
(The first NGAF images 9 s after damage were large, averaging 
2,647 ± 1,302 SD μm2 in area. Enclosed by a red line in Figure 1A2) 
The overall pattern is like that of damage-evoked calcium waves in 
skin in vivo that fall from a high of 25 to 0 μm/s over 13 s (23), or the 
slow waves in ex vivo cochlear Deiters cells that slow from ~12 to 
3 μm/s over ~100 μm (24). Thus, allowing for experimental differences, 
NGAF waves behave similarly to damage-evoked calcium waves in 
skin and cochlea, presumably by similar mechanisms involving 
extracellular ATP and IP3-dependent release from internal 
calcium stores.

But what is NGAF, if not ‘GAF’? What other activity-dependent 
fluorescence changes in the cells could be calcium associated? One 
possibility is the intrinsic fluorescence of the reduced form of the 
redox cofactor, nicotinamide adenine dinucleotide, NADH, that 
absorbs at 340 ± 30 nm and emits at 460 ± 50 nm wavelength (42). This 
spectral characteristic is lost when oxidized to NAD. This change in 
fluorescence has made NAD/NADH fluorescence a useful indicator 
of the redox state and so the metabolism of living cells (43). Of 
relevance here, a rise in cytoplasmic calcium enters mitochondria via 
the calcium uniporter to increase NADH production (44) and so 
fluorescence. Indeed, NADH fluorescence, cytoplasmic and 
mitochondrial calcium are tightly correlated in other tissues (44) and 
can rise and fall with a half cycle duration of ~10 s (45). Similarly, 
spontaneous NGAF transients within individual, isolated cochlear 
epithelial cells (i.e., not part of a propagated wave) had an average 
duration of 9.5 s (±3.4 SD; 14 isolated epithelial cells from 8 
experimental trials in 4 explants) on the same time scale as rapid 
NADH dynamics in other tissues.

5 Discussion

Ex vivo imaging of semi-intact cochlear capsules using a 
genetically-encoded calcium sensor, GCaMP6f, enabled study of the 
tissue response to laser ablation of one to three outer hair cells. 
Serendipitously, the sensitive camera also revealed much weaker 
changes in fluorescence that did not rely on expression of the calcium 
sensor. This Non-GCaMP-Associated Fluorescence, NGAF, behaved 
similarly to damaged-evoked calcium waves studied previously in the 
cochlea and in skin. The NGAF waves propagated like those of 
previously published calcium waves, and like those, were diminished 
by purinoceptor blockade. Also, NGAF transients in isolated epithelial 
cells had a time course similar to the half-cycle duration of NADH 
oscillations found in other tissues (44, 45). As modeled for damage-
evoked calcium waves in skin, these observations suggest that both 
intrinsic (intracellular oscillations of calcium, IP3 and NADH) and 
extrinsic (release of ATP through connexin hemi-channels) factors 
contribute to the damage-evoked signals in cochlear epithelia, as 
suggested previously (26).

Other studies of cochlear damage have identified additional 
molecular pathways that may be involved. Calcium homeostasis in 
small, electrically active hair cells is undoubtedly central to function 
and dysfunction (46, 47), including the generation of spontaneous 
calcium transients and synaptic maturation (48). Mitochondria serve 
as an important sink for cytoplasmic calcium, but additionally as a 
source of damaging reactive oxygen species during calcium overload 
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(49, 50). It also has been shown that the damage-evoked calcium wave 
triggers activation of mitogen-activated kinases (ERK1/2) (51). These 
and stress-activated protein kinases (JNK and P38) have been 
implicated in the cochlear response to damage (52). Future studies can 
explore the impact of each of these pathways on the activation, speed 
and spread of epithelial calcium waves, and type II afferent activity.

The observations presented here provide a correlation, but do not 
establish causality. Are the type II afferents merely reporters of the 
epithelial signal, or do they contribute to its generation? The present 
data suggest that epithelial cells are the generators of the damage 
response. But in addition, as for somatic C-fibers, type II afferents 
could become ‘sensitized’ by prior trauma. Type II neurons express 
KCNQ potassium channels that contribute to the resting membrane 
conductance. ATP opens cation-selective P2X receptor channels, but 
also closes KCNQ channels via metabotropic P2Y receptors, further 
depolarizing the neuron (5). This increased input resistance of the 
type II afferent will make it more sensitive to glutamate release from 
OHCs, which, combined with the P2X-driven depolarization, could 
lower the threshold for making loud sound noxious. Presynaptically, 
ribbons of the OHCs increase in number and size after acoustic 
trauma (53), potentially providing stronger synaptic excitation to 
rouse previously silent type II contacts (27). In short, type II afferents 

may become better reporters of tissue damage after acoustic trauma. 
Whether this alters the probability, spread or persistence of epithelial 
waves remains to be determined.

Undoubtedly the pathogenesis of hyperacusis must involve still 
other processes.; especially considering that acoustically-evoked ear 
pain can continue for hours to days after sound exposure2 far beyond 
the minutes-long phenomena described to date. Such a prolonged 
time course suggests inflammation. Future research directions should 
include whether type II afferent signaling impacts immune cell activity 
in the cochlea. Type II afferents express neuropeptides such as CGRP 
(37, 38, 54), which in somatic C-fibers (55) modulates the activity of 
immune cells that proliferate after trauma (56). Thus, type II afferents 
could play a role in neuro-immune signaling as well. The cochlea 
provides another illustration of how neurons, epithelia and immune 
cells mediate the response to damage.

2 https://hyperacusisresearch.org/

FIGURE 1

Analysis of autofluorescence – (Non-GCaMP Associated Fluorescence [NGAF]) in damaged cochlear epithelium; images from Th2ACreEr x Gcamp6ffl/fl 
mouse tissue of Nowak et al. (36). (A1) Standard deviation image of time series z-projection spanning 5.5  min in total (80  ms/slice). A central region of 
initial damage (“burn”), and a type II neuron are visible. (A2) A single 80  ms slice 14  s after the focused laser ablation (central bright green circle) shows 
one time point of spreading NGAF fluorescence. Red outline shows approximate initial response area (burn plus 9  s). Regions of interest (ROIs) from A1 
overlaid. Colored asterisks denote exemplar ROIs used to determine wave velocity. (B) Average pixel intensity from Z projection for asterisked ROIs in 
A2.
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