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Stroke is the second leading cause of death worldwide, with ischemic stroke 
accounting for a significant proportion of morbidity and mortality among stroke 
patients. Ischemic stroke often causes disability and cognitive impairment in 
patients, which seriously affects the quality of life of patients. Therefore, how to 
predict the recovery of patients can provide support for clinical intervention in 
advance and improve the enthusiasm of patients for rehabilitation treatment. With 
the popularization of imaging technology, the diagnosis and treatment of ischemic 
stroke patients are often accompanied by a large number of imaging data. Through 
machine learning and Deep Learning, information from imaging data can be used 
more effectively. In this review, we  discuss recent advances in neuroimaging, 
machine learning, and Deep Learning in the rehabilitation of ischemic stroke.
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1 Introduction

1.1 Epidemiology of ischemic stroke

Stroke stands as the second leading cause of global mortality and a primary contributor 
to disability and cognitive impairment (1). Stroke is classified into ischemic stroke and 
hemorrhagic stroke. Among these, ischemic stroke prevails. Approximately 9.5 million cases 
of ischemic stroke were reported globally in 2016 (2). In addition, 2.7  million people 
succumbed to ischemic stroke each year worldwide (3). Thromboembolism remains the 
leading cause of most ischemic strokes, primarily attributed to large artery atherosclerosis and 
cardiac conditions, particularly atrial fibrillation (4).

1.2 The application of artificial intelligence in the field of 
stroke

Artificial Intelligence (AI) technology is a rapidly advancing field. In the realm of brain 
diseases, AI is widely employed for the detection, segmentation, classification, and 
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identification of large vessel occlusion (LVO) in both hemorrhagic and 
ischemic strokes. Tang et al. (5) proposed a computer-aided detection 
scheme that detects early-stage ischemic strokes with small lesions 
through image feature analysis. The use of this method was found to 
improve stroke detection by healthcare professionals. The diagnosis of 
LVO is particularly crucial for selecting patients suitable for 
mechanical thrombectomy. An artificial neural network (ANN) 
algorithm developed by Chen et al. (6) demonstrated a high predictive 
accuracy of 0.820 for LVO, surpassing other prehospital prediction 
models. Additionally, research suggests that radiomics scores serve as 
independent prognostic indicators for the outcomes of acute ischemic 
stroke (7). Pfaff et al. (8) indicated that the e-ASPECTS software can 
be  utilized to predict adverse outcomes after mechanical 
thrombectomy. Furthermore, survivors of strokes often experience 
upper limb motor deficits and achieve limited functional recovery 
within 6 months post-stroke. Many studies suggest the widespread 
application of robots in assisting patients with motor function 
rehabilitation (9). The utilization of artificial intelligence for the 
accurate analysis of medical images and clinical data, enabling rapid 
and precise identification of cerebrovascular disease types and 
etiologies. This facilitates the development of personalized treatment 
and rehabilitation plans, ultimately leading to improved patient 
survival rates and quality of life (10).

1.2.1 Related research trends
As depicted in Figure 1, articles related to ischemic stroke have 

shown an upward trend in the past 15 years. With the rapid 
development and widespread application of Artificial Intelligence in 
the field of medicine, research in this area has experienced an 
explosive growth in the last 3 years. Furthermore, it is evident that 
there are only 337 articles specifically focused on evaluating the 
prognosis or rehabilitation of ischemic stroke, constituting a small 
fraction of the overall literature. In comparison to prognosis 
prediction, more studies are concentrated on the detection of ischemic 
stroke itself.

1.2.2 Detection modalities
As illustrated in Figure 2, articles pertaining to the application 

of Artificial Intelligence in ischemic stroke have been summarized 

and categorized based on different data types. It is noteworthy that 
the prediction of ischemic stroke using medical imaging data 
emerges as the most prominent area of focus. A significant 
proportion of articles also revolves around prognostic evaluations 
based on the mRS scale.

1.3 Article retrieval

To gather relevant papers for our study, a comprehensive search 
strategy was devised, employing various combinations of the 
following keywords: “stroke,” “ischemic stroke,” “prognosis,” 
“rehabilitation,” “Deep Learning,” “machine learning,” and “Artificial 
Intelligence.” Considering technological advancements and updates, 
we restricted the publication timeframe to the past 15 years. Using 
PubMed, Embase, Web of Science, and the Cochrane Library for the 
search, we initially included all articles reporting on ischemic stroke 
patients. This yielded 337 articles. After a meticulous review of 
abstracts and full texts, we first excluded articles not aligned with the 
research theme, then eliminated those without full texts, and finally 
removed articles not utilizing Artificial Intelligence for predicting 
ischemic stroke prognosis or rehabilitation. The selected literature 
focused on key technologies, resulting in a final set of 49 articles on 
Artificial Intelligence predictions of ischemic stroke prognosis or 
rehabilitation as our references. The paper selection process is 
illustrated in Figure 3.

1.4 The purpose of this article

While existing literature has summarized the research progress of 
AI in the field of ischemic stroke, most of it has focused primarily on 
pre-treatment prediction. For instance, Sheth et al. (11) provided an 
overview of common machine learning methods and their 
applications in detecting large vessel occlusion, intracranial 
hemorrhage, and infarct lesions. Soun et  al. (12) systematically 
introduced AI methods in imaging and available public and 
commercial platforms, summarizing the applications of AI in acute 
stroke detection and prediction. Despite the detailed content, it did 
not address the prognosis of stroke patients, which is precisely the 
focal point of concern for most clinical professionals and patients. 
Ragoș et  al. (13) summarized the evaluation of ischemic stroke 
outcomes using MRI radiomics and predictive models. However, 
relying solely on radiomic evaluation is too narrow, and the described 
imaging methods are not comprehensive enough. Shafaat et al. (14) 
evaluated the efficacy of machine learning in predicting the prognosis 
of ischemic stroke patients, overlooking research using methods such 
as Deep Learning and other AI techniques in this direction. Rüdiger 
von Kummer and colleagues summarized the progress of CT and MRI 
brain imaging technologies in acute ischemic stroke (15). This review 
focuses exclusively on CT/CTA and MRI/MRA imaging. With the 
advancement of Artificial Intelligence, many new technologies with 
greater potential applications have emerged. For instance, there is an 
urgent need to investigate the application value of CTP in ischemic 
stroke. Therefore, this article aims to systematically evaluate the 
potential applications of Artificial Intelligence in predicting the 
prognosis of ischemic stroke patients in the field of neuroimaging, 
primarily using CT and MR imaging.

FIGURE 1

Number of published studies on ischemic stroke in the past 15  years.
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2 Progress in predicting the 
rehabilitation of ischemic stroke based 
on artificial intelligence of neuroimaging

2.1 Radiological manifestations of ischemic 
stroke

The current diagnostic approach for stroke relies on CT and MRI 
imaging. MRI has higher sensitivity and specificity for diagnosing 
ischemic stroke, but due to factors such as longer imaging times and 
higher costs, CT-based imaging techniques remain the preferred 
method for diagnosing ischemic stroke. Vascular imaging through CT 
and MRI aids in identifying the extent of ischemia and the location of 
arterial occlusion. Furthermore, the results of radiological 
examinations play a crucial role in determining the treatment 
approach for ischemic stroke patients, providing support for 
interventions like thrombolysis and thrombectomy.

2.2 Ischemic stroke treatment

Treatment methods include intravenous thrombolysis, intra-
arterial thrombolysis, mechanical thrombectomy, etc. (16). Currently, 

thrombolytic therapy is the most used treatment for ischemic stroke. 
The basic principle involves the activation of plasminogen into 
plasmin by the binding of the thrombus to fibrin, and plasmin breaks 
down fibrinogen and fibrin, dissolving the thrombus and allowing 
reperfusion of the ischemic brain (17). Intravenous thrombolysis is 
established for patients within 4.5 h of stroke onset. If symptoms 
appear within 6–8 h, mechanical vascular recanalization through stent 
retriever and/or thrombus aspiration is recommended.

2.3 Methods for evaluating prognosis in 
ischemic stroke

2.3.1 Modified Rankin scale
The modified Rankin Scale (mRS) is the most widely used 

measure for assessing the outcomes of acute ischemic stroke in 
research, clinical trials, and national and local quality improvement 
registries. It reflects the quality of life as assessed by both patients and 
healthcare professionals. In certain situations, an mRS score of 5 
(bedridden, requiring constant care, and severe disability) is 
considered more severe than an mRS score of 6 (death) (18). However, 
studies indicate that among patients who have undergone 
hemicraniectomy, over 50% experience moderate to severe disability 

FIGURE 2

Pie chart of classes of studies included in this review.
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postoperatively, yet remain satisfied with their life status (19). In 
clinical practice, achieving an mRS score between 0 and 2 (indicating 
functional independence) is generally considered a treatment success. 
Additionally, monitoring changes in the degree of disability is crucial. 
For instance, recovering to a mRS score of 3 is considered better than 
death or the need for nursing home care (mRS score of 5). Such 
transitions in disability levels can significantly reduce healthcare 
costs (4).

2.3.2 Muscle strength assessment
The severe impairment of limb function caused by stroke 

significantly affects the quality of life of stroke patients. The recovery 
of post-stroke patients is correlated with the location and size of the 
infarction. Among them, the primary issue is the motor dysfunction 
caused by damage to the corticospinal tract and brain motor centers 
(20). Therefore, improving the muscle strength of patients is an 
important indicator for assessing the quality of life of stroke patients. 
Li et al. developed a rehabilitation program for the self-care ability of 
Acute Ischemic Stroke (AIS) patients based on six levels of commonly 
used muscle pain assessment methods in clinical practice. This 
program showed improvement in patients’ muscle strength, quality of 

life, and self-care ability by the third month (21). Fugl-Meyer and 
others devised a measurement method for functional recovery after 
cerebrovascular accidents, utilizing an accumulated numerical scoring 
system. They conducted a 1-year follow-up study on hemiplegic 
patients, ultimately achieving quantitative assessment of patients’ 
physical functions. This made the scale suitable for statistical analysis 
in both research and clinical settings (22).

2.3.3 Imaging-based rehabilitation assessment
The degree of early ischemic changes on CT is correlated with 

stroke severity scores, such as NIHSS and serves as a predictive 
indicator of clinical outcomes. CTA and CT Perfusion (CTP) imaging 
are methods used to determine the collateral circulation blood flow 
status in patients, aiding in the selection of suitable candidates for 
intra-arterial treatment (23, 24). Patients with poor CTA collateral 
status tend to have a poorer prognosis even after reperfusion therapy 
(25). Early improvement in neurological function can often lead to a 
favorable prognosis, even without additional reperfusion therapy 
following intravenous tPA administration (26). The extent of collateral 
circulation may also help in selecting patients who benefit from 
reperfusion therapy beyond the current time windows for both 

FIGURE 3

Flow chart of paper selection process.
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intravenous and intra-arterial treatments (27). Several studies indicate 
that positive results in DWI are associated with specific clinical 
features, including longer duration of symptoms, motor deficits, 
aphasia, and large vessel occlusion on Magnetic Resonance 
Angiography (MRA) (28–30). Importantly, research suggests that 
positive DWI results play a crucial role in prognosis. Specifically, these 
studies show a higher risk of recurrent ischemic events in patients 
with abnormal findings on DWI scans during transient ischemic 
attacks (TIA) compared to those without abnormalities (30).

2.4 Artificial intelligence-based prediction 
of stroke prognosis using CT

Distinguishing ischemic stroke from hemorrhagic stroke remains 
challenging solely through clinical means. Brain CT imaging becomes 
pivotal in aiding differential diagnosis. Non-enhanced CT scans swiftly 
and intuitively assist clinicians by showcasing distinct radiological 
features between ischemic and hemorrhagic strokes. Apart from aiding 
in the differential diagnosis of hemorrhagic stroke, non-enhanced CT 
scans are also useful in evaluating the extent of early ischemic damage. 
Early non-enhanced CT signs of ischemia encompass sulcal effacement 
and decreased attenuation (31), leading to a loss of gray-white matter 
differentiation. In some patients, early signs of cerebral ischemic 
changes, such as loss of gray-white matter differentiation, is suffice for 
diagnosing ischemic stroke. However, these changes are subtle, 
particularly within the initial few hours of stroke onset, making the loss 
of gray-white matter differentiation challenging to discern (4). In 
general, non-enhanced CT scans exhibit a sensitivity of approximately 
52% in detecting substantial ischemic parenchymal changes (32).

CT angiography (CTA) is a perfusion contrast tracking technique 
capable of displaying major vessels from the aorta to the cranial apex 
within 15 s (33). CTA boasts superior spatial resolution, surpassing 
most MRI vascular imaging sequences. It reveals the location and size 
of occlusive thrombi and provides information regarding collateral 
blood supply to the ischemic area. CTA exhibits a sensitivity of 
95–99% in detecting significantly narrowed or occluded vessels (34). 
It can determine occlusion locations within 24 h of symptom onset 
and aid in deciding the suitability for mechanical thrombectomy (35). 
Besides routine CTA, multiphase CTA, involving imaging before and 
after contrast passing through different arteries and veins in the brain, 
can assess collateral circulation status, aiding in evaluating patients 
suitable for mechanical thrombectomy (36). CTA facilitates 
assessment of cerebral blood flow and identification of tissue areas at 
risk of infarction and potential recovery zones (37).

CT perfusion imaging (CTP) is a medical imaging technique that 
utilizes continuous CT scans of the region of interest to observe 
changes in contrast agent concentration, thus obtaining time-density 
curves of the region of interest, indirectly reflecting changes in organ 
perfusion (38). CTP offers advantages of rapid imaging, effectively and 
quantitatively reflecting changes in local tissue blood perfusion, and 
is widely used clinically for the examination of cerebral ischemia (39). 
Therefore, CTP enables the evaluation of ischemic tissue, aiding in the 
timely restoration of normal blood supply.

The head CT scan is the preferred diagnostic method for the 
initial assessment of suspected stroke patients, as shown in Figure 4. 
Over time, CT can capture the difference in the image of the patient’s 
brain. CT scans are widely available, cost-effective, and provide rapid 

results. Modern CT scanners can examine the entire brain in less than 
1 s. However, it is difficult to differentiate between acute ischemic 
stroke (AIS) and intracerebral hemorrhage (ICH) based solely on 
clinical presentation. In CT images, acute ICH is characterized by a 
higher density shadow that appears brighter than normal brain tissue.

2.4.1 The application of machine learning in 
stroke

In 2019, Xie et al. incorporated CT, CTA, and perfusion CT data 
from 512 patients with acute ischemic stroke. Seven binomial GBM 
and XGB prediction models were developed using 23 features at 
admission, to predict patients’ mRS scores at 90 days. After adding the 
24-h NIHSS score, the results of the study showed that the predictive 
performance of the models was significantly improved with the 
addition of the 24-h NIHSS score, with AUCs ranging from 0.794 to 
0.873 for the XGB model and 0.811 to 0.866 for the GBM model. The 
conclusions of the study suggest that machine learning can be used to 
predict the outcome of rehabilitation in stroke patients, with initial 
imaging information is sufficient, the inclusion of 24-h information 
improves accuracy, and consideration of recanalization status helps 
assess treatment risk and benefit (40).

In 2020, Wen et al. incorporated clinical information and NCCT 
and CTA data from January 30, 2017, to January 2, 2019. These data 
were obtained within 24 h after symptom onset in patients with MCA 
territory infarction. Their aim was to develop a model based on 
radiomic features to predict the development of malignant MCA 
infarction (mMCAi) in stroke patients. Patients were randomly 
divided into a training group (n = 87) and a validation group (n = 39). 
A total of 396 texture features were extracted from each NCCT image 
of 126 patients. Using least absolute shrinkage and selection operator 
regression analysis to reduce the feature dimensions, precise radiomic 
features were constructed based on the remaining texture features. 
Subsequently, a radiomic feature model was built using multivariate 
logistic regression, and its performance was evaluated using 
AUC. Decision curve analysis (DCA) was employed to assess the 
clinical efficiency of radiomic features in predicting mMCAi by 
calculating the net benefit within a threshold probability range. They 
then developed a model combining radiomic features and the Alberta 
Stroke Program Early CT Score (ASPECTS) based on NCCT to 
predict mMCAi. The predictive model demonstrated excellent 
performance, with AUCs of 0.917 and 0.913 for the training and 
validation sets, respectively. Furthermore, DCA validated the clinical 
effectiveness of the predictive model in distinguishing mMCAi and 
non-mMCAi patients within a threshold probability range of 
0.067–1 in the training set and 0.046–1 in the validation set (41).

In 2021, Cheng et al. included CT and CTA data from 135 patients 
with large vessel occlusive stroke who underwent reperfusion therapy 
between 2015 and 2019. The aim was to explore the correlation 
between different CT-ASPECTS (Alberta Stroke Program Early CT 
Score) methods, follow-up CT-ASPECTS, and prognosis. Researchers 
calculated the relative differences in Hounsfield Units (HU) between 
different regions of the ischemic hemisphere and the average HU of 
the contralateral hemisphere, expressed as a percentage difference. The 
NCCT, CTA-arterial, and CTA-venous datasets were evaluated in a 
random order and validated by two expert readers after correctional 
segmentation. ROC curve analysis was used to assess the ability of 
different CT-ASPECTS patterns to identify patients with favorable 
outcomes. Researchers found that CTA-venous-ASPECTS was almost 
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perfectly correlated with follow-up CT-ASPECTS, outperforming 
other CT examinations. The 90-day mRS scores were significantly 
associated with CTA-venous-ASPECTS. ROC analysis defined the 
optimal accuracy and cutoff points for parameters related to the 
90-day mRS score. The results indicated that CTA-venous-ASPECTS 
had the highest area under the curve (AUC: 0.82; 95%CI: 0.75–0.89; 
p < 0.001). This study suggests that CTA-venous-ASPECTS is almost 
perfectly correlated with the final infarct size and significantly 
associated with the 90-day mRS score (42).

In 2022, Potreck et al. included 136 stroke patients with major 
segment occlusion of MCA that occurred between March 2015 and 
December 2019. Two raters assessed ASPECTS on acute and follow-up 
NCCT, and a machine-learning algorithm evaluated the ASPECTS 
scale on NCCT (e-ASPECTS). A third radiologist used the MCA 
territory collateral score (also known as the Tan scoring system) to 
assess collateral status on the CT angiogram. The results indicate that 
inter-rater reliability depends on the duration of stroke symptoms in 
patients (OTI), with lower reliability observed in the hyperacute 
group, yielding ICC = 0.54, while higher reliability is seen in groups 
with longer time windows, yielding ICC = 0.74. The consistency 
between acute and follow-up ASPECTS improves with prolonged 
time, and there is a negative correlation between OTI time and 
ASPECTS. The collateral status serves as a predictor for favorable 
clinical outcomes, especially in hyperacute stroke. In conclusion, the 
accuracy and reliability of NCCT-ASPECTS are influenced by time, 

and collateral status on CT angiography may enhance the prediction 
of clinical outcomes (43).

In 2022, a study included data from 39 patients with AIS caused 
by LVO and poor reperfusion after mechanical thrombectomy (MT) 
from a stroke database between January 2015 and December 2019. 
The multimodal stroke protocol included non-contrast-enhanced 
computed tomography (NECT), CTP, and CTA in sequence. The 
ASPECTS score was used to assess whether early ischemic changes 
were present on baseline NECT. Three different automated perfusion 
software solutions (A: RAPID, B: Brainomix e-CTP, C: Syngo.via) 
were used to assess poor reperfusion. Low-perfusion volumes (HV) 
with Tmax >6 s were compared with the final infarct volume (FIV) on 
follow-up CT after futile reperfusion at 36–48 h. The study divided 
patients into high and low Hyperintense Rim (HIR) groups based on 
the median ratio of low-perfusion intensity (HIR, tissue volume ratio 
for Tmax >10 s and Tmax >6 s). Subgroup analyses of FIV (feature 
importance value) were conducted for favorable and unfavorable 
HIR. HIR was correlated with baseline clinical and outcome 
parameters using Pearson correlation. The study found a good 
correlation between HV and FIV with no significant difference. 
However, in cases with infarct volumes exceeding 150 mL, the 
performance of automated software solutions often declined. 
Subgroup analysis showed that patients with HIR ≥ 0.6 typically had 
underestimated FIV. However, in the subgroup with favorable HIR, 
there was a trend of overestimating FIV. Software packages A and B 

FIGURE 4

The CT images of two ischemic stroke patients undergoing thrombectomy (A) a 73-year-old male patient with an NIHSS score of 24 at the onset; and 
(B) a 78-year-old male patient with an NIHSS score of 14 at the onset.
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showed good correlation between HV and FIV with no significant 
difference, while only software package C significantly overestimated 
FIV. The mRS score of 0–3 at 3 months was significantly higher in the 
favorable HIR group than in the unfavorable group. Lower HIR was 
associated with a higher Alberta Stroke Program Early CT Score 
(ASPECTS). In conclusion, the performance of automated perfusion 
software solutions in predicting FIV after futile reperfusion was good, 
with a decrease in accuracy for large infarcts exceeding 
150 mL. However, FIV may be  significantly overestimated or 
underestimated depending on HIR, and the Syngo software package 
showed the widest range of performance (44).

In 2023, Xiang et al. collected one-stop CTP imaging data from 
54 patients with AIS at Handan Central Hospital. The data included 
non-contrast CT scans, CTA, Tmax maps, and CBF maps before and 
after conservative treatment and mechanical thrombectomy. Among 
the 54 patients, 15 underwent both CTP and MRI examinations. The 
post-processing method involved transferring CTP data to Artificial 
Intelligence software to obtain pseudo-colored images, ischemic core 
volume, and areas of abnormal perfusion. Additionally, Artificial 
Intelligence software was utilized to acquire intracranial arterial CTA 
images. The results revealed that patients treated with mechanical 
thrombectomy guided by CTP imaging had significantly improved 
NIHSS scores compared to the conventional treatment group, and 
this difference was statistically significant (p < 0.005). In one case 
assessed with Artificial Intelligence-assisted CTP imaging, the 
ischemic core volume was greater than that displayed by DWI, while 
in the remaining 13 patients; the ischemic core volume was smaller 
than the DWI-displayed ischemic core volume. The team concluded 
that mechanical thrombectomy guided by CTP imaging can extend 
the treatment window for AIS-LVO patients. AI-assisted CTP 
diagnosis can facilitate rapid assessments independent of radiologists, 
but it may pose challenges in determining the ischemic core 
volume (45).

In 2023, Weng et  al. included 97 stroke patients. The team 
extracted vascular structural features from CTA images and stroke 
location features from DWI images to comprehensively characterize 
the lesions. The 97 cases were randomly divided into a cross-validation 
set, independent test set 1, and independent test set 2 for model 
validation. The results showed that the proposed model achieved good 
predictive performance on two independent test sets, with 
classification accuracies of 85.19 and 81.25%, respectively (46).

In 2023, Zhang et al. collected clinical data and NCCT images 
from 240 patients with AIS. Using 3D Slicer, they manually segmented 
the infarct lesions and performed feature extraction on CT images and 
regions of interest (ROI). After normalizing clinical and radiological 
features, surplus features were eliminated using the Kruskal-Wallis 
test. Through triple cross-validation and grid search, the research team 
selected the optimal hyperparameters for the Support Vector Machine 
(SVM) model. The dataset was divided into 3-fold in each of the three 
cross-validation runs, forming three prediction models. The average 
performance metrics for these three models included accuracy, 
sensitivity, specificity, F1 score, and AUC. After an in-depth analysis 
of 1,454 texture features extracted from NCCT images of 240 AIS 
patients, it was found that the classification model integrating clinical 
and radiomic data performed the best, with an AUC of 0.857, accuracy 
of 84.8%, and sensitivity of 93.8%. In comparison, models using only 
clinical or radiomic features showed lower performance with AUCs 
of 0.705 and 0.643, respectively. These study results suggest that 

integrated models combining multiple types of data are more reliable 
in predicting clinical outcomes for AIS patients (47).

In 2023, Brugnara et al. conducted a study on acute ischemic 
stroke patients undergoing imaging examinations and EVT. They 
utilized e-ASPECTS (Brainomix) for automatic assessment of 
ASPECTS on 1 mm slices, and visual inspection was conducted by 
experienced radiologists (AE, with 2 years of experience) and 
committee-certified neuroradiologists (UN, with 8 years of clinical 
experience). Statistical analyses were performed using Logistic 
regression and ordinal Logistic regression. Model performance was 
evaluated through ROC curves, and the significance of differences 
between models was assessed using the DeLong test. Machine learning 
model performance was assessed through random forest variable 
importance. In the entire study cohort, 38% of patients exhibited 
favorable clinical outcomes, while 26% experienced adverse outcomes 
at 90 days. Multivariate regression model results indicated that cortical 
atrophy was independently predictive of favorable clinical outcomes. 
The predictive performance of the machine learning model 
significantly outperformed other models, achieving an AUC of 0.775. 
Further analysis validated the importance of cortical atrophy across 
different models. The study results suggest that cortical atrophy is an 
independent predictor of clinical prognosis in acute ischemic stroke 
patients (48).

In 2023, Shen et al. included 44 consecutive patients with AIS who 
underwent endovascular treatment. Clinical data, including baseline 
mCTA, mRS, and follow-up MRI after treatment, were collected. They 
utilized a multi-scale three-dimensional CNN, inputting NCCT, 
arterial phase peak CTA, and CTA+ images. The F-STROKE software 
was used to calculate subsequent infarct core (IC) volume based on 
DWI. Data analysis was conducted using SPSS and MedCalc software. 
Among the 44 AIS patients receiving endovascular treatment, 61.4% 
achieved a favorable outcome. The NIHSSpre at admission and 
mCTA-estimated IC volume were independently correlated with the 
functional outcome of AIS patients after mechanical thrombectomy. 
Patients with a favorable prognosis had lower NIHSSpre and smaller 
mCTA-estimated IC volume (20.3 ± 12.2 vs. 43.9 ± 23.5, p = 0.001), and 
a higher proportion of good collateral status (66.7 vs. 22.4%, p = 0.016). 
The integrated model showed the best performance, with an area 
under the ROC curve of 0.874. The mean onset-to-door time (ODT) 
and door-to-puncture time (DPT) were 75.6 and 16.3 min, 
respectively, with a successful reperfusion rate of 17.7%. Bland–
Altman plots and intraclass correlation coefficient (ICC) assessment 
indicated an acceptable level of consistency between mCTA-estimated 
IC volume and follow-up IC volume. The optimal threshold for 
predicting performance was mCTA-estimated IC 
volume ≤ 40.3 mL. The study also focused on the handling of 
hemorrhagic transformation (HT) regions. Deep Learning techniques 
were employed to extract volume data from mCTA. The mCTA-
estimated IC volume may have potential value in predicting follow-up 
infarct and clinical outcomes in AIS patients treated with endovascular 
therapy (49).

The main information of the above included literatures is shown 
in Table 1.

2.4.2 The application of deep learning in stroke
In 2019, Hilbert et al. collected CTA data from 1,526 ischemic 

stroke patients. Various preprocessing techniques were applied to the 
images, including dimension reduction using Maximum Intensity 
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Projections (MIPs) and rigid registration using Elastix software. 
Additionally, they developed a Structured Receptive Field Neural 
Network (RFNN) model and incorporated unsupervised pretraining 
in a stack denoising autoencoder (AE) experiment to learn the 
encoding part of the AE network. Machine learning models based on 
20 radiographic biomarkers manually scored by experts from the MR 
CLEAN Registry core laboratory were constructed. Logistic regression 
(LR) models and random forest classifiers (RFC) were utilized and 
compared with standard Deep Learning (DL) models (ResNet). Three 
training methods were devised using four balanced groups for cross-
validation in 1,301 patients. Gradient-weighted class activation 
mapping (Grad-CAM) was employed for visualization to elucidate the 
contribution of convolutional feature maps in the input space. 
Ultimately, two visualization models were developed for predicting 
mRS and mTICI outcomes. The Deep Learning models exhibited 
superior performance in the cross-validation folds of four functional 
outcomes, yielding an average AUC of 0.71, and achieved an average 
AUC of 0.65 across all reperfusion folds, surpassing models based on 
traditional radiographic biomarkers. The AUC values for LR and RFC 
methods were 0.68 and 0.66, respectively, for favorable functional 
outcomes. However, for reperfusion prediction, both LR and RFC 
yielded an AUC of 0.52. In conclusion, the RFNN-ResNet model 
achieved the highest average AUC without pretraining with emission, 
while RFNN-ResNet-AE fine-tuning excelled in mTICI prediction. 
Their Deep Learning methods outperformed traditional approaches 
and can predict stroke outcomes without necessitating image 
annotation, offering faster processing speed. By enhancing the model, 
interpretability of the predictions was improved (50).

In 2021, Hokkinen et al., included data from 117 suspected stroke 
patients with CTA and follow-up data after admission. Preprocessing 
was done using 3D Slicer images and a trained and validated 3D CNN, 
evaluating the accuracy of outputs for two clinical time windows (0–6 
and 6–24 h). The accuracy of CNN was assessed through visual 
evaluation of ASPECTS anatomical regions, validating the matching 
accuracy of the CNN in lesion location and final infarct location, 
compared with ischemic changes marked by radiologists. Finally, the 
performance of CNN and CTP-RAPID in determining eligibility for 
Endovascular Treatment (EVT) was compared, considering factors 
such as ischemic core volume and patient age. Using a manually fitted 
linear model, the research team assessed the segmented volume 
output derived from CNN and CTP-RAPID ischemic core volume for 
predicting final infarct volume. Pearson correlation coefficients were 
used to assess the correlation between them, and Bland–Altman plots 
were used to show the agreement between estimated infarct volume 
and final infarct volume, as well as the volume derivation between 
CNN and CTP-RAPID. The results showed that in the early 0–6 h time 
window, CNN had a correlation of r = 0.43 (p = 0.002) with final infarct 
volume, while CTP-RAPID had a correlation of r = 0.58 (p < 0.001). In 
the late 6–24 h time window, both CNN (r = 0.67, slope 1.2, p < 0.001) 
and CTP-RAPID (r = 0.82, slope 1.4, p < 0.001) showed significantly 
increased correlation. Compared to CTP-RAPID, CNN had a 
sensitivity of 0.38 and specificity of 0.89. The study suggests that 
CTA-based CNN, in patients successfully receiving EVT treatment, 
can detect anterior circulation ischemic stroke in the late time window 
(6–24 h) and has a moderate correlation with final infarct volume (51).

In 2021, Hokkinen et  al. included 83 patients who received 
thrombolytic treatment or supportive care for CTA. They saved the 
images to a server and performed precise segmentation of the infarct 

area using the 3DSlicer image processing and visualization platform. 
The accuracy of the lesion location predicted by CNN was evaluated 
in comparison with the ASPECTS anatomical regions, and a detailed 
comparison was made with the CTP-RAPID software. By calculating 
a linear regression model and Pearson correlation coefficient (r) 
between the two, the results showed that the sensitivity of the CNN 
output was 0.71, specificity was 0.87, and accuracy was 0.80. For 
patients who did not receive thrombolytic treatment, there was 
excellent correlation between the final infarct volume and the 
estimated values from CNN output and CTP-RAPID, with correlation 
coefficients of r = 0.89 (95% CI 0.80–0.95) and r = 0.92 (95% CI 0.83–
0.97), respectively. There was also a good correlation between the 
CNN output and CTP-RAPID ischemic core volume (r = 0.89, 95% CI 
0.82–0.94). The conclusion of the study is that CTA-based CNN 
software demonstrates good estimation capabilities for infarct core 
volume in follow-up imaging studies, and its output exhibits 
significant correlation with CTP-RAPID ischemic core volume (52).

In 2021, Hakim et al. summarized the results of the ISLES 2018 
challenge, which was participated in by 24 teams, and which included 
CTP and DWI images of 103 patients with acute large artery occlusion 
and anterior circulation ischemic stroke. Of these 103 patients were 
divided into two groups, 40 for the lesion-free test set and 63 for the 
training set. The data consisted of (1) CTP source data; (2) perfusion 
maps post-processed using the standard thresholding method 
(RAPID), i.e., cerebral blood flow (CBF), cerebral blood volume, mean 
passage time, and time to peak; (3) DWI lesion segmentation in a 
binary form; and (4) the DWI images themselves. Teams used different 
thresholds to calculate the mean and standard deviation of the Dice 
similarity coefficient (DSC), the mean absolute volume difference 
(VD), the accuracy and recall, including the Dice score, the Hausdorff 
distance (HD), the mean and absolute lesion VD, the accuracy, the 
recall, and the mean symmetry plane distance. Comparisons of 
non-normally distributed data, including comparisons of HD and 
mean symmetric surface distance, were performed using the Wilcoxon 
signed rank test to identify the best performing cases for each team. 
Results showed that among the best performing cases, the median 
DWI capacity was 7.2 (IQR) and the median absolute VD was 26.41. 
The study conclusions suggest that CTP-based machine learning 
methods can more accurately predict infarcted tissue (53).

In 2022, Ramos et al. conducted a comprehensive analysis of CTA 
data from 3,279 patients who underwent acute ischemic stroke 
EVT. They utilized two training model approaches, one based on 
radiomics and another combining imaging with clinical information. 
After preprocessing the data, 1,260 features were computed in 70 
regions of the brain map, which were then reduced to 68 features. 
Training was carried out using the ResNet10 architecture for up to 75 
epochs, incorporating transfer learning with an additional 50 epochs, 
and enhancing weights by adding SE modules before the fully 
connected layer. The results revealed that 37% of patients exhibited 
modified Rankin Scale (mRS) ≤ 2  in terms of favorable functional 
outcomes, while 60% achieved improved Thrombolysis in Cerebral 
Infarction (eTICI) ≥ 2b in terms of reperfusion. At 90 days, 37% of 
patients had good functional outcomes, and 60% showed favorable 
reperfusion after treatment. In predicting functional outcomes, the 
radiomics method performed the best in clinical experiments, 
achieving an AUC of 0.81. The study suggests that a single Deep 
Learning method (ResNet10) performed relatively poorly in 
predicting favorable functional outcomes. The combined approach of 
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TABLE 1 Summary of papers on machine learning for CT on rehabilitation of Ischemic stroke.

PMID 30354266 32733197 34392005 34709408 35645395

YEAR 2019 2020 2021 2022 2022

LEARNING 

APPROACH

machine learning machine learning machine learning machine learning machine learning

PRIMARY AUTHOR Xie Y Wen X Cheng X A Potreck Iris Muehlen

DISEASE Acute Ischemic Stroke Malignant middle cerebral 

artery infarction (mMCAi)

large-vessel occlusion stroke Acute Stroke Symptom-onset Large Vessel Occlusive Stroke and Poor 

Revascularization

DATA VOLUME CT, CT angiography (CTA), and perfusion 

CT data from 512 patients.

A total of 396 texture features 

were extracted from each 

NCCT image from the 126 

patients

135 patients undergoing reperfusion 

therapy.

136 patients with stroke 

involving occlusion of the main 

segment of the Middle Cerebral 

Artery (MCA)

39 patients underwent mechanical thrombectomy 

(MT) due to acute ischemic stroke (AIS) caused by 

anterior circulation large vessel occlusion (LVO) and 

impaired blood flow reconstruction.

DATA TYPE Basis of Imaging, Demographic, and Clinical 

Information

NCCT、CTA different CT modalities NCCT NECT、CTP、CTA

METHODS Gradient Boosting Machine model based on the radiomics 

signature and Alberta Stroke 

Program Early CT Score 

(ASPECTS) based on NCCT

Automated ASPECTS for multi-

modality CT

NCCT-ASPECTS Three Automated Perfusion Software Applications

RESULTS In predicting mRS greater than 2, XGB and 

GBM have AUCs of 0.746 and 0.748, 

respectively. After incorporating the 24-hour 

NIHSS score, XGB's AUC increases to 0.884, 

and GBM's AUC increases to 0.877. 

Reperfusion status has a certain impact on 

predictions; XGB's AUC increases to 0.807 in 

non-reperfused patients but decreases to 

0.670 in reperfused patients, while GBM's 

AUC increases to 0.781 in non-reperfused 

patients but decreases to 0.655 in reperfused 

patients. For predicting mRS greater than 0, 

XGB's AUC ranges from 0.794 to 0.873, and 

GBM's AUC ranges from 681.1 to 762.3. 

Considering the 24-hour NIHSS score, XGB's 

AUC ranges from 0.794 to 0.873, and GBM's 

AUC ranges from 0.811 to 0.866.

Their predictive model exhibits 

outstanding performance, with 

AUCs of 0.917 and 0.913 for 

the training and validation sets, 

respectively. Additionally, 

Decision Curve Analysis 

(DCA) validated the clinical 

effectiveness of the predictive 

model in distinguishing 

between mMCAi and non-

mMCAi patients, with 

probability threshold ranges of 

0.067–1 in the training set and 

0.046–1 in the validation set.

Researchers found a nearly perfect 

correlation between CTA-venous-

ASPECTS and follow-up CT-

ASPECTS, which outperformed other 

CT scans. The 90-day Modified 

Rankin Scale (mRS) scores were 

significantly associated with CTA-

venous-ASPECTS. ROC analysis 

defined the optimal accuracy and 

cutoff points for parameters associated 

with the 90-day MRS score.

In different time windows, there 

are variations in inter-rater 

reliability among patients. 

Consistency among 

professionals is highest for 

moderate treatment times. The 

presence of collateral circulation 

is associated with favorable 

treatment outcomes, and the 

pre-intervention ASPECTS is a 

crucial predictor, especially 

when treatment initiation 

exceeds 200 minutes. The Tan 

score is also effective for ultra-

acute strokes (OTI < 100 min).

Overall, there was good correlation without significant 

differences between the HVs and the FIVs with package 

A (r = 0.78, p < 0.001) being slightly superior to B and C. 

However, levels of agreement were very wide for all 

software applications in Bland-Altman analysis. In cases 

of large infarcts exceeding 150 mL the performance of 

the automated software solutions generally decreased. 

Subgroup analysis revealed the FIV to be generally 

underestimated in patients with HIR ≥ 0.6 (p < 0.05). In 

the subgroup with favorable HIR, however, there was a 

trend towards an overestimation of the FIV. Nevertheless, 

packages A and B showed good correlation between the 

HVs and FIVs without significant differences (p > 0.2), 

while only package C significantly overestimated the FIV 

(−54.6 ± 56.0 mL, p = 0.001). The rate of modified 

Rankin Scale (mRS) 0−3 after 3 months was significantly 

higher in favorable vs. unfavorable HIR (42.1% vs. 

13.3%, p = 0.02). Lower HIR was associated with higher 

Alberta Stroke Program Early CT Score (ASPECTS) at 

presentation and on follow-up imaging, lower risk of 

malignant edema, and better outcome (p < 0.05).

(Continued)
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TABLE 1 (Continued)

CONCLUSIONS Machine learning can be employed to predict 

the recovery outcomes of stroke patients. 

Initial imaging information is sufficient, and 

incorporating 24-hour information enhances 

accuracy. Considering reperfusion status aids 

in assessing treatment risks and benefits.

Imaging features from 

radiomics can serve as tools for 

predicting the risk of mMCAi.

CTA-venous-ASPECTS exhibits the 

highest area under the curve. This 

study indicates a nearly perfect 

correlation between CTA-venous-

ASPECTS and the final infarct size, 

along with a significant association 

with the 90-day MRS score.

The sensitivity of NCCT in 

detecting rapid stroke progression 

decreases. In ASPECTS 

assessments based on both 

manual and machine learning 

approaches, the reliability and 

consistency of scores between 

acute and follow-up ASPECTS 

decrease during short-term OTIs. 

In cases of hyperacute stroke, the 

status of collateral circulation in 

CT angiography may contribute 

to improving the prediction of 

clinical outcomes and explaining 

the reasons for reperfusion 

failure.

HIR can serve as a valuable parameter for outcome 

prediction and aid in deciding whether to proceed with 

MT in delicate situations.

PMID 37287309 36934582 37437435 37581657 37607843

YEAR 2023 2023 2023 2023 2023

LEARNING 

APPROACH

machine learning machine learning machine learning machine learning machine learning

PRIMARY AUTHOR Xiang S Weng S Zhang L Brugnara G Shen GC

DISEASE Ischemic Stroke Patients with Large Vessel 

Occlusion beyond the Therapeutic Time 

Window

ischemic stroke Acute ischemic stroke acute ischemic stroke estimated infarct core volume in the patients with acute 

ischaemic stroke

DATA VOLUME 54 patients were retrospectively divided into 

two groups based on the treatment methods: 

the mechanical thrombectomy group had 21 

patients and the conservative treatment 

group had 33 patients

CTA and MRI images from 97 

patients

Clinical data and NCCT (non-contrast 

computed tomography) images from 

240 patients with acute ischemic 

stroke (AIS).

A total of 1103 consecutive 

patients, who underwent 

endovascular treatment (EVT) 

for occlusion in the territory of 

the middle cerebral artery, were 

included.

44 patients undergoing endovascular treatment.

DATA TYPE CTA CTA、DWI Non-contrast computed tomography native cranial computed 

tomography (NCCT)

mCTA

METHODS machine learning model machine learning model Support vector machine machine learning models multi-scale three-dimensional convolutional neural 

network

(Continued)
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TABLE 1 (Continued)

RESULTS In patients treated with mechanical 

thrombectomy guided by CTP imaging, the 

post-treatment NIHSS scores were 

significantly better than those in the 

conventional treatment group, with statistical 

significance (P < 0.005). In one case assessed 

using artificial intelligence-assisted CTP 

imaging, the infarct core volume was larger 

than that shown by DWI, while in the 

remaining 13 patients, the infarct core volume 

was smaller than that indicated by DWI.

On two independent test sets, 

the accuracy (ACC) for the 

cross-validated dataset using 

the Adboost method was 

0.8519, while the ACC for the 

independent test set using the 

SRC method was 0.8125.

A total of 1454 texture features were 

extracted from NCCT images. In the 

test cohort, ROC analysis revealed that 

the radiomics model and the fusion 

model exhibited AUCs of 0.705 and 

0.857, respectively. The fusion model 

demonstrated an accuracy of 84.8% 

and sensitivity of 93.8%.

38% of patients exhibited 

favorable clinical outcomes, 

while 26% experienced adverse 

outcomes at 90 days. The 

predictive performance of the 

machine learning model is 

significant, with an AUC of 

0.775.

The area under the ROC curve is 0.874. The mean 

onset-to-door time (ODT) and door-to-puncture time 

(DPT) are 75.6 and 16.3 minutes, respectively, with a 

successful reperfusion rate of 17.7%. The optimal 

threshold for predicting performance is an estimated 

infarct core volume ≤40.3 ml based on mCTA.

CONCLUSIONS Artificial intelligence-assisted CTP diagnosis 

can facilitate rapid assessments independent 

of radiologists, but it may pose challenges in 

determining infarct core volumes.

This machine learning 

approach can effectively explore 

and accurately quantify features 

related to stroke prognosis, 

including vascular structure 

and stroke location.

The model based on NCCT radiomics 

and machine learning has high 

predictive efficiency for the prognosis 

of AIS patients receiving conventional 

treatment, which can be used to assist 

early personalized clinical therapy

Cortical atrophy emerges as an 

independent predictor of 

clinical prognosis in patients 

with acute ischemic stroke. The 

machine learning model 

demonstrates exceptional 

performance when 

comprehensively considering 

both clinical and imaging 

parameters.

mCTA-estimated IC volume might be promising for 

predicting the prognosis, and assisting in making 

individualized treatment decision in patients with AIS
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clinical and radiomics data demonstrated good performance in 
predicting patient functional outcomes (54).

In 2022, Winder et al. conducted a study involving 145 patients 
with acute ischemic stroke who underwent ERASER thrombectomy 
or other treatments. The research utilized AnToNIa software for 
perfusion imaging analysis, processing CT perfusion maps (CTC), 
mean square deviation, and baseline average images. Block-cyclic 
singular value decomposition, truncation threshold at 15%, and 
automatically calculated arterial input function were employed for 
deconvolution to generate residue curves (RC), thereby creating 
perfusion parameter maps for CBF, cerebral blood volume (CBV), 
mean transit time (MTT), and time to peak (Tmax). Additionally, 
brain tissue masks were generated. NCCT images underwent 
segmentation using AnToNIa and ITK-SNAP software tools, and 
registration to the baseline average image was performed using the 
SimpleITK and ANTs software packages. In the machine learning 
phase, each dataset underwent masking of the ipsilateral hemisphere, 
and CTC and RC data were cropped to 32 time points of interest, 
followed by corresponding processing. The tissue outcome prediction 
phase included model training, model testing, binarization, and 
statistical evaluation steps. Using Deep Learning models, image 
analysis was performed on 222 patients from the I-KNOW multicenter 
and remote ischemic preprocessing, training with TensorFlow and 
Python. The study evaluated the radiological outcomes of a subset of 
patients receiving intravenous rtPA and compared the performance of 
different models. The results showed that, compared to other models, 
CNNdeep performed better with an AUC of 0.88 ± 0.12, demonstrating 
significant differences from GLM, CNNTmax, and ADCthres. Overall, 
using multiple biomarkers as inputs in Deep Learning models 
achieved better predictive performance (55).

In 2022, Jabal et al. included 443 patients with AIS who underwent 
thrombectomy. Quantitative imaging features were extracted from 
clinical information and CT images using the e-Stroke software. The 
features were categorized into four classes, and additional new features 
were extracted. Machine learning (ML) algorithms, including k-Nearest 
Neighbors, Random Forest (RF), Gradient Boosting (GB), and Extreme 
Gradient Boosting (XGBoost), were constructed using the Scikit-learn 
library. The algorithms were optimized through the Optuna framework 
to differentiate and segment ASPECTS and output the total volume, 
volume for each ASPECTS region, and total e-ASPECTS volume. 
Simultaneously, the e-CTA software was used to identify the location of 
large vessel occlusion and quantify the volume percentage of collateral 
circulation defects to the total volume, as well as the absolute volume of 
vascular density defects in the MCA region relative to the contralateral 
hemisphere. Results showed that 101 patients had a favorable functional 
outcome (mRS-90 ≤ 2), while 192 patients had an unfavorable functional 
outcome (mRS-90 > 2). Non-enhanced CT imaging features associated 
with a favorable outcome included larger e-ASPECTS, larger brain 
volume, smaller cortical cerebrospinal fluid volume, smaller lateral 
ventricle volume, smaller acute ischemic volume, and smaller non-acute 
ischemic volume. Regarding imaging features, the XGBoost model 
performed the best with an AUC of 79%. Considering both clinical and 
radiological features, XGBoost remained the optimal model with an AUC 
of 80%. After Bayesian hyperparameter tuning and 10-fold stratified 
cross-validation, the optimized XGBoost model demonstrated a final 
performance on the patient test set with an AUC of 84%, accuracy of 77%, 
F1 score (mRS ≤ 2) of 67%, and F1 score (mRS > 2) of 82% (56).

In 2022, Amador et al. conducted a study on acute ischemic stroke, 
retrospectively collecting baseline CTP images from 147 patients. They 
preprocessed the images using the AnToNIa perfusion analysis software, 
which included motion correction, baseline correction, time smoothing, 
and interpolation. Building upon the preprocessing, they employed a 
Deep Learning approach to automatically identify the arterial input 
function (AIF). This involved architectures such as U-Net and temporal 
convolutional networks, directly utilizing the raw 4D CTP images for 
spatiotemporal analysis to predict treatment-dependent lesion outcomes 
in AIS patients. The study employed a 10-fold cross-validation scheme 
and, based on follow-up lesion volumes, trained, and evaluated the 
proposed Deep Learning method alongside a Tmax thresholding 
approach. All Deep Learning models underwent training for 100 epochs, 
and three performance evaluation metrics proposed by Winzeck et al. 
(57) were used for analysis. The results indicated that the 3D + time 
model performed the best in predicting stroke lesions, with a DSC of 
0.30, a HD of 9.5 mm, and a volume error of 3.0 mL. In contrast, the 
performance of the Tmax thresholding method was the poorest, with a 
DSC of 0.24, HD of 14.4 mm, and volume error of 86.8 mL. The 
2D + time model and the baseline method exhibited slightly lower 
average performance but were still considered acceptable, with an 
average volume error of 21.9 mL (58).

In 2023, Wouters et al. included 228 acute ischemic stroke patients 
with 127 in the training set and 101 in the validation set. They utilized 
CTP data from the MRCLEAN trial-derived cohort for training a DL 
model, and internal validation was performed after integrating clinical 
data. External validation used an independent dataset from the CRISP 
study. The study compared the performance of the DL model with the 
RAPID software, which uses deconvolution/thresholding methods, in 
predicting final infarct volume. Additionally, analyses of patient 
reperfusion grades, lesion growth rates, and relevant statistical analyses 
were conducted. The results showed that, in the analysis of 108 patients 
based on baseline CTP and actual infarct volume using RAPID, the DL 
model outperformed the RAPID software, with a mean absolute 
difference (MAD) of 34.5 mL (SD 29.4), compared to RAPID software’s 
MAD of 52.4 mL (SD 49.8) (p < 0.01). For the 19 patients with 
intermediate reperfusion in the MR CLEAN study, the DL model had 
a MAD of 36.7 mL (SD 38.3), with no significant difference compared 
to the fully or non-reperfused groups (p = 0.64). ROC curve analysis 
indicated an optimal threshold for infarct growth at 0.36, with a 
median growth rate of 2.7 mL/h in patients with HIR < 0.36 and 
8.5 mL/h in patients with HIR ≥ 0.36 (p < 0.01) (59).

The main information of the above included literatures is shown 
in Table 2.

2.5 Artificial intelligence-based prediction 
of stroke prognosis using MRI

MRI has various imaging sequences, such as diffusion-weighted 
MRI, perfusion MRI, T2 sequences, etc., which can assess different 
structural and functional features of brain tissue. Diffusion MRI can 
detect cytotoxic edema, which is the most sensitive core indicator of 
ischemic stroke. In the region of cytotoxic edema, water molecules 
move from extracellular space to intracellular space, and diffusion is 
restricted. Diffusion-weighted imaging can detect ischemic injury 
within minutes after the onset of ischemic stroke, showing a significant 
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TABLE 2 Summary of papers on deep learning for CT on rehabilitation of Ischemic stroke.

PMID 31707199 34868662 34164743 33957774 35432171

YEAR 2019 2021 2021 2021 2022

LEARNING APPROACH deep learning deep learning deep learning deep learning deep learning

PRIMARY AUTHOR Hilbert A Hokkinen L Hokkinen L Hakim A Ramos LA

DISEASE Acute Ischemic Stroke anterior circulation ischemic stroke anterior cerebral circulation ischaemic stroke Acute Ischemia Acute Ischemic Stroke

DATA VOLUME the MR CLEAN Registry dataset with 

1301 patients

117 suspected stroke patients. 83 consecutive stroke cases undergoing 

thrombolytic therapy or alternative 

treatments

Among 103 patients with acute 

anterior circulation ischemic stroke 

due to large vessel occlusion, 40 

constituted the lesion-free test set, 

while the remaining 63 formed the 

training group.

3279patients from the MR CLEAN 

Registry

DATA TYPE Clinical variables and radiological 

image biomarkers (including age, 

pre-stroke mRS, NIHSS, occlusion 

location, ASPECTS, etc.)

CTA CTA CTP、DWI radiomics features、 images and the 

clinical data

METHODS Residual Neural Network (ResNet) Convolutional neural network(CNN) convolutional neural network Machine learning method 3D deep learning models、machine 

learning models

RESULTS Deep learning models demonstrated 

superior performance in functional 

outcome (average AUC of 0.71) and 

reperfusion (average AUC of 0.65).

The final infarct volume correlation 

for the Convolutional Neural 

Network (CNN) was r=0.43, while for 

CTP-RAPID, it was r=0.58. Within 

the 6-24 hour time window, both 

CNN (r=0.67, slope 1.2) and CTP-

RAPID (r=0.82, slope 1.4) showed a 

significantly increased correlation. 

Compared to CTP-RAPID, CNN 

demonstrated a sensitivity of 0.38 and 

specificity of 0.89.

The sensitivity, specificity, and accuracy of 

the CNN stand at 0.71, 0.87, and 0.80, 

respectively. The correlation coefficient with 

manual segmentation is 0.83. For patients 

not subjected to thrombolytic therapy, 

noteworthy correlations emerge between the 

CNN output and CTP-RAPID estimated 

values, with correlation coefficients of r=0.89 

and r=0.92, respectively. Additionally, a 

robust correlation of r=0.89 is observed 

between the CNN output and CTP-RAPID 

ischemic core volume.

In the best-performing cases, the 

median DWI volume was 7.2 (IQR), 

with a median absolute vascular 

density (VD) of 26.41

Combining image data with clinical 

data did not yield a significant 

improvement in mRS prediction 

(mean AUC of 0.81 vs. 0.80) 

compared to using clinical data alone, 

irrespective of the approach. 

However, for predicting reperfusion, 

a significant enhancement was 

observed with the combination of 

image and clinical features (mean 

AUC of 0.54 vs. 0.61), with the deep 

learning approach achieving the 

highest AUC.

CONCLUSIONS n our dataset, automated image 

analysis using deep learning methods 

demonstrates superior performance 

in predicting stroke outcomes, with 

the potential to enhance treatment 

selection.

A CTA-based CNN method had 

moderate correlation with final 

infarct volumes in the late time 

window in patients successfully 

treated with EVT.

The CNN software based on CTA can 

provide robust estimates of infarct core 

volume. The infarct volume derived from 

CNN exhibits a strong correlation with the 

ischemic core volume from CTP-RAPID.

Machine learning methods may 

predict infarcted tissue from CTP 

with improved accuracy compared 

with threshold-based methods used 

in clinical routine.

The integration of radiomics and 

deep learning image features with 

clinical data significantly improves 

the prediction of favorable 

reperfusion.

PMID 36408399 35665041 36103772 34587794
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TABLE 2 (Continued)

YEAR 2022 2022 2022 2023

LEARNING APPROACH deep learning deep learning deep learning deep learning

PRIMARY AUTHOR Winder AJ Jabal MS Amador K Wouters

DISEASE acute ischemic stroke estimated infarct core volume in the 

patients with acute ischaemic stroke

spatio-temporal convolutional neural 

networks

Acute Ischemic Stroke

DATA VOLUME 145 patients with acute ischemic 

stroke who underwent intravenous 

thrombolysis treatment, following the 

conventions of scientific literature

293 patients undergoing 

thrombectomy.

147 patients from the multicenter, 

prospective ERASER study

228 acute ischemic stroke patients 

with 127 in the training set and 

101 in the validation set.

DATA TYPE CT CT/CTA CTP CTP

METHODS DCN multi-scale three-dimensional 

convolutional neural network

4D CT perfusion imaging using spatio-

temporal convolutional neural networks

DL model with the RAPID software

RESULTS DCN: 0.287, RDF: 0.262, Tmax-

thresholding: 0.249, deconvolved 

residual curves: 0.286, source 

concentration-time curves: 0.296

In a cohort of 101 patients, favorable 

outcomes (mRS-90 ≤ 2) were 

observed, while 192 patients 

experienced unfavorable outcomes 

(mRS-90 > 2). The XGBoost model 

demonstrated optimal performance 

when considering both imaging 

features and clinical considerations, 

achieving AUCs of 79% and 80%, 

respectively. Following optimization, 

the final performance of the XGBoost 

model on the patient test set was 

characterized by an AUC of 84%, 

accuracy of 77%, F1 score (mRS ≤ 2) 

of 67%, and F1 score (mRS > 2) of 

82%.

The 3D+time model demonstrates optimal 

performance, boasting a Dice Similarity 

Coefficient (DSC) of 0.30, Hausdorff 

Distance (HD) of 9.5 mm, and a volume 

error of 3.0 mL. In contrast, the Tmax 

threshold method exhibits the least favorable 

performance, with a DSC of 0.24, HD of 14.4 

mm, and a volume error of 86.8 mL. The 

2D+time model, while displaying slightly 

lower average performance, still maintains 

acceptability, with an average volume error 

of 21.9 mL.

The results showed that, in the 

analysis of 108 patients based on 

baseline CTP and actual infarct 

volume using RAPID, the DL model 

outperformed the RAPID software, 

with a mean absolute difference 

(MAD) of 34.5 ml (SD 29.4), 

compared to RAPID software's MAD 

of 52.4 ml (SD 49.8) (p < 0.01). For 

the 19 patients with intermediate 

reperfusion in the MR CLEAN study, 

the DL model had a MAD of 36.7 ml 

(SD 38.3), with no significant 

difference compared to the fully or 

non-reperfused groups (p = 0.64).

CONCLUSIONS Through DCN, utilizing features 

optimized from source 

concentration-time curves, the best 

predictions for tissue outcomes are 

provided.

The value of machine learning lies in 

integrating essential clinical 

information and automated imaging 

features for predicting functional 

outcomes three months after 

mechanical thrombectomy.

4D CTP datasets include more predictive 

information than perfusion parameter maps, 

and that the proposed method is an efficient 

approach to make use of this complex data

ROC curve analysis indicated an 

optimal threshold for infarct growth 

at 0.36,
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high signal (60). Studies have indicated that the sensitivity of MRI in 
diagnosing acute ischemic stroke is 83% (61). Traditional MRI 
sequences, such as T1, T2, and FLAIR, become sensitive to ischemic 
changes after a net increase in brain tissue water content, allowing 
detection of ischemic changes hours after symptom onset (62). 
Perfusion-weighted imaging (PWI) can provide an assessment of 
cerebral blood flow perfusion. By combining information from PWI 
and DWI sequences, the size and location of the ischemic penumbra 
can be evaluated.

MRI vascular imaging is a powerful tool for detecting vascular 
stenosis or occlusion, but it is more time-consuming than CTA and 
may not be  available around the clock or in emergencies at all 
hospitals. Despite its limitations, MRA has unique advantages in 
diagnosing stenosis, occlusion, etc. In most studies, MRA has a 
sensitivity and specificity close to 100% for detecting carotid artery 
occlusion (63). If MRA shows no stenosis or stenosis less than 70%, 
further diagnostic evaluation is usually not necessary.

MRI has been used as a preferred modality for the treatment and 
secondary prevention of acute ischemic stroke, as show in Figure 5. 
While CT is most commonly employed for assessing acute stroke 
patients, the high signal-to-noise ratio and the ability to identify 
damaged brain tissue make MRI a crucial imaging modality for stroke 
diagnosis, prognosis, and prevention. Evaluation of ischemic stroke 
typically involves multiple imaging parameters, with changes in 
cerebral blood flow being a primary pathological alteration in 
ischemic stroke. MRI sequences, such as dynamic contrast-enhanced 
perfusion, can estimate the penumbral tissue, which is at risk of 
infarction without reperfusion treatment but has not yet undergone 
irreversible damage. Additionally, it can assess cerebral vascular 

reserve (CVR) to better select cerebrovascular intervention measures. 
CVR is defined as the ability to increase CBF in response to vascular 
dilation stimuli. In patients with reduced CVR, there is often an 
increased risk of stroke when CVR is diminished, especially in those 
with chronic cerebrovascular diseases. Arterial spin labeling (ASL) is 
an enhanced MRI sequence used to measure CBF, offering a promising 
technique for evaluating acute ischemic stroke and potentially 
identifying patients at higher risk of future strokes (64).

2.5.1 The application of machine learning in 
stroke

In 2005, Gottup et al. collected MRI data from 14 patients with 
acute stroke. The performance was measured using AUC. Three 
different implementations of the instance-based method—k-NN, 
Gaussian weighted, and constant radius search classification—were 
applied for data analysis. The results indicated that the performance 
of the optimal k-NN and Gaussian weighted algorithms did not shown 
a significant difference, but both were markedly superior to the 
constant radius implementation. Through a qualitative analysis of the 
distribution of instances in the feature space, it was observed that 
non-infarct instances tended to cluster together, while infarct 
instances were more dispersed in the feature space. Additionally, the 
analysis suggested the existence of feature space regions occupied 
exclusively by infarct instances, which were not present for non-infarct 
instances (65).

In 2015, Kim et al. enrolled 35 ischemic stroke patients with visual 
field defects (VFD) caused by posterior cerebral artery (PCA) 
infarction. All these patients underwent MRI scans. After transforming 
the lesion locations into standard maps, the ischemic lesion area range 

FIGURE 5

The MRI images at the onset of ischemic stroke for two patients, both of whom underwent rehabilitation training after their conditions stabilized, are 
presented. (A) A 57-year-old female patient, post-rehabilitation Berg Balance Scale score of 2, Functional Independence Measure (FIM) score of 6, and 
Modified Barthel Index of 3. (B) A 72-year-old male patient, post-rehabilitation Berg Balance Scale score of 0, FIM score of 1, and Modified Barthel 
Index of 0.
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(rEILs) for each cortical area was measured. Significant improvement 
in VFD was defined as a provisional improvement of 20% 3 months 
after the stroke. The performance of clinical and radiological variables 
in predicting significant improvement was measured using support 
vector machines. Clinical variables, baseline visual field scores, lesion 
volumes, and rEIL were compared between the significantly improved 
and less improved groups. Support vector machines with a linear 
kernel were employed to train and validate the prognostic classifier. 
The results showed that left PCA infarction, pre-stroke MRI time, and 
rEIL in the tongue, corpus callosum, and cuneal cortex were good 
prognostic indicators for lateralized VFD. Compared to clinical 
variables, the combination of rEIL in various cortical subregions 
demonstrated a better predictive effect on lateralized VFD. Adding 
rEIL to other variables improved the prognostic prediction of 
lateralized VFD (66).

In 2020, Grosse et al. included 99 patients with acute ischemic 
stroke for multi-parametric MRI data. They used the AnToNIa 
software tool for apparent diffusion coefficient (ADC) map calculation, 
intraslice motion correction of PWI sequences, and atlas-based 
methods for automatic extraction of arterial input functions, among 
other preprocessing steps. Perfusion parameter maps were computed 
using a block-circulant singular value decomposition method, and the 
FLAIR dataset was segmented. Image registration to the Montreal 
Neurological Institute (MNI) brain atlas was performed, and a 
combination of LR and RF algorithms was used for mixed tissue 
outcome prediction. Twenty-one prediction models were evaluated 
using Receiver Operating Characteristic Area Under the Curve (ROC 
AUC), Dice similarity index, sensitivity, and specificity. Single-sided 
paired t-tests were employed to assess Dice and ROC AUC values, and 
the average and median of local LR model coefficients were calculated 
for each MNI structural brain region. The study results demonstrated 
that the mixed LR model performed best in terms of the average ROC 
AUC value (0.872 ± 0.092), while the mixed RF model was optimal for 
the average Dice coefficient (0.353 ± 0.220). The mixed LR model 
showed the highest average values for ROC AUC and Dice coefficient, 
followed by the mixed RF model. The mixed model significantly 
improved the effect size at the 0.01 level, including ROC AUC and 
Dice values. The mixed LR model had the highest average values for 
ROC AUC, Dice coefficient, sensitivity, and specificity, followed by 
local LR, mixed, and local RF models, as well as global LR and RF 
models (67).

In 2021, Hamann et al. included clinical and imaging data from a 
cohort of 222 patients who underwent EVT for acute ischemic stroke 
caused by middle cerebral artery (MCA)-M1 occlusion at the Bern 
University Hospital between January 2012 and August 2017. The data 
used for predictive analysis was limited to diffusion-weighted and 
perfusion images. Imaging data underwent post-processing using the 
Acute Stroke Care plugin of Olea Sphere. A predictive model for 
favorable functional outcomes was developed using clinical variables 
and magnetic resonance imaging features based on regions of interest 
(ROIs). The study assessed the predictive capability of different patient 
characteristics and imaging variables, both individually and in 
combination, and evaluated overall performance based on the AUC 
values and Brier scores for the entire test set. The results indicated a 
successful revascularization rate of 78%, with 54% of patients 
achieving a favorable outcome (modified Rankin Scale score 0–2). 
Small infarct size was associated with a favorable functional outcome, 
while older age was related to a reduced chance of favorable outcomes 

and functional improvement. The use of isolated imaging information 
as a predictor for functional outcomes showed relatively poor 
performance. No significant differences were observed between the 
predictive variable sets when imaging variables were added to patient 
characteristics (68).

In 2022, Graaf et  al. analyzed patients who had successful 
reperfusion in the MR CLEAN registry center from March 2014 to 
November 2017. Initially, they constructed a multivariable ordinal 
regression model to predict functional outcomes measured by the 
mRS at 90 days. Four groups of predictive factors were included: 
baseline patient factors, imaging factors, treatment factors, and 
postoperative factors (i.e., adverse events). Each group of predictive 
factors was incrementally added to the basic model, which only 
included baseline patient factors, and the overall explained variance 
of the most comprehensive model was subsequently evaluated. The 
results indicated that the most important predictive factors for mRS 
were baseline patient factors and postoperative factors. Among 
patients with successful reperfusion, the five most important 
individual predictive factors for functional outcomes at 90 days were 
pre-stroke mRS, baseline NIHSS, symptomatic intracranial 
hemorrhage (sICH), age, and pneumonia. Stroke patients with sICH 
had a 54% lower probability of functional independence compared to 
those without sICH, and patients with pneumonia had a 21% lower 
probability of functional independence than those without 
pneumonia. This study suggests that both patient and postoperative 
factors are crucial predictors of successful reperfusion outcomes in 
ischemic stroke patients (69).

In 2021, Abedi et  al. developed classification models for six 
prediction windows by incorporating MRI data from 7,144 patients 
with acute ischemic stroke. Three algorithms, LR, XGB, and RF, were 
employed in the study. The research data were randomly split into 80: 
20 training and testing sets, using RF and LR as baseline metrics. Ten 
repetitions of 5-fold cross-validation (CV) training were performed. 
Among the 7,144 patients meeting inclusion criteria, 5,347 did not 
experience a stroke after 2 years, 605 died within 1 month, 1,380 died 
within 1 year, and 1,797 died within 2 years. On the test dataset, the 
average Area Under the Receiver Operating Characteristic curve 
(AUROC) ranged from 0.76 to 0.81. The RF-based model performed 
best in the 1-month window (AUROC = 0.82), with the highest 
Negative Predictive Value (NPV) of 91.1 for shorter prediction 
windows. The RF model achieved the highest PPV at the 6-month 
window (0.92), while the XGB-based model had the highest accuracy 
(precision of 0.89) in the 1-month window. Age, hemoglobin levels, 
and BMI were identified as the top three relevant factors across 
different prediction windows, with average overall importance scores 
of 96.3, 68.2, and 55.5%, respectively (70).

In 2022, Elsaid et al. recruited 354 patients using a systematic 
random technique (every three admissions) from the Stroke and 
Intensive Care Unit (ICU) at Zagazig University Hospital in Egypt. 
The included data comprised routine MR and diffusion-weighted 
images for each patient. The team optimized several machines 
learning algorithms, including LRC, SVC, RFC, GBC, and 
MLPC. They evaluated the predictive performance of the models 
using ROC and explored the interactions among predictive factors 
using Generalized Additive Models (GAM). The results indicated a 
19.8% occurrence rate of HT in ischemic stroke patients. Infarct size, 
cerebral microbleeds (CMB), and NIHSS were identified as the best 
predictors for HT. RFC and GBC outperformed LRC and MLPC 
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significantly. SVC performed better than LRC and MLPC but lacked 
statistical significance. There was no significant difference between 
LRC and MLPC (71).

In 2022, Guo et  al. conducted a comprehensive analysis by 
including 156 patients with 88 DSC-PWI images. They preprocessed 
the DSC-PWI data and assessed the role of Dynamic R2* (DRF) in the 
diagnosis and prognosis prediction of ischemic stroke patients. The 
study segmented DSC-PWI images into N 3D images and calculated 
the performance of brain tissue DRF through four combination 
methods. Ten machine learning models, including SVM, Decision 
Tree (DT), Adaboost Classifier (Ada), Neural Network (NN), and 
others, were used for performance evaluation based on AUC, with 
AUC calculated using 10-fold cross-validation. Analysis of 78 
DSC-PWI images detected 50 cases of ischemic stroke, including 60 
patients with NIHSS scores of 95 and 66 patients with mRS scores less 
than 2 at 101 days. In terms of feature extraction, which included 
First_order, GLCM, GLDM, GLRLM, GLSZM, NGTDM, etc., the p 
values ranged from 0.0123 ± 0.0144. The p value for DRF significantly 
correlated with NIHSS assessment was 8324.0 ± 0232.0, totaling 156. 
For outcome prediction, 144 significant DRFs were extracted with a p 
value of 9203.0 ± 0238.0, including First_order, GLCM, GLDM, 
GLRRM, GLSZM, NGTDM, etc. Reduction in dimensions through 
PCA, ICA, t-SNE, IOSMAP, and UMAP methods resulted in R values 
of 0.110 ± 0.121, 0.140 ± 0.079, 0.110 ± 0.121, 0.294 ± 0.139, and 
0.098 ± 0.133, respectively. The conclusion states that the study results 
indicate that different feature extraction and dimensionality reduction 
methods can achieve better performance in the detection, assessment, 
and outcome prediction of ischemic stroke. In some cases, features 
selected by Lasso demonstrated superior performance, increasing 
AUC for stroke detection by 19.4% (from 0.731 to 0.925), NIHSS 
assessment by 20.1% (from 0.652 to 0.853), and prognosis prediction 
by 14.9% (from 0.679 to 0.828) (72).

In 2022, Li et al., conducted a study involving 260 patients with 
acute ischemic stroke, incorporating a total of 620 DWI images. 
Initially, neuroradiologists selected ROIs, followed by ROI 
segmentation and normalization preprocessing. They integrated a 
SVM algorithm with a Least Absolute Shrinkage and Selection 
Operator (LASSO) regression model and optimized model parameters 
through 10-fold cross-validation. The predictive performance of the 
machine learning model was assessed using AUC of ROC curve. The 
study results revealed that among the 260 patients with acute ischemic 
stroke, there were 109 and 46 cases of favorable outcomes in the 
training and test sets, respectively. The LASSO regression model 
identified four features, with the highest-weighted coefficient 
attributed to “sqyareriit-IV.” ROC curve analysis demonstrated that in 
the training set, the AUC for predicting the prognosis after mechanical 
thrombectomy was 0.945 (95% CI: 0.890–0.975), and in the test set, it 
was 0.920 (95% CI, 0.849–0.981) (73).

In 2023, Luo et al. conducted a study analyzing 132 patients with 
Basilar Artery Occlusion (ABAO), randomly dividing them into a 
training group (n = 106) and a test group (n = 26). They extracted 1,130 
radiomic features from DWI images and employed the Least Absolute 
Shrinkage and Selection Operator (LASSO) regression method for 
feature selection. Radiomic and clinical models were constructed 
using SVM, and the models were evaluated using ROC and decision 
curves. The results indicated that AUC of the ROC curve for the 
radiomic-clinical model was 0.897 in the training group and 0.935 in 
the test group. The AUC for the radiomic model was 0.887 in the 

training group and 0.840 in the test group. The AUC for the clinical 
model was 0.746 in the training group and 0.766 in the test group. 
Importantly, the AUC of the radiomic-clinical model was significantly 
greater than that of the clinical model (74).

In 2023, Xu et al. included 314 patients with acute corpus callosum 
infarction (CC). Basic clinical and radiological information was 
obtained through the Electronic Medical Records (EMR) management 
system. Neuroimaging evidence was collected from MRI, MRA, or 
CTA. For patients diagnosed with CC infarction 1 year after onset, the 
team used the Behavioral Risk Factor Surveillance System (BRFSS) 
questionnaire to identify subjective cognitive decline (SCD). The team 
established seven machine learning models, including XGBoost, LR, 
LightGBM, AdaBoost, GNB, CNB, and SVM. They compared the 
predictive performance of these models using different metrics. The 
results indicated that the LR model outperformed the other six 
machine learning models in predicting SCD after CC infarction. 
Through LASSO and SHAP analyses, the team identified the top nine 
important predictive factors from the LR model output. Additionally, 
they discovered factors independently associated with cognitive 
outcomes (75).

In 2023, Wang et al. conducted a study involving 2015 patients 
who experienced ischemic strokes within 650 h. The study utilized 
MRI images and follow-up data. NeuBrainCARE software was 
employed to manually measure the infarct volume, represented by the 
ADC. Additionally, two radiologists assessed the burden of small 
vessel disease (SVD). The researchers employed a bidirectional 
stepwise regression method to select indicators in the LR model and 
applied three machine learning algorithms (Gaussian process 
regression, random forest, and extreme gradient boosting) to establish 
predictive models. The results indicated that the LR model (SVO-AIS) 
achieved an AUC of 0.86 [0.78–0.94] for favorable outcomes and an 
AUC of 0.88 [0.8–0.96] for good outcomes. The LR model (LAA-AIS) 
had AUC values of 0.73 [0.54–0.91] for favorable outcomes and 0.75 
[0.59–0.91] for good outcomes. The GPR model (SVO-AIS) achieved 
an AUC of 0.86 [0.77–0.95] for favorable outcomes and an AUC of 
0.86 [0.77–0.96] for good outcomes. The GPR model (LAA-AIS) had 
AUC values of 0.65 [0.47–0.83] for favorable outcomes and 0.66 [0.49–
0.84] for good outcomes. The GOA-RF model (SVO-AIS) 
demonstrated an AUC of 0.85 [0.75–0.94] for favorable outcomes and 
0.84 [0.74–0.94] for good outcomes. The GOA-RF model (LAA-AIS) 
achieved AUC values of 0.66 [0.49–0.84] for favorable outcomes and 
0.68 [0.51–0.86] for good outcomes. The GOA-XGBoost model 
exhibited AUC values of 0.87 [0.79–0.96] for favorable outcomes and 
0.85 [0.76–0.94] for good outcomes. In the LAA-AIS population, the 
AUC values were 0.91 [0.84–0.97] for favorable outcomes and 0.90 
[0.83–0.97] for good outcomes (76).

In 2023, Yu et al. investigated the demographic characteristics, 
clinical data, and MR data of 180 patients with AIS. They manually 
delineated ROI for acute ischemic lesions on DWI images using 
MRIcron software. The data from all modalities, including ADC, 
FLAIR, SWI, and T1-2w, were aligned with the DWI images using 
SPM1 software. Radiomic analysis was performed on the MRI data of 
the five modalities, extracting a total of 946 features per image. 
Additionally, 14 shape features of the lesion regions were extracted. 
The scikit-learn package was utilized for feature selection using the 
recursive feature elimination (RFE) method. Ultimately, 16 image 
features were selected for training machine learning models, including 
SVM, RF, LightGBM, CatBoost, and XGBoost. Statistical analysis was 
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conducted using SPSS 21.0. The results showed that out of 148 
patients, 83 (56.1%) had a favorable prognosis, while 65 (43.9%) had 
an unfavorable prognosis. For each MRI modality, three optimal 
radiomic features (DWI, ADC, FLAIR, SWI, and T1w) and one 
optimal feature related to lesion shape were selected as key features in 
the machine learning models. The accuracy of the models was as 
follows: SVM model, 79%; RF model, 82%; LightGBM model, 83%; 
CatBoost model, 81%; and XGBoost model, 80%. This study revealed 
the potential value of a multimodal radiomic approach in accurately 
predicting the clinical outcomes of patients with AIS (77).

In 2023, Lee et al. included 3,687 patients with acute ischemic 
stroke, along with their MRI and relevant clinical information. The 
Rankin scale, assessed by neurologists, was used for outcome 
evaluation. The team employed multiple imputation by chained 
equations (MICE) to handle outliers and missing data and normalized 
the data using MinMaxScaler. They developed models based on three 
algorithms: random forest, XGBoost, and LGBM. The TreeSHAP 
method was used to calculate interaction effects between features. 
Model performance was evaluated using AUC-ROC, revealing that 
30.4% of patients had unfavorable outcomes, with external validation 
data showing rates of 37.2 and 29.1%. The AUROC for the internal test 
set, external validation sets A and B were 0.790, 0.791, and 0.873, 
respectively, while the Brier scores were 0.172, 0.202, and 0.141. In 
summary, the models demonstrated overall good performance (78).

In 2023, Weng et al. included 97 stroke patients with CTA and 
MRI images. Preprocessing of CTA and DWI images was conducted 
in MATLAB 2019. For CTA images, the processing involved feature 
extraction for 116 brain regions, image registration, segmentation of 
cerebral vessels using the Unet model, and calculation of vascular 
volume and length features. For DWI image processing, it included 
location feature extraction, image registration, and manual marking 
of stroke lesions by radiologists on the itk-snap platform. By 
multiplying the brain matrix and position matrix, the stroke regions 
for each area were obtained, and the proportion of stroke regions in 
the entire brain area was calculated. Subsequently, a machine learning 
model was established, utilizing a classification model based on the 
sparse representation method for feature selection and classification. 
The research results indicated that, on two independent test sets, the 
ACC of the cross-validation dataset using the Adboost method was 
0.8519, while the ACC for the independent test set using the SRC 
method was 0.8125. This study suggests that the machine learning 
approach is effective in extracting and accurately quantifying features 
related to stroke prognosis, including vascular structure and stroke 
location (46).

The main information of the above included literatures is shown 
in Table 3.

2.5.2 The application of deep learning in stroke
In 2018, Nielsen et al. conducted a detailed analysis of a multi-

center study involving 222 patients from the I-KNOW consortium 
and remote ischemic pre-conditioning for MRI. The study included a 
subgroup of patients receiving intravenous rtPA treatment (n = 187) 
and the imaging results of 35 untreated patients. In the training phase, 
a CNN was trained using TensorFlow 2.7.9 to automatically identify 
initial arterial input functions. Deconvolution was performed using 
concentration curve parameters to obtain average microvascular 
transit time and cerebral blood flow. CNNTmax was used to assess the 
accuracy of Tmax and was compared with regression methods using 

generalized linear models (GLM) to predict the risk of infarction at 
the individual voxel level. The final infarction prediction performance 
was evaluated by AUC from T2-FLAIR scans. Patients receiving 
intravenous treatment were divided into independent training (158 
cases) and test sets (29 cases) to evaluate the model’s performance in 
independent patients. Follow-up infarctions were assessed by four 
radiology experts 1 month after stroke. The 35 untreated patients 
underwent post-training, resulting in CNNdeep-rtPA. Differences 
were assessed through post-training of CNNdeep. The new model was 
evaluated on 29 patients in the trial group who received intravenous 
rtPA treatment, and AUC and final infarct area were compared. The 
results showed that CNNshallow tended to overestimate the final 
lesion volume, while CNNTmax predicted a lower risk of infarction. 
In contrast, CNNdeep provided better visual predictions. CNNdeep 
had an AUC of 0.88 ± 0.12, significantly better than CNNshallow 
(0.85 ± 0.11), GLM (0.78 ± 0.12), CNNTmax (0.72 ± 0.14), and 
ADCthres (0.66 ± 0.13). There was a significant difference between 
CNNdeep and GLM (p = 0.005), CNNTmax (p < 0.003), and ADCthres 
(p < 0.0001), while the difference between CNNdeep and CNNshallow 
was not significant (p = 0.063) (79).

In 2018, Pinto et al. included MRI images and clinical information 
from 75 ischemic stroke patients who underwent mechanical 
thrombectomy from the ISLES2017 dataset. Using a Deep Learning 
architecture that combines U-net with two-dimensional Gated 
Recurrent Units (GRU), the study integrated clinical information at 
the population level and analyzed it using the Thrombolysis in 
Cerebral Infarction (TICI) scale. The study experimented with cross-
validation on the training set and compared its results with a baseline 
architecture that did not include any clinical metadata. This research 
innovatively combined imaging and non-imaging clinical data in a 
Deep Learning architecture and, through the development of a 
customized loss function, incorporated clinical information in both 
the learning and prediction phases. This approach more accurately 
predicted different outcome scenarios. The study evaluated the 
performance of the method using five metrics (Dice similarity 
coefficient, accuracy, recall, Hausdorff distance, and average 
symmetric surface distance). In the end, the method achieved a Dice 
score of 0.29 ± 0.22, Hausdorff distance of 47.17 ± 22.13, ASSD of 
7.20 ± 4.14, precision of 0.26 ± 0.23, and recall of 0.61 ± 0.28 (80).

In 2019, King et al. included MR images from 444 patients. They 
employed a multi-atlas skull stripping algorithm for skull stripping. 
By aligning brain images to the centerline of the axial plane, the study 
proposed a Deep Learning model, compared it with several 
benchmark models, and introduced an improved model. The 
performance of these models was evaluated through multiple 
validations, using metrics such as AUC, accuracy, and overlap 
coefficient. Here are the AUC and overlap coefficient results: 2D CNN: 
AUC of 0.783 ± 0.030, overlap coefficient of 0.728. 3D CNN: AUC of 
0.799 ± 0.029, overlap coefficient of 0.717. Unitary CNN-Opposite: 
AUC of 0.871 ± 0.024, overlap coefficient of 0.811.SR-KDA: AUC of 
0.788 ± 0.031, overlap coefficient of 0.679. Results for accuracy and 
recall are as follows: 2D CNN: Accuracy of 0.211, recall of 0.700. 3D 
CNN: Accuracy of 0.220, recall of 0.693. Unitary CNN-Opposite: 
Accuracy of 0.222, recall of 0.799. SR-KDA: Accuracy of 0.671, recall 
of 0.171. Experimental evidence suggests its optimal performance 
when trained with opposite patches. Through visualizing the results 
of the deep CNN, the study provides a detailed analysis of the model’s 
performance in large infarcts and specific scenarios. Overall, this deep 
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TABLE 3 Summary of papers on machine learning for MRI on rehabilitation of Ischemic stroke.

PMID 15811787 26606516 33152045 33220140 34266905

YEAR 2005 2015 2020 2021 2022

LEARNING APPROACH machine learning machine learning machine learning machine learning machine learning

PRIMARY AUTHOR Christian Gottrup Bum Joon Kim Grosser M Janne Hamann Rob A van de Graaf

DISEASE Acute Strok Cerebral Infarction acute ischemic stroke stroke patients with middle cerebral artery-M1 

occlusions and early thrombectomy

ischemic stroke

DATA VOLUME magnetic resonance imaging of 14 patients with 

acute stroke

Thirty-five cases of ischemic infarction patients with 

visual field defects (VFD) due to posterior cerebral 

artery (PCA) infarction

weighted MRI data from 99 

patients.

222 patients with acute ischemic stroke due to 

middle cerebral artery (MCA)-M1 occlusion 

who received EVT

A cohort of 3180 patients 

who successfully 

underwent reperfusion

DATA TYPE mri MRI weighted MRI datasets magnetic resonance imaging features. data from the MR 

CLEAN Registry

METHODS k-NN, Gaussian weighted, and constant radius 

search classification.

Support Vector Machine global machine learning 

model

different machine-learning models and A multivariate ordinal 

regression model

RESULTS Optimal k-NN and Gaussian weighted 

algorithms exhibit no significant performance 

difference, yet both are notably superior to the 

constant radius implementation

The occurrence of left PCA infarction, pre-onset 

MRI duration, and reil in the tongue, corpus 

callosum, and cuneal cortex are indicative of a 

favorable prognosis for lateral visual field defects 

(VFD). When compared to clinical variables, the 

combination of rEIL in various cortical subregions 

demonstrates a superior predictive effect for lateral 

VFD. The inclusion of rEIL in other variables 

improves the prognosis prediction for lateral VFD.

The ensemble LR model 

performed optimally with 

the highest mean ROC AUC 

value (0.872±0.092), while 

the ensemble RF model 

excelled with the highest 

mean Dice coefficient 

(0.353±0.220).

The successful reperfusion rate reached 78%, 

with favorable outcomes observed in 54% of 

patients (Modified Rankin Scale score 0-2).

CONCLUSIONS The team has concluded that the IB method can 

be employed for predicting the ultimate 

infarction in patients with acute ischemic 

stroke. However, further efforts are necessary to 

make it applicable in a clinical setting.

The team has derived estimates of rEIL that provide 

valuable information about the location of ischemic 

lesions. rEIL accurately predicts significant 

improvements in VFD, and the conclusion is 

reinforced when combined with other variables, 

enhancing predictive capabilities.

Compared to a single global 

machine learning model 

trained on voxel 

information independent of 

brain location, a locally 

trained machine learning 

model provides more 

accurate predictions of 

lesion outcomes.

There exists a correlation between small 

infarct lesions and favorable functional 

outcomes, while age is associated with 

decreased chances of favorable outcomes and 

functional improvement. Standalone 

radiological information as a predictor for 

functional outcomes exhibits relatively poor 

performance. Upon incorporating imaging 

variables into patient characteristics, no 

significant differences were observed among 

the predictive variable sets.

PMID 34218182 36504664 36143010 36055039 36804312

YEAR 2021 2022 2022 2022 2023

LEARNING APPROACH machine learning machine learning machine learning machine learning machine learning

PRIMARY AUTHOR Abedi V Ahmed F Elsaid Guo Y Li Y Luo Y

(Continued)

https://doi.org/10.3389/fneur.2024.1367854
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Z
h

ao
 et al. 

10
.3

3
8

9
/fn

eu
r.2

0
24

.13
6

78
54

Fro
n

tie
rs in

 N
e

u
ro

lo
g

y
2

0
fro

n
tie

rsin
.o

rg

TABLE 3 (Continued)

DISEASE acute ischemic stroke ischemic stroke Ischemic Stroke acute ischemic stroke acute basilar artery 

occlusion

DATA VOLUME Clinical data from a cohort of 7144 patients 

retrieved from the database.

360 ischemic stroke patients were enrolled, and a 

continued investigation was conducted with a subset 

of 354 individuals.

88 DSC-PWI images from 

156 patients.

A total of 260 stroke patients undergoing 

mechanical thrombectomy at our hospital 

were randomly divided into a training set 

(n=182) and a test set (n=78) in a 7:3 ratio.

A total of 132 patients 

were randomly allocated 

into a training group (n = 

106) and a test group (n = 

26).

DATA TYPE MRI T2 diffusion-weighted MRI DSC-PWI DWI dwi

METHODS EHR generalized additive modeling (GAM) Ten machine learning 

models

Combining machine learning with radiomics 

features

radiomics-clinical 

machine learning model

RESULTS The model's average AUROC ranges from 0.76 

to 0.81, with the Random Forest model excelling 

in a one-month window (AUROC=0.82). 

Shorter prediction windows show high Negative 

Predictive Values (NPV), peaking at 91.1. The RF 

model has the highest Positive Predictive Value 

(PPV) in a six-month window (0.92), while the 

XGBoost-based model achieves the highest 

accuracy in a one-month window (precision of 

0.89). Age, hemoglobin levels, and BMI 

consistently rank as the top three influential 

factors across different prediction windows, with 

average overall importance values of 96.3%, 

68.2%, and 55.5%, respectively.

The rate of hemorrhagic transformation (HT) in 

ischemic stroke patients was 19.8%.

The R values of 

dimensionality reduction 

features (DRF) obtained 

through methods such as 

First_order, GLCM, GLDM, 

GLRRM, GLSZM, and 

NGTDM using PCA, ICA, 

t-SNE, ISOMAP, and 

UMAP were 0.110 ± 0.121, 

0.140 ± 0.079, 0.110 ± 0.121, 

0.294 ± 0.139, and 0.098 ± 

0.133, respectively.

In the training set, the AUC for predicting 

post-mechanical thrombectomy outcomes was 

0.945 (95% CI: 0.890–0.975), while in the test 

set, it was 0.920 (95% CI: 0.849–0.981).

The area under the ROC 

curve (AUC) of the 

radiomics-clinical model 

was 0.897 in the training 

group and 0.935 in the 

test group. For the 

radiomics model alone, 

the AUC was 0.887 in the 

training group and 

0.840 in the test group. 

The clinical model 

achieved an AUC of 

0.746 in the training 

group and 0.766 in the 

test group.

CONCLUSIONS The machine learning model successfully 

predicted outcomes for stroke patients across 

different time periods and highlighted the 

crucial role of these factors in predicting 

mortality rates.

The team identified cerebral microbleeds, NIHSS, 

and infarct size as predictors of HT. The optimal 

predictive models were RFC and GBC, revealing the 

ability to capture non-linear interactions among 

predictive factors.

In the detection, assessment, 

and outcome prediction of 

ischemic stroke, employing 

various feature extraction 

and dimensionality 

reduction methods can 

achieve satisfactory 

performance.

A model based on radiomic and machine 

learning features exhibits high predictive 

efficiency for the prognosis of acute ischemic 

stroke after mechanical thrombectomy.

The radiomics-clinical 

machine learning model 

based on DWI 

demonstrated satisfactory 

performance in predicting 

preoperative ineffective 

reperfusion in ABAO 

patients.

PMID 37416313 36650639 36699499 37745661 36934582

YEAR 2023 2023 2023 2023 2023

LEARNING APPROACH machine learning machine learning machine learning machine learning machine learning

PRIMARY AUTHOR Xu Y Wang X Yu H Lee J Weng S

DISEASE corpus callosum infarction acute ischemic stroke acute ischemic stroke acute ischemic stroke ischemic stroke

(Continued)
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TABLE 3 (Continued)

DATA VOLUME A total of 314 patients with acute corpus 

callosum infarction (CC)

A total of 573 patients were included in the study, 

comprising 398 with small-vessel occlusion (SVO) 

and 175 with large artery atherosclerosis (LAA) 

acute ischemic stroke (AIS).

148 patients with acute 

ischemic stroke due to 

anterior circulation artery 

occlusion.

3,687 patients were in one group, and there 

were 250 and 110 patients in the other two 

groups for validation.

CTA and MRI images 

from 97 patients

DATA TYPE Neuroimaging modalities such as MRI, MRA, 

or CTA were employed for neuroimaging 

assessments

DWI multi-modal MRI radiomics MRI and associated clinical information. CTA、DWI

METHODS interpretable machine learning-derived early 

warning strategy

Logistic regression (LR) and machine learning (ML) machine learning based on 

multi-modal MRI radiomics

ML algorithms machine learning-based 

method

RESULTS The predictive performance of the LR model for 

SCD after CC infarction surpasses that of the 

other six machine learning models. Through 

LASSO and SHAP analyses, nine key predictive 

factors were identified in the LR model output. 

Additionally, factors independently associated 

with cognitive outcomes were revealed.

In brief, the LR model for small-vessel occlusion 

acute ischemic stroke (SVO-AIS) demonstrated 

excellent outcome AUC of 0.86 [0.78–0.94] and 

good outcome AUC of 0.88 [0.8–0.96]. For the LR 

model in large artery atherosclerosis acute ischemic 

stroke (LAA-AIS), the AUCs were 0.73 [0.54–0.91] 

for excellent outcomes and 0.75 [0.59–0.91] for good 

outcomes. The GPR model for SVO-AIS exhibited 

AUCs of 0.86 [0.77–0.95] for excellent outcomes and 

0.86 [0.77–0.96] for good outcomes, while the GPR 

model for LAA-AIS had AUCs of 0.65 [0.47–0.83] 

for excellent outcomes and 0.66 [0.49–0.84] for good 

outcomes. The GOA-RF model for SVO-AIS 

achieved AUCs of 0.85 [0.75–0.94] for excellent 

outcomes and 0.84 [0.74–0.94] for good outcomes. 

The GOA-RF model for LAA-AIS showed AUCs of 

0.66 [0.49–0.84] for excellent outcomes and 0.68 

[0.51–0.86] for good outcomes. The GOA-XGBoost 

model displayed AUCs of 0.87 [0.79–0.96] for 

excellent outcomes and 0.85 [0.76–0.94] for good 

outcomes, with AUCs of 0.91 [0.84–0.97] for 

excellent outcomes and 0.90 [0.83–0.97] for good 

outcomes in the LAA-AIS population.

Among 148 patients, 83 

(56.1%) had a favorable 

prognosis, while 65 (43.9%) 

had an unfavorable 

prognosis. The accuracy of 

the SVM model was 79%, 

the RF model was 82%, the 

LightGBM model was 83%, 

the CatBoost model was 

81%, and the XGBoost 

model was 80%.

In the patient cohort, 30.4% experienced 

unfavorable outcomes, with external validation 

data showing rates of 37.2% and 29.1%, 

respectively. The internal test set, external 

validation sets A and B demonstrated AUROC 

values of 0.790, 0.791, and 0.873, while the 

Brier scores were 0.172, 0.202, and 0.141, 

respectively.

On two independent test 

sets, the accuracy (ACC) 

for the cross-validated 

dataset using the Adboost 

method was 0.8519, while 

the ACC for the 

independent test set using 

the SRC method was 

0.8125.

CONCLUSIONS The combination of the LR model and SHAP 

interpreter can assist in achieving personalized 

risk predictions and, given its suboptimal long-

term efficacy, may serve as a decision tool for 

early intervention.

Various small vessel disease (SVD) markers carry 

different prognostic weights in acute ischemic stroke 

(AIS) patients. Only the SVD burden accurately 

predicts the prognosis of small-vessel occlusion 

acute ischemic stroke (SVO-AIS) patients.

The potential value of a 

multimodal radiomic 

approach in accurately 

predicting clinical outcomes 

in patients with acute 

ischemic stroke (AIS). It 

aids in preventing mental 

disorders following a stroke.

With the aid of the SHAP method, we can 

attain an in-depth understanding of how 

critical features contribute to model 

predictions and how changes in these features 

influence such predictions

This machine learning 

approach can effectively 

explore and accurately 

quantify features related 

to stroke prognosis, 

including vascular 

structure and stroke 

location.
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CNN is considered the best tissue outcome prediction model with 
significant performance advantages (81).

In 2020, Yu et al. included 182 patients with acute ischemic stroke 
for MRI analysis. Initially, segmentation of T2-weighted fluid-
attenuated inversion recovery images was performed by 
neuroradiologists. Subsequently, image registration and normalization 
were carried out using SPM12 software, and preprocessing of images 
was done with the Tmax and ADC segmentation from RAPID software. 
The study employed a neural network with U-Net architecture and 
calculated various performance metrics, including DSC, Positive 
Predictive Value (PPV), sensitivity, specificity, lesion volume error, etc., 
for the Deep Learning model, Tmax, and ADC threshold methods. 
Data analysis was conducted using Stata version 0.70. In this study, the 
Deep Learning model exhibited a median area under the curve of 0.92 
(IQR, 0.87–0.96). Using a threshold of 0.50, the median DSC overlap 
for this model was 0.53 (IQR, 0.31–0.68), with a sensitivity of 0.66 (IQR, 
0.38–0.86), specificity of 0.97 (IQR, 0.94–0.99), PPV of 0.53 (IQR, 
0.28–0.74), volume error of 9 mL (IQR, −14-29), and absolute volume 
error of 24 mL (IQR, 11–50). The study concluded that the Deep 
Learning model appears to successfully predict infarct lesions from 
baseline imaging without the need for reperfusion information and 
performs comparably to existing clinical methods (82).

In 2020, Debs et al. included 109 patients with cerebral arterial 
occlusion who underwent thrombectomy for MRI and follow-up 
FLAIR imaging. They employed Olea Sphere software for circular 
singular value decomposition, extracting parameter maps from 
DSC-PWI images. In image processing, FSL was used to remove the 
skull and normalize the images, ensuring standardization across 
patients. Experts manually labeled lesions on baseline DWI and final 
FLAIR images using 3D Slicer. Three models were established: a 
“universal” model trained on the entire cohort without considering 
reperfusion status, a “reperfusion” model trained only on reperfusion 
patients, and a “non-reperfusion” model. These models, based on the 
U-Net architecture, received five inputs (DWI, ADC, Tmax, CBF, and 
CBV) and generated probability maps for lesions, healthy tissue, and 
background. The final infarct was defined by setting a threshold of 0.5. 
Result assessments included metrics such as DSC, accuracy, recall, 
volume similarity (VS), HD, and AUC. In non-reperfusion patients, 
the non-reperfusion model predicted an infarct volume of 39.7 mL 
with a DSC of 68%. In reperfusion patients, the reperfusion model 
predicted an infarct volume of 17.5 mL with a DSC of 89%. 
CNN-based models demonstrated excellent AUC values, with 0.87 for 
reperfusion patients and 0.81 for non-reperfusion patients. The study 
concluded that incorporating reperfusion status into training 
enhances model performance, and CNN outperforms clinical models. 
Predicting the final infarct plays a crucial role in evaluating treatment 
efficacy (83).

In 2020, Osama et  al. included DWI and PWI data from 43 
patients with acute ischemic stroke. They constructed a neural 
network model based on multi-parameter feature embedding (PMFE-
SN) and applied it to predict the outcomes of acute ischemic stroke 
treatment. By preprocessing the images and employing two twin 
convolutional neural networks to build Siamese networks, effective 
feature extraction for samples of the same or different categories was 
achieved. At the output layer, the extracted features were normalized 
using cosine similarity, and training was performed with the 
backpropagation algorithm and stochastic gradient descent to 
minimize the binary cross-entropy loss function. The study extensively 

used various evaluation metrics, including Mean Absolute Error 
(MAE), macro-average F1 (F1macro), macro-average precision 
(Pmacro), macro-average recall (Rmacro), Matthews Correlation 
Coefficient (MCC), and AUC. The results showed a significant 
improvement in evaluation metrics for PMFE-SN compared to 
traditional random forest methods. Pmacro increased from 0.152 to 
0.258, Rmacro increased from 0.21 to 0.31, F1macro increased from 
0.18 to 0.28, and MCC increased from 0.04 to 0.09. The overall AUC 
value increased from 0.50 for the random forest method to 0.81. The 
research conclusion explicitly stated that PMFE-SN demonstrated 
excellent performance in predicting categories with both few and 
numerous samples (84).

In 2021, Bo et al. randomly selected 50 patients admitted to the 
hospital from January 2019 to January 2021. They conducted an 
analysis of the impact features of MRI on critically ill patients with 
cerebral infarction using CNN and explored the clinical application of 
Artificial Intelligence-assisted systems in imaging. Additionally, they 
established a CNN Artificial Intelligence system for learning and 
training, utilizing the CNN system to extract data such as pixel 
grayscale statistics, regional feature descriptions, and local region 
gradient analysis. The data were then computed using computer 
technology. Comparing the segmentation results, it was found that the 
segmentation Dice coefficient of U-Net without additional supervision 
was 81.74 ± 0.40%, and P-Net’s Dice coefficient was 86.39 ± 0.31%. In 
the first stage, DPA-UNet was 83.52 ± 0.31%, in the second stage, it 
was 88.29 ± 0.27%, and in the third stage, it was 91.74 ± 0.12%. There 
was no significant difference between the data sets. A higher Dice 
coefficient indicates more accurate segmentation. Through the 
analysis of T1WI, contrast-enhanced T1WI, and T2WI images, 
significant differences were found between GLSZM and ALL, GLRLM, 
MGLSZM, and GLSZM (85).

In 2021, Ma et al. selected 36 patients diagnosed with lacunar 
cerebral infarction (LCI) between February 2019 and June 2020 as the 
study subjects. The objective was to explore the MRI features using the 
fuzzy local information C-means clustering (FLICM) image 
segmentation method and to analyze the risk factors for recurrent 
stroke in patients with lacunar infarction. The study, based on the 
FLICM algorithm, introduced the Canny edge detection algorithm, 
and Fourier shape descriptors to optimize the algorithm. The research 
investigated the differences in Jaccard coefficient, Dice coefficient, 
peak signal-to-noise ratio (PSNR), structural similarity index measure 
(SSIM), processing time, and segmentation accuracy between the 
optimized FLICM algorithm and other algorithms when segmenting 
brain tissue MRI images. Patients were categorized into a control 
group (no recurrent stroke, 20 cases) and a stroke group (recurrent 
stroke, 16 cases) based on whether they experienced another stroke. 
The study compared the differences in MRI features between the two 
groups and utilized logistic multivariate regression analysis to identify 
risk factors for recurrent stroke after lacunar infarction. The results 
showed that, under the same noise conditions, the optimized FLICM 
algorithm exhibited higher Jaccard coefficient, Dice coefficient, PSNR, 
and SSIM values when segmenting brain tissue compared to other 
algorithms. Additionally, age and a history of hypertension were 
identified as risk factors for recurrent stroke after lacunar 
infarction (86).

In 2021, Tolhuisen et  al. included 316 FU-DWI (Follow-Up 
Diffusion Weighted Imaging) data from the HERMES, ISLES, and MR 
CLEAN-NOIV databases. They transformed DWI images into 
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standard MNI space using the SPM8 toolbox. A Deepmedic network 
was trained on the DWI images from the HERMES dataset, with the 
data split into training set (70%), validation set (10%), and test set 
(20%). The trained network was then applied to other datasets. 
Simultaneously, they manually adjusted using ITK-SNAP, and 
developed and optimized a Convolutional Autoencoder (CAE) using 
the Keras library. The study aimed to accurately predict functional 
independence within 90 days using mRS scores. They optimized SVM 
by adjusting the kernel type, coefficient (gamma), and regularization 
parameter (C). Feature normalization was performed on all features 
using scikit-learn’s “RobustScaler” function, with 80% of DWI images 
used for 5-fold cross-validation. The remaining 20% of images were 
used to test the final classifier’s performance by evaluating AUC of 
ROC curve. DeLong’s test was applied for pairwise comparisons and 
to test for statistical differences. The study results demonstrated that 
the AUC values for the CAE and radiomics feature-based classifier 
were 0.88 and 0.81, respectively, while the FIV-based classifier had an 
AUC value of 0.79. The SVM classifier based on radiomics features 
achieved the highest accuracy of 0.80, whereas the SVM classifier 
based on FIV had the highest recall of 0.73 (87).

In 2022, Zeng et al. included 711 ischemic stroke patients admitted 
between March 1, 2017, and December 31, 2020, as the training group. 
Additionally, they included 140 ischemic stroke patients admitted to 
the same hospital between January 1, 2021, and May 1, 2021, as the 
testing group. Patients were assessed with NIHSS scores on admission 
and on the seventh day (classified as stage 1 if NIHSS <5 and stage 2 
if NIHSS ≥5). The testing group underwent MRI within 24 h to 7 days 
after a subacute stroke episode and received thrombolysis. The 
researchers converted DICOM DWI to NIfTI format, removed DWI 
artifacts, corrected image alignment using 3Dslicer, normalized 
images, and adjusted pixel size using SimpleITK. The data were 
divided into eight models (Models A-H) based on admission NIHSS 
and NIHSS on the seventh day. They employed 3D CNN models 
(Models E-G) based on input DWI with pixel and preprocessing 
strategies. The performance of different models was compared using 
the DeLong test (p < 0.05, statistically significant), and AUC was 
evaluated after exporting results. Model E demonstrated the highest 
AUC in the testing set, particularly in predicting NIHSS stage on 
admission. Model A performed best in predicting NIHSS stage on 
admission when a subsequent ischemic stroke occurred, with Model 
D correctly predicting all cases of subsequent ischemic stroke in later 
cycles. For predicting NIHSS stage on the seventh day of 
hospitalization, Model E had the highest AUC, with relatively higher 
AUC in predicting NIHSS stage on the seventh day in patients with 
anterior circulation ischemic stroke and relatively lower AUC in 
predicting NIHSS stage on the seventh day in patients with posterior 
circulation ischemic stroke (88).

In 2022, Wong et al. included 875 patients with acute ischemic 
stroke (700 in the training set and 175 in the testing set) with DWI 
and MRI data. They manually segmented acute infarct volumes 
using MRIcro, selecting eADC to confirm the diffusion-restricted 
portion of the infarct, and extracting image volumes in Matlab 
using SPM12 tools. Subsequently, they employed a Deep Learning 
model, training a group convolutional neural network with U-Net 
architecture and Dice loss function, incorporating augmentations 
like rotation and reflection for segmentation. Evaluation metrics 
such as Dice scores, precision, and recall were compared with 
manual labels. Additionally, a multivariate logistic regression model 

was constructed to assess the predictive impact of topological 
infarct volume on 90-day mRS outcomes. In the testing data, the 
model without data augmentation achieved a Dice score of 0.85, 
precision of 0.83, and recall of 0.89. The model with data 
augmentation had a Dice score of 0.84, precision of 0.84, and recall 
of 0.89. Using each output for 30 fine brain regions to predict the 
mRS achieved an AUC of 0.80 and accuracy of 0.75 (89).

In 2022, Nazari-Farsani et al. included 455 patients with acute 
ischemic stroke, and obtained DWI and PWI images. They initially 
preprocessed the images using SPM12 software and then applied a 3D 
Attention Gated (AG) U-net model with Rectified Linear Unit (ReLU) 
activation function and ADAM optimizer. The model was subjected 
to 5-fold cross-validation using a hybrid loss function. The evaluation 
metrics included AUC, sensitivity, specificity, DSC, volume error, 
absolute volume error, and Jaccard index. Statistical analysis was 
conducted using the Scipy package in Python. The results showed that 
the median AUC of the DCNN model was 0.91 (IQR: 0.84–0.96). 
Using a probability threshold of 0.5, the median sensitivity, specificity, 
and Jaccard index were 0.60 (IQR: 0.16–0.84), 0.97 (IQR: 0.93–0.99), 
and 0.50 (IQR: 0.21–0.70), respectively. The DCNN model’s median 
DSC was 0.50, while the ADC threshold method had a median DSC 
of 0.18 (p < 0.01). The predicted volume by the model exhibited a high 
correlation with the actual lesion volume, with a correlation coefficient 
of 0.73 (p < 0.001) (90).

In 2022, Moulton et al. included patients suspected of large vessel 
occlusion and candidates for reperfusion therapy with DWI. They 
preprocessed the images using techniques such as skull stripping, 
manual correction, and normalization. High-level feature sets were 
generated using VGGNet, and the model was trained and evaluated 
through internal training-validation sets and LOCO cross-validation. 
Adam optimizer and binary cross-entropy loss function were 
employed during model training. The analysis involved 322 patients, 
with 113 from the Pitié-Salpêtrière registry, 94 from the Insulin Stroke 
Trial, and 115 from six centers in the ASTER trial. Significant 
differences were found in stroke-to-needle time (p = 0.008) and stroke 
side (p < 0.001). The Deep Learning ensemble model performed the 
best, with an accuracy of 0.79, AUC of 0.83, sensitivity of 0.67, 
specificity of 0.87, PPV of 0.79, and NPV of 0.78. The conclusion 
suggests that the model has potential applications in predicting long-
term functional outcomes in stroke patients and could be used as a 
patient stratification strategy for neuroprotective and rehabilitation 
therapies (91).

In 2023, Lv et al. included 282 patients with 50% stenosis of the 
internal carotid artery for MRI 1 week later. They preprocessed 
DICOM images, applied convolution, utilized max-pooling layers, and 
fully connected layers to output images. Features from different 
modalities were concatenated, and a Fully Connected (FC) layer was 
created in the corresponding dimension of the channel to obtain 
classification results. In statistics, the loss function allows the 
evaluation of the difference between the true and predicted values. 
They measured the performance of common machine learning 
methods based on the random forest, logistic regression, and XGBoost 
concepts in predicting recurrent stroke. The models were trained to 
minimize the differences between model values and actual values. 
Results showed that the AUC values for four different modalities were 
62.2, 68.9, 65.4, and 60.4%, respectively. The AUC for T2WI modality 
was 8.5% higher than that for the ADC modality. ADC modality 
performed relatively worse, being 11.6% lower than the FLAIR 
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modality, which exhibited better performance. The AUC values for the 
three algorithms were 50.6, 64.8, and 66.8%, with XGBoost achieving 
an AUC of 66.8% (92).

In 2023, Ye et al. conducted a study involving 441 patients with 
acute ischemic stroke. They utilized MRI and grouped the patients 
based on the prognosis NIHSS scores. The ITK-SNAP 6.0.3 software 
was employed to independently segment ROIs in the images, 
generating three-dimensional structural data of the lesions. 
Subsequently, radiomic features of each annotated lesion were 
extracted using radiomics analysis tools (Pyradiomics software 
package), resulting in a total of 17 clinical features and 851 radiomic 
features. After preprocessing steps such as data imputation, denoising, 
standardization, filtering, concatenation, and balancing, they 
constructed a multi-level cascaded Deep Learning ensemble (EDL) 
model, combining ensemble learning and Deep Learning. The 
optimized Deep Learning ensemble (OEDL) model was established 
by introducing the big bang optimization algorithm (BBOA). Model 
training was carried out on a Linux workstation equipped with a GPU, 
utilizing the Python 3.7 platform and TensorFlow 2.8 framework, with 
70% of the data allocated for the training set and 30% for the test set. 
The statistical analysis of clinical, radiomic, performance prediction, 
and comparative results showed that Macro-AUC, ACC, Macro-R, 
Macro-P, and Macro-F1 achieved values of 97.89, 95.74, 94.75, 94.03, 
and 94.35%, respectively. In comparison, the EDL method 
demonstrated a Macro-AUC of 96.68% and ACC of 92.55%. The 
OEDL method achieved a Macro-AUC of 97.89% and ACC of 95.74%. 
The SMOTEENN-based mixed sampling method exhibited the best 
classification performance, with Macro-AUC, ACC, Macro-R, 
Macro-P, and Macro-F1 reaching 97.89, 95.74, 94.75, 94.03, and 
94.35%, respectively (93).

The main information of the above included literatures is shown 
in Table 4.

2.6 The potential applications of other 
imaging modalities in ischemic stroke

2.6.1 Positron emission tomography
Positron emission tomography scans, employing oxygen-15 

technology, provide information about glucose and oxygen 
metabolism abnormalities, ranging from the penumbra to ischemic 
tissue (94). With PET, it is possible to assess CBF reserve capacity in 
carotid atherosclerosis, aiding in the planning of future intervention 
strategies (95). In addition, TSPO PET can provide detailed 
information about metabolic and molecular changes during the 
neuroinflammatory phase after a stroke. However, the gold standard 
for TSPO PET quantification involves a 90-min scan and continuous 
arterial blood sampling, which is undoubtedly challenging in routine 
clinical practice. Artem Zatcepin and colleagues developed a machine 
learning-based algorithm to establish a simplified TSPO quantification 
method that can be  easily implemented in clinical settings (96). 
Measurements of brain metabolism can provide new kinds of data for 
deep learning models, especially those based on computer vision. By 
combining metabolic and anatomic information, we can provide a 
more comprehensive picture of brain injury and build a more accurate 
predictive model of recovery. The detection of the brain metabolism 
of patients during rehabilitation can not only provide potential 
information support for the adjustment of rehabilitation measures, but 

also provide data sources for the construction of deep learning models 
containing temporal information.

2.6.2 Single photon emission computed 
tomography

Ongoing advancements in SPECT instrumentation have 
facilitated the clinical application of several new technologies, 
including semiconductor Cadmium Zinc Telluride (CZT) detectors, 
absolute quantification of radiopharmaceutical uptake, multi-bed 
position whole-body SPECT acquisition, and novel non-parallel-hole 
collimators (97). The application of SPECT allows for the detection of 
cerebral blood flow reserve capacity in patients with carotid 
atherosclerotic disease, aiding in the formulation of future intervention 
plans (95). Using the acetazolamide challenge test, SPECT can also 
assess the decline in vascular reserve function. This information can 
be  used to predict whether patients undergoing carotid 
endarterectomy will experience ischemia. SPECT is capable of 
characterizing the content of atherosclerotic plaques, including 
oxidized low-density lipoprotein and apoptotic bodies (98). 
Furthermore, SPECT can provide detailed information about 
metabolic and molecular changes (99). Based on these characteristics, 
SPECT has long been used for the evaluation of brain ischemia 
recovery (100). SPECT is currently used to explore the mechanism by 
which thalamic injury leads to a decline in word retrieval ability 
during brain ischemia recovery (101). Similarly, SPECT is also used 
to assess mid-term motor recovery after cerebral infarction (102). In 
summary, AI models based on SPECT have the potential for 
quantitative assessment of recovery progress.

2.6.3 Dual-energy computed tomography
There has been some progress in the application of DECT in 

ischemic stroke. In a study by Na-Young Shin and colleagues, it was 
demonstrated that the collateral circulation status recorded by DECT 
could serve as a useful indicator for predicting the clinical prognosis 
of acute stroke patients (103). Additionally, Wang et  al. (104) 
confirmed that DECT has certain value in the early diagnosis and 
prediction of intracranial hemorrhage after mechanical thrombectomy 
in patients with acute ischemic stroke. Furthermore, due to the 
advantages of dual-energy CT in measuring bone and muscle, it can 
be used to assess the recovery of motor function in stroke patients 
after rehabilitation therapy. This enables timely adjustments to the 
rehabilitation plan (105, 106).

3 Discussion

3.1 Existing methods

In current Artificial Intelligence-related research, due to clinical 
practical needs and challenges in data acquisition, researchers 
primarily utilize CT and MRI imaging modalities to assess ischemic 
stroke. Among these, MRI is undoubtedly the most widely used 
imaging modality. Although MRI has certain limitations for patients 
with metallic implants or claustrophobia, it can detect ischemic lesions 
earlier and more sensitively through diffusion-weighted imaging. The 
multiple imaging modalities of MRI also enable researchers to acquire 
more medical information, constructing more robust models. Another 
primary imaging modality without a doubt is CT. CT, as a simple, 
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TABLE 4 Summary of papers on deep learning for MRI on rehabilitation of ischemic stroke.

PMID 29720437 30568631 31131293 32163165

Year 2018 2018 2019 2020

Learning approach Deep learning Deep learning Deep learning Deep learning

Primary author Nielsen A Pinto A Ho KC Yu Y

Disease Acute ischemic stroke Stroke lesion Ischemic stroke Acute ischemic stroke

Data volume A total of 222 patients were included, with 187 

receiving rtPA treatment (recombinant tissue-

type plasminogen activator).

75 ischemic stroke patients divided into two groups: training (n = 43) 

and testing (n = 32),

444 patient MR images were retrieved and 

examined from the University of California-Los 

Angeles picture archiving and communication 

system between December 2005 and December 

2015.

182 patients with acute ischemic 

stroke, in accordance with the 

conventions of scientific literature.

Data type MRI MRI MRI, Handcrafted features derived from 

perfusion images.

MRI

Methods CNNdeep Adopting a deep learning architecture that combines U-net with two-

dimensional Gated Recurrent Units (GRU), following the pattern of 

nature.

Deep convolution neural networks (CNNs) Neural network

Results The AUC for CNNdeep is 0.88, surpassing the 

generalized linear model with an AUC of 0.78, 

CNNTmax with an AUC of 0.72, ADCthres with 

an AUC of 0.66, and substantially outperforming 

CNNshallow with an AUC of 0.85.

In accordance with the conventions of Nature: Dice Similarity 

Coefficient (DSC): Baseline 0.34 ± 0.22, Proposal 0.35 ± 0.22; Hausdorff 

Distance: Baseline 35.09 ± 17.27, Proposal 31.38 ± 15.81; Average 

Symmetric Surface Distance (ASSD) series: Baseline 6.08 ± 5.27, 

Proposal 5.55 ± 5.00; Precision: Baseline 0.37 ± 0.29, Proposal 0.41 ± 0.30; 

Recall: Baseline 0.54 ± 0.26, Proposal 0.47 ± 0.24.

Our deep CNN model improves feature 

learning, achieving an AUC of 0.871 ± 0.024, 

outperforming existing models for tissue fate.

The curve of 0.92, DSC of 0.53, and 

volume error of 9 mL.

Conclusions The notable improvement in prediction accuracy 

enhances the potential for automated decision 

support, offering personalized treatment plan 

recommendations, surpassing the current state-

of-the-art.

Leveraging deep learning for stroke outcome prediction, the study 

demonstrates promising outcomes on the ISLES 2017 dataset while 

indicating avenues for potential enhancements in clinical applications.

Our study utilizes deep learning techniques for 

predicting stroke tissue outcomes, advancing 

magnetic resonance imaging perfusion analysis 

toward becoming an operational decision 

support tool for guiding stroke treatment.

The deep learning model accurately 

predicted infarct lesions without 

reperfusion information, performing 

similarly to current clinical methods.

PMID 33450521 33105609 34385896 34887708

Year 2021 2020 2021 2021

Learning approach Deep learning Deep learning Deep learning Deep learning

Primary author Debs N Osama S Bo Y Chunli Ma

Disease Acute ischemic stroke Acute ischemic stroke Cerebral infarction Lacunar cerebral infarction

Data volume 109 patients, including 35 without reperfusion. 43 samples from the ISLES 2017 dataset. 50 patients with cerebral infarction were selected 

randomly.

36 patients with lacunar myosphere 

infarction (no recurrence in the 

control group, n = 20, recurrence in 

the stroke group, n = 16).

(Continued)
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TABLE 4 (Continued)

PMID 29720437 30568631 31131293 32163165

Data type Baseline diffusion and perfusion-weighted 

magnetic resonance imaging (MRI)

DWI、PWI MRI MRI

Methods Convolutional neural networks (CNN) Parallel multi-parametric feature embedded siamese network (PMFE-

SN)

Convolutional neural network (CNN) Deep learning algorithm

Results The peak values of DSC (Dynamic Susceptibility 

Contrast) in reperfused and non-reperfused 

patients were 0.44 ± 0.25 and 0.47 ± 0.17, 

respectively. The Area Under the Curve (AUC) 

for reperfused patients was 0.87 ± 0.13, while for 

non-reperfused patients, it was 0.81 ± 0.13. The 

AUC for the perfusion-diffusion mismatch model 

was 0.73 ± 0.14.

PMFE-SN exhibits a significant improvement compared to traditional 

random forest methods. Pmacro increased from 0.152 to 0.258, Rmacro 

improved from 0.21 to 0.31, F1macro rose from 0.18 to 0.28, and MCC 

increased from 0.04 to 0.09. The overall AUC value elevated from 0.50 

with the random forest method to 0.81.

In the absence of additional supervision, U-Net 

exhibited a segmentation Dice coefficient of 

81.74 ± 0.40%, while P-Net demonstrated a Dice 

coefficient of 86.39 ± 0.31%. The first stage of 

DPA-UNet yielded a Dice coefficient of 

83.52 ± 0.31%, the second stage achieved 

88.29 ± 0.27%, and the third stage reached 

91.74 ± 0.12%. There were no significant 

differences observed among the data sets.

The optimized FLICM algorithm, 

under the same noise conditions, 

exhibits higher Jaccard coefficient, 

Dice coefficient, PSNR, and SSIM 

values in the segmentation of brain 

tissues compared to other algorithms. 

Furthermore, age and a history of 

hypertension are identified as risk 

factors for recurrent strokes following 

lacunar infarction.

Conclusions Utilizing a convolutional neural network (CNN)-

based model demonstrates superior performance 

compared to the perfusion-diffusion mismatch 

model commonly employed in clinical settings.

PMFE-SN demonstrates exceptional performance in predicting 

categories with both fewer and more samples, delving into pre-and 

post-treatment clinical data. Exploring the use of additional similarity 

metrics in this context could contribute to a comprehensive 

enhancement of predictive accuracy for outcomes in acute ischemic 

stroke treatment.

Utilizing CNN to analyze features in MRI 

images of critically ill cerebral infarction 

patients, we have identified an image diagnostic 

method that mitigates subjective visual 

judgment errors to a certain extent. The 

introduction of a deep supervision mechanism 

enhances the recognition capabilities of U-Net, 

holding significant importance for the accurate 

extraction and reconstruction of MRI images in 

patients with cerebral infarction.

The optimized FLICM algorithm 

demonstrates effective segmentation 

of brain MRI images, with age and a 

history of hypertension identified as 

risk factors for recurrent strokes in 

lacunar infarction patients. This study 

provides valuable insights for the 

diagnosis and prognosis of lacunar 

infarction

PMID 35892499 35887776 35545938 36481696

Year 2022 2022 2022 2023

Learning approach Deep learning Deep learning Deep learning Deep learning

Primary author Tolhuisen ML Zeng Y Wong KK Nazari-Farsani S

Disease Acute ischemic stroke Ischemic stroke Acute ischemic stroke Ischemic stroke

Data volume 316 follow-up DWI datasets sourced from the 

HERMES, ISLES, and MR CLEAN-NOIV 

databases.

851 patients (711 in the training set and 140 in the test set) 875 patients (n = 700 in the training group, 

n = 175 in the test group)

445 patients

Data type FU-DWI DWI MRI, DWI PWI

Methods Deep learning network CNN A rotation-reflection equivariant model was 

developed based on U-Net and grouped 

convolutions.

Deep convolutional neural network 

(DCNN)

(Continued)
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TABLE 4 (Continued)

PMID 29720437 30568631 31131293 32163165

Results The AUC values for the CAE and radiomic 

features classifier are 0.88 and 0.81, respectively, 

while the classifier based on FIV achieves an AUC 

value of 0.79. The SVM classifier based on 

radiomic features attains the highest accuracy at 

0.80, whereas the SVM classifier based on FIV 

achieves the highest recall at 0.73.

Following the conventions of scientific writing: The proposed model 

exhibits improved performance in predicting NIHSS stages on the 7th 

day of hospitalization compared to admission (best AUC 0.895 vs. 

0.846). Model D, trained on DWI images, achieved the best AUC of 

0.846 in predicting NIHSS stages at admission. Model E, also trained on 

DWI images, achieved the best AUC of 0.895 in predicting NIHSS 

stages on the 32nd day of hospitalization. The model demonstrates 

favorable performance in predicting NIHSS stages on the 7th day of 

hospitalization for both anterior and posterior circulation strokes, with 

best AUCs of 7.0 and 905.0, respectively.

The segmentation model achieved Dice scores of 

0.88 (training) and 0.85 (testing). The AUC for 

predicting modified Rankin Scale outcomes 

based on refined stroke volumes in 30 brain 

regions was 0.80, with an accuracy of 0.75.

The model achieved a median AUC of 

0.91. Using a threshold of 0.5 for 

infarction probability, median 

sensitivity and specificity were 0.60 

and 0.97 respectively, while the 

median DSC was 0.50, and the 

absolute volume error was 27 mL.

Conclusions The prediction of functional outcomes should not 

solely rely on FIV; FU-DWI images should 

capture additional prognostic information

Our 3D-CNN model efficiently predicts stroke-related neurologic 

damage using DWI images, demonstrating outstanding performance in 

predicting NIHSS stages on the 7th day of hospitalization. It holds 

potential clinical decision-making value in subgroup analysis.

We developed a rotation-reflection equivariant 

deep learning model to effectively segment acute 

ischemic stroke lesions in diffusion-weighted 

imaging, showcasing competitive performance 

in well-balanced testing cases across different 

vascular territories. Moreover, when integrated 

with clinical factors, the model exhibited high 

accuracy and AUC in predicting 90-day 

modified Rankin Scale outcomes.

An AG-DCNN using diffusion 

information alone upon admission 

was able to predict infarct volumes at 

3–7 days after stroke onset with 

comparable accuracy to models that 

consider both DWI and PWI.

PMID 36169033 36908778 37416306

Year 2023 2023 2023

Learning approach Deep learning Deep learning Deep learning

Primary author Moulton E Lv P Ye W

Disease Post-stroke Carotid atherosclerotic stenosis Acute ischemic stroke

Data volume 322 patients from the ASTER and 

INSULINFARCT trials as well as the Pitié-

Salpêtrière registry.

Patients with 50% stenosis in 282 internal carotid arteries 441 patients with acute ischemic stroke, 17 

clinical features and 19 radiomic features were 

included.

Data type DWI MRI Clinical and radiomics features

Methods Convolutional neural networks (CNN) Multi-modality fused network Optimized ensemble of deep learning (OEDL) 

method.

(Continued)
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feasible, and cost-effective diagnostic method, is widely favored among 
clinicians and emergency patients. CT enhancement or perfusion 
imaging methods performed on the basis of routine CT scans have 
been proven to have a powerful detection and evaluation effect.

Currently, the number of studies based on machine learning and 
deep learning is roughly equal. In terms of machine learning, 
modeling based on image texture features remains popular among 
researchers. Meanwhile, methods for extracting image texture 
features are applicable to various MRI sequences and facilitate the 
integration of information from different sequence images. However, 
this method requires the annotation of regions of interest (ROIs) to 
ensure consistency, leading to a significant amount of manual 
annotation and inspection of images, making it difficult to include a 
large number of samples in this type of research. Additionally, it is 
noteworthy that there are very few studies in rehabilitation-related 
machine learning research that adopt entirely new algorithms. 
Researchers still use several classical machine learning algorithms for 
modeling and determine the best model after comparing using a 
single evaluation parameter (usually AUC). Research related to deep 
learning has been rapidly growing in recent years. Both methods of 
data annotation are used by researchers. Firstly, studies based on deep 
learning can, like those based on texture analysis, use only ROIs for 
classification after re-annotation. This method constrains the data 
acquisition range through prior knowledge, which can effectively 
improve the model’s accuracy under normal circumstances. Another 
method directly uses 3D brain images. Unlike the ROI annotation 
method, this method greatly expands the source of information. For 
strokes, this method incorporates not only information related to the 
severity of the injury within the ROI (usually the lesion) but also 
extracts information such as the relative extent and spatial location 
of the damage. This may predict the patient’s recovery status by 
evaluating potential compensatory capabilities. More importantly, 
using 3D images to build models eliminates the need for manual 
annotation, greatly reducing the difficulty of expanding the sample 
size and helping to improve the robustness of the model. Although 
neural network structures are more flexible compared to machine 
learning, researchers still prefer to use neural networks that have 
shown good performance on other types of datasets, rarely adjusting 
the neural network structure based on task characteristics. This 
means that there is still significant room for improvement in stroke 
rehabilitation research based on deep learning.

3.2 Summary

Ischemic stroke can lead to serious consequences, including 
permanent brain damage and neurological deficits. Therefore, 
reducing and preventing neural damage caused by strokes has always 
been a focal point of research. Assessing the long-term and short-
term recovery of patients through imaging enables the early 
identification of those requiring intervention and facilitates 
adjustments to rehabilitation plans based on imaging evaluation 
results, thereby enhancing patient quality of life. As one of the 
non-invasive diagnostic methods capable of acquiring a large amount 
of medical information, AI-based neuroimaging has demonstrated 
its ability to assess the long-term and short-term recovery of stroke 
patients. This suggests that AI-based neuroimaging holds potential 
for guiding rehabilitation programs. Therefore, conducting T
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neuroimaging follow-up during therapy and using AI methods to 
clarify the qualitative and quantitative relationships between 
rehabilitation interventions and neuroimaging is an area worthy of 
further exploration by researchers.
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