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Hereditary spastic paraplegia (HSP) is a rare neurodegenerative disease 
prominently characterized by slowly progressive lower limb weakness and 
spasticity. The significant genotypic and phenotypic heterogeneity of this 
disease makes its accurate diagnosis challenging. In this study, we  identified 
the NM_001168272: c.2714A  >  G (chr3.hg19: g.4716912A  >  G, N905S) variant in 
the ITPR1 gene in a three-generation Chinese family with multiple individuals 
affected by HSP, which we believed to be associated with HSP pathogenesis. To 
confirm, we performed whole exome sequencing, copy number variant assays, 
dynamic mutation analysis of the entire family, and protein structure prediction. 
The variant identified in this study was in the coupling domain, and this is the 
first corroborated report assigning ITPR1 variants to HSP. These findings expand 
the clinical and genetic spectrum of HSP and provide important data for its 
genetic analysis and diagnosis.
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Introduction

Hereditary spastic paraplegia (HSP) consists of a group of rare genetic neurodegenerative 
diseases, involves the corticospinal tract, and which presents with distinct lower extremity 
weakness and spasticity. The estimated prevalence of HSP is 1.8–10 per 100,000 in the general 
population (1–4). HSP is classified based on its inheritance patterns, clinical phenotypes, and 
molecular pathophysiological mechanisms. It is highly heterogeneous and can be transmitted 
through all modes of inheritance, and includes autosomal dominant HSP (ADHSP), autosomal 
recessive HSP (ARHSP), X-linked HSP, and mitochondrial HSP (1). In clinical practice, HSP 
is classified as pure HSP when symptoms are limited to spasticity of lower limbs, bladder 
dysfunction, and mild somatosensory deficits, or as complex HSP when the phenotype of 
lower extremity spasticity is complicated by additional neurological symptoms such as macular 
degeneration (Kjellin syndrome) (4), positive pyramidal signs, pronounced cognitive 
impairment, ataxia, extrapyramidal signs, thin corpus callosum, and global brain atrophy 
[Mast syndrome, or spastic paraplegia (SPG21)] (5), or microcephaly, intellectual disability, 
and distal muscle atrophy (Troyer-like syndrome) (6).

Regarding the molecular pathophysiological mechanisms of HSPs, at least 80 different 
genetic loci have been associated with HSPs, and more than 60 genes have been successfully 
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cloned (7). SPG4 is the most common type of ADHSP, accounting for 
approximately 40% of all cases. The main ARHSPs identified to date 
are SPG5, SPG7, SPG11, and SPG15 (8). However, “next-generation” 
sequencing studies have revealed a significant clinical and genetic 
overlap between different HSP subtypes and other neurodegenerative 
disorders such as hereditary spinocerebellar ataxias (SCAs), 
amyotrophic lateral sclerosis, and peripheral neuropathies (9).

In this study, we  identified a HSP patient and applied direct 
sequencing and other genetic screening assay to unveil the mutations 
in the whole family. A heterozygous variant in inositol 
1,4,5-triphosphate receptor type 1 (ITPR1) gene (NM_001168272: 
c.2714A > G, N905S) was detected in the proband and other members. 
Our data provided important information for genetic analysis and 
diagnosis of HSP.

Materials and methods

This study was approved by the Medical Ethics Committee 
(KY2020PJ051) of the Ningbo Medical Center Lihuili Hospital 
(Ningbo, China). Prior to the study, written informed consent for 
genetic tests and publication of case details was obtained from all adult 
participants and the parents or legal guardians of the children involved 
in the study, and all procedures were conducted according to the 
Declaration of Helsinki.

Study participants

The study participants belonged to a three-generation family with 
19 members, three of whom presented with symptoms. The proband 
(I-2) was a 67-year-old woman, with a history of type II diabetes 
mellitus for 5 years. She experienced a gradual progression of gait 
abnormalities and ambulatory disability for approximately 20 years. 
Upon admission, she presented typical spastic gait, and positive 
pyramidal sign on both side and no significant muscle atrophy and 
sensory loss. Further medical history investigation indicated this lady’s 
deceased mother had the same spastic gait before she lost her 
independent walking capability. In person, physical examination 
confirmed one of her brothers and her son also presented symptoms 
and physical signs much the same as her. She was suspected of having 
HSP according to the Fink criteria for HSP (10), and after HSP 
diagnosis was confirmed by whole exome sequencing (WES), other 
family members were interviewed and examined; two asymptomatic 
family members were identified, and a pedigree study was conducted 
to confirm that they carried the same variant.

Genetic screening and variant analysis

Peripheral blood samples were obtained from the patient and her 
family members with EDTA tubes. Comprehensive genetic testing was 
performed at the Oumeng V-Medical Laboratory (Hangzhou, 
Zhejiang, China). Total genomic DNA was extracted from peripheral 
blood samples using the HiPure universal DNA kit (Magen 
Biotechnology, Guangzhou, China, D3018), according to the 
manufacturer’s instructions. WES was performed on the proband and 
other family members, and single nucleotide variants and copy 

number variants were analyzed based on the sequencing data. In brief, 
the WES was performed by Nimblegen SeqCap EZ Exome Kit and 
Illumina HiSeq X Ten sequencing platform. Library preparation was 
performed as described in the KAPA Hyper Prep Kit (KR0961, KAPA 
Bio systems). In addition, dynamic mutation detection and gene 
microarray analysis (Affymetrix CytoScan 750 K, Thermo Fisher 
Scientific, United States) were performed on the proband to further 
confirm the results. Sanger sequencing of the PCR products was 
performed to validate the heterozygous variant (NM_001168272: 
c.2714A > G, N905S) in the inositol 1,4,5-triphosphate receptor type 1 
gene, revealed by single nucleotide variant analysis, and the following 
primers (forward primer: CCATAAGGAAGGTCCAAGTCTG, 
reverse primer: GATGTGGCATCACATATAGGG) were used in PCR 
amplification for this purpose. Amino acid conservation of ITPR1 in 
different species was evaluated using the DNAMAN 9.0 software 
(LynnonBiosoft, United States), while the pathogenesis of the variant 
was evaluated using Polymorphism Phenotyping v21 (11), Sorting 
Intolerant from Tolerant2 (12), and MutationTaster3 (13).

Protein structure prediction

Based on the patient’s sequencing data, the protein structure was 
assessed using the alphafold2 software, and the scripts and commands 
used were as follows: python3 docker/run_docker.py --fasta_paths=/ 
data/ftp/lsy/alphafold/seq/$i.fasta--max_ template_date = 2022-06-14 
--model_preset = monomer –data dir=/data/ alphafold2-data/ 
--output_dir=/data/ftp/lsy/alphafold/out/$i --gpu_devices = 1. The 
predicted structure of ITPR1 N905S was compared with that of ITPR1 
(reference sequence: NP_001161744.1) and further docked with the 
electron microscopy structure of its homologous protein ITPR3, 
resolved using Cryo-EM (14). To identify the significance of the 
altered protein structure caused by the variant in the pathogenesis of 
SPG, the mutation was assimilated with all other ITPR1 variants 
recognized to be associated with SPGs (15, 16).

Results

A pedigree chart for HSP in the family is shown in Figure 1. The 
clinical features of the affected individuals are summarized in Table 1, 
and the neuroimaging findings for the participants are shown in 
Figures 2A–F.

Suspecting that the proband was suffering from a hereditary 
disease, most probably HSP, single nucleotide variant and copy 
number variant analyses were performed for all family members. 
No pathogenic copy number variants were detected in the patient. 
However, single nucleotide variant analysis revealed a 
heterozygous mutation (NM_001168272: c.2714A > G, N905S) in 
ITPR1. According to the recommendations of the American 
College of Medical Genetics and Genomics (17), c. 2714A > G in 
ITPR1 was identified as a variant of uncertain significance 
(PP3 + PP3). To exclude possible genetic overlap with other 

1 http://genetics.bwh.harvard.edu

2 http://sift.jcvi.org/

3 http://www.mutationtaster.org/
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nervous system diseases such as SCAs and amyotrophic lateral 
sclerosis (9, 18) and to further exclude dynamic mutations, large 
fragment deletions or duplication mutations, a panel of 
SCA-related gene (ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, 
ATXN8, ATXN10, PPP2R2B, TBP, and ATN1) testing was also 
conducted, using gene microarray analysis. Nothing of significance 
was observed.

We found new variant in NM_001168272: c.2714A > G (chr3.
hg19: g.4716912A > G, N905S) in ITPR1 gene, and this missense 
variant locates in the same exon as the previously reported 
HSP-related mutation site (c.2687C > T) (9). Analysis of amino acid 
conservation of ITPR1  in different species showed that ITPR1 
(reference sequence: NP_001161744.1) is not highly conserved in 
multiple species but is conserved in primates (Homo sapiens, Macaca 
mulatta, and Pan troglodytes) (Figure 3), which may indicate that 
ITPR1 is of structural and functional significance in primates. This 
variant was recognized as disease-causing by MutationTaster but was 
designated as benign by PolyPhen2. However, this variant was 
detected in all symptomatic family members and two young 
asymptomatic members, as confirmed by Sanger sequencing 
(Figure 4).

In the protein structure analysis, the sequencing results for the 
patient were compared to ITPR1 (reference sequence: 
NP_001161744.1), which showed that asparagine at position 905 was 
substituted by serine. The monomeric structure of the patient’s ITPR1 
was ascertained by inserting this sequence as the input for the 
alphafold2 software. The docking results showed that the predicted 
structure of ITPR1 N905S docked well with the structure of its 
homologous protein ITPR3, indicating the structure of ITPR1 
predicted by alphafold2 was accurate. In the ITPR3 structure, amino 
acid residues 894–969 could not be modeled successfully because the 
structural details of this section are still unknown. Furthermore, as 
predicted by alphafold2, this section of the structure of ITPR1 N905S 
belonged to a loop region, and the patient’s variant site N905S was in 
this loop region (Figure 5).

Discussion

In summary, we  identified a new variant, NM_001168272: 
c.2714A > G, N905S in ITPR1 gene from a Chinese family with several 
individuals affected by HSP over generations, and its transmission 
pattern was in accordance with the autosomal dominant pattern. The 
new ITPR1 NM_001168272: c. 2714A > G, N905S variant found in this 
Chinese family add new evidence that this ITPR1 mutation might 
be associated with HSP.

Proteins encoded by HSP genes have diverse functions, including 
axon transport, myelin formation, development of corticospinal tract 
(CST), and other neurodevelopmental processes (1). ITPR1 is located on 
chromosome 3, it encodes the protein IP-3 receptor, which acts as a Ca2+ 
release channel and is predominantly located within the ER membrane 
and regulate numerous intracellular and extracellular functions via IP3 
stimulation (19, 20). Typically, mutations or deletions of ITPR1 cause SCA 
15, 16, and 29 (21, 22). However, according to previous studies, different 
variants of this gene have varying effects on the gene and protein 
expression and functions. ITPR1 is associated with hemifacial microsomia 
(23), ocular malformations such as the Gillespie syndrome (GLSP) (24), 
and ataxia (25–27), depending on the variant of its mutation, indicating 
the remarkable allelic heterogeneity of this gene. Mutations in ITPR1 
would not only present as a loss-of-function of the encoded protein (24) 
but also manifest as a dominant-negative effect (28), or gain-of-function 
effects, depending on the hotspots where the mutation occurs (29–31). For 
example, tough mutated ITPR1 caused GLSP in humans, which typically 
manifests as craniofacial deformation, aniridia, and ataxia, but aniridia has 
never been observed in zebrafish, which possess the ITPR1b that is 
homologous to human ITPR1 and closely related to craniofacial bone 
formation (23, 28, 32). Furthermore, even ITPR1 leads to ataxia in both 
GLSP and SCAs; however, it only causes aniridia in GLSP, but rarely in 
SCAs (21, 24, 33). Therefore, ITPR1-related diseases have a broad 
spectrum of genotype–phenotype relationships. In 2019, Elert-Dobkowska 
et al. (9) identified three variants of the ITPR1 mutation (c.2687C > T, 
c.3412A > G, and c.6304G > T) with uncertain significance in ADHSP, 
further expanding the phenotypic spectrum of ITPR1-related hereditary 
diseases. According to the amino acid substitutions reported for ITPR1 
with an associated phenotype, (1) the IP3 binding domain, where amino 

FIGURE 1

Pedigree chart of the family.
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acid substitutions usually cause infantile-onset SCA; (2) substitutions in 
the coupling domain mainly present as ataxic cerebral palsy, SCA15, and 
GLSP; and (3) the transmembrane domain, wherein a mutation in this 
domain typically will lead to GLSP and pontocerebellar hypoplasia (PCH) 
with ataxia. The novel NM_001168272: c.2714A > G (chr3.hg19: 
g.4716912A > G, N905S) is in the same exon/functional region as the 
variant site (c.2687C > T), which is associated with HSP and the clinical 
features of patients that are ITPR1-related HSP (9). Overall, the substituted 
amino acid encoded by the variant is in the coupling domain of the IP3 
receptor, and the substitution could lead to cerebral palsy and ataxia, 
which gears in the phenotype of the affected individuals of the family 
examined in this study (34).

To date, three mutation sites (A896V, M1138V, and A2102S) on 
ITPR1 have been reported to be associated with SPG (9). These three 
mutation sites were not involved in the same structural domain of 
ITPR1, as shown in the predicted structure of this protein in Figure 5, 
indicating high allelic heterogeneity of this gene. Furthermore, A896S 
is in the same loop region as the mutation N905S sequenced in this 
study, which implies that certain amino acid sites in this loop are 

closely related to SPG development. However, many researchers have 
noticed that most clinical genetic testing focuses almost exclusively on 
regions of the genome that directly encode proteins, and the 
disadvantages of this preference are obvious, i.e., the role of variants 
in non-coding regions in penetrant diseases is largely ignored (35). In 
a recent study, Sun et al. (36) combined WES in United Kingdom 
Biobank participants with imputed genotypes from FinnGen 
participants to conduct association meta-analyses for 744 disease 
endpoints across the protein-coding allelic frequency spectrum and 
identified 975 associations, with more than one-third being previously 
unreported, suggesting a gap between studies on common and rare 
variants. However, since the N905S variant of the patient included in 
this study is in an unresolved loop structure, which is flexible and 
conformationally variable, we were unable to determine how N905S 
affects the function of the protein based on the structural analysis 
only. Therefore, further studies are needed to investigate how this 
amino acid variant (N905S) contributes to the development of HSP.

Typical clinical manifestations of HSP include progressive spasms, 
lower limb weakness, bladder dysfunction, and a mild degree of physical 

TABLE 1 Clinical features of affected individuals in the family.

Affected individual I2 II6 I3

Gender F M M

Age at onset (years) 39 36 35

Initial symptom Spastic gait Spastic gait Spastic gait

Age at exam (years) 63 45 61

Gaze nystagmus Negative Negative Negative

Oculomotor abnormalities Negative Negative Negative

Age at loss of independent walking (IW) 

(years)

IW maintained IW maintained 58

Delayed motor development None None None

Intellectual disability None None None

Visual system Uninvolved Uninvolved Uninvolved

Dysarthria/dysphasia None None None

Truncal and limb ataxia No limb ataxia No limb ataxia Truncal co-ordination movement not 

able to access

Reflexes

Upper limbs +++ ++ +++

Lower limbs +++ +++ +++

Postural tremor None None None

Action tremor None None None

Ankle clonus Negative Negative Negative

Muscle weakness or atrophy None None None

Pyramidal sign or extensor plantar response Positive Positive Positive

Sensory deficits Negative Negative Negative

General hypotonia None None None

Extrapyramidal involvement None None None

Urinary/fecal urgency or incontinence None None None

Peripheral neuropathy (nerve conduction 

studies)

Not assessed Not assessed Not assessed

Cerebellar atrophy Non significance Non significance Non significance

MRI findings See Figure 2 Non significance Not assessed
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FIGURE 2

Magnetic resonance imaging of the proband (I-2). (A–C) T1WI; (D–F) T2 FLAIR images.

FIGURE 3

Multiple sequence alignment of mutations in ITPR1. Multiple sequence alignment of ITPR1 (reference sequence: NP_001161744.1) was performed at 
the NCBI HomoloGene site (https://www.ncbi.nlm.nih.gov/homologene) and then aligned using DNAMAN, a multiple sequence alignment software. 
The results revealed specific amino acids and their conservation in other ITPR1 orthologs (across different species).
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dysfunction (10). The paradigmatic pathogenic involvement of HSP 
consists of the degeneration of CST axons and fasciculus gracilis fibers 
(37, 38). The pathogenic mechanisms associated with the clinical 
features and imaging abnormalities of HSPs vary substantially 
depending on the affected gene. ITPR1 gene mutations have long been 
recognized to cause non-progressive cerebellar ataxia and delayed 
motor development, known as SCAs (especially SCA 15 and 29) and 
GLSP. ITPR1-associated cerebellar dysfunction usually becomes 
apparent within the first year of life, and ITPR1-associated SCA 
pathogenic involvement generally causes the degeneration of CST axons 
(27, 39). Therefore, delayed motor development and the absence of 
pyramidal dysfunction are hallmarks of SCAs. Overall, approximately 
75% of the individuals with SCA 29 exhibit learning difficulties (27). 
However, SCA15 typically does not present with an abnormal gait until 
adulthood, and the affected individuals remain ambulatory for several 
decades after diagnosis, which is, to some extent, a condition like that 
of the affected individuals in this family. The affected family members 
in this study were devoid of delayed motor development, pyramidal 
signs, and intelligence deficiency, nor did they present features such as 
nystagmus, ataxia, postural tremor, dysarthria, and hypotonia that are 
generally found in SCAs or GLSP. They did not present with aniridia, or 
severe pontine and cerebellar hypoplasia mimicking a diagnosis of PCH 
or PCH supporting GLSP neither, nor did they present typical MRI 
findings of PCH or SCAs. Instead, all three symptomatic individuals 
manifested typical spastic gait, hyperactive tendon reflexes, and 
pyramidal signs, and ach generation of this family included patients or 
carriers of the mutant variant, regardless of sex, suggesting that its 
inheritance pattern is consistent with autosomal dominant inheritance 
and that this was a pure ADHSP family.

The present study had several limitations. First, given the lack of 
functional biological studies on other families, further research is 
required. Second, electromyographic studies have not been conducted 
in symptomatic individuals, and the comprehensive phenotype of this 
HSP family has not yet been thoroughly investigated. Lastly, no tests 
were performed on model organisms or engineered human cells to 
validate the pathogenesis of the mutation or to confirm the association 
between sequencing and phenotyping. Nevertheless, this study has 

expanded the mutational spectrum of ITPR1, and the range of 
genotypes associated with HSP, and has also indicated the clinical 
heterogeneity associated with ITPR1.

Overall, this study identified a novel p.N905S (c.2714A > G) 
variant in ITPR1, which is a probable pathogenic mechanism in the 
Chinese ADHSP family examined. Therefore, the results of this study 
provide important data for the genetic analysis and diagnosis of 
HSP. We suggest that ITPR1 gene analysis should be included in the 
genetic screening panel for suspected HSP cases and that whole exome 
sequencing is an efficient tool for analyzing potential mutations.
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FIGURE 5

Protein structure prediction of the de novo mutations in ITPR1 associated with HSP. (A) Schematic representation of ITPR1 (NP_001161744.1). Colored 
boxes represent the following domains and features: orange, Inositol 1,4,5 triphosphate binding suppressor domain; pink, Inositol triphosphate 
receptor-binding protein domain; yellow, coupling/regulatory domain; dark green, regulatory/carbonic anhydrase-related protein VIII binding domain; 
light green, transmembrane domain; and purple, C-terminal domain. Previously described mutations (A896V, M1186V, and A2102S) and the novel 
mutation, associated with HSP, identified in this study (N905S), are shown in red. (B) The structure of the ITPR1 monomer (predicted by Alphafold2, left) 
and structural alignment of the ITPR1 monomer with activated ITPR3 tetramers (PDB: 7T3T; blue, IP3; hot pink, ATP; orange balls, Zn2+; and green 
balls, Ca2+). Four mutation sites associated with HSP are shown in red.
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