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Background: Cerebral small vessel disease (CSVD) is a common 
neurodegenerative condition in the elderly, closely associated with cognitive 
impairment. Early identification of individuals with CSVD who are at a higher 
risk of developing cognitive impairment is crucial for timely intervention and 
improving patient outcomes.

Objective: The aim of this study is to construct a predictive model utilizing 
LASSO regression and binary logistic regression, with the objective of precisely 
forecasting the risk of cognitive impairment in patients with CSVD.

Methods: The study utilized LASSO regression for feature selection and logistic 
regression for model construction in a cohort of CSVD patients. The model’s 
validity was assessed through calibration curves and decision curve analysis 
(DCA).

Results: A nomogram was developed to predict cognitive impairment, 
incorporating hypertension, CSVD burden, apolipoprotein A1 (ApoA1) levels, and 
age. The model exhibited high accuracy with AUC values of 0.866 and 0.852 for 
the training and validation sets, respectively. Calibration curves confirmed the 
model’s reliability, and DCA highlighted its clinical utility. The model’s sensitivity 
and specificity were 75.3 and 79.7% for the training set, and 76.9 and 74.0% for 
the validation set.

Conclusion: This study successfully demonstrates the application of machine 
learning in developing a reliable predictive model for cognitive impairment in 
CSVD. The model’s high accuracy and robust predictive capability provide a 
crucial tool for the early detection and intervention of cognitive impairment in 
patients with CSVD, potentially improving outcomes for this specific condition.
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1 Introduction

Cerebral small vessel disease (CSVD) is intricately linked to 
cognitive decline and represents a critical focus in the study of vascular 
contributions to cognitive impairment and dementia (1–3). This 
spectrum of pathological processes has been increasingly recognized 
for its substantial impact on public health, especially given the aging 
global population (2, 4–7). Despite its clinical importance, the 
detection and quantification of cognitive impairment attributable to 
CSVD remain fraught with complexities. Cognitive symptoms often 
manifest subtly and progress insidiously, making early diagnosis a 
formidable challenge in clinical settings (8).

The traditional approach to diagnosing CSVD-related cognitive 
impairment relies heavily on clinical judgment, which is subject to 
variability and may fail to capture the nuanced progression of the 
disease. Consequently, there is a pressing need for objective and 
reproducible diagnostic tools that can accurately predict the onset and 
trajectory of cognitive decline in CSVD. Addressing this need, our 
study introduces a predictive model that synthesizes demographic, 
clinical, neuroimaging, and biomarker data to objectively assess the 
risk of cognitive decline. The current models in literature have either 
not incorporated such a diverse dataset or have not been validated 
sufficiently for clinical application (9, 10). Our approach utilizes 
advanced machine learning techniques, including LASSO regression 
for feature selection and logistic regression for model development, 
filling a critical gap by providing a tool with both high sensitivity and 
specificity for CSVD cognitive sequelae.

This study leverages a comprehensive dataset of 377 CSVD 
patients, encompassing a wide array of variables including 
demographic details, clinical history, neuroimaging findings, and 
biomarkers. Through rigorous statistical methodologies, we aim to 
construct a predictive model that not only distinguishes between 
patients with and without cognitive impairment but also provides a 
probabilistic assessment of the risk of cognitive decline. By adopting 
machine learning techniques, particularly LASSO regression for 
feature selection followed by logistic regression for model 
development, we seek to create a model that is both sensitive and 
specific to the cognitive sequelae of CSVD.

In doing so, our objectives are twofold: firstly, to present a model 
that can be  readily applied in clinical practice for the early 
identification of patients at risk of cognitive impairment due to CSVD, 
and secondly, to contribute to the body of knowledge that underpins 
the intersection of neurovascular pathology and neurodegeneration. 
It is our anticipation that such a model will not only facilitate early 
intervention strategies but also spur further research into targeted 
therapies for this underdiagnosed yet prevalent condition.

2 Materials and methods

2.1 Study population and design

In a cross-sectional study conducted from July 2022 to October 
2023 at the Neurology Department of the Affiliated Hospital of Hebei 
University, we targeted a cohort of patients aged 50 and above. These 
participants were subjected to comprehensive cranial magnetic 
resonance imaging (MRI) to confirm CSVD diagnosis. The inclusion 
criteria mandated completion of a full cranial MRI series, provision of 

serum samples for ELISA testing to assess inflammatory markers, and 
undergoing the Montreal Cognitive Assessment (MoCA) to gauge 
cognitive function. The MoCA, a widely acknowledged tool for 
detecting mild cognitive impairments, was specifically chosen for its 
robust validity across diverse age groups and clinical conditions (11, 
12), thereby serving as an optimal instrument for assessing CSVD-
related cognitive impairments. The scoring of MoCA was conducted 
by trained personnel, adhering to standardized procedures to ensure 
consistency and reliability of cognitive function assessment. Exclusion 
criteria encompassed the presence of neurological conditions other 
than CSVD that might impair cognitive function, a history of 
psychiatric disorders or current use of psychoactive drugs, 
contraindications to MRI such as claustrophobia or presence of metal 
implants, inadequate quality of cranial MRI for reliable assessment, 
acute infections and severe systemic illnesses that could impede 
participation in the study. Participants’ cognitive status was 
categorized based on MoCA scores, with scores of 25 or below 
indicating cognitive impairment, and scores of 26 or above denoting 
normal cognitive function. Alongside MRI diagnostics, participants 
underwent routine lab tests including complete blood count, renal and 
liver function tests, and electrolyte panels. Informed consent for 
serum sample collection for ELISA testing was obtained in line with 
ethical standards. This study was conducted in strict adherence to 
ethical guidelines and was approved by the Ethics Committee of the 
Affiliated Hospital of Hebei University, with the approval number 
HDFYLL-KY-2023-060. This approval ensures that our study complies 
with the ethical principles outlined in the 1964 Helsinki Declaration 
and its subsequent amendments, reaffirming our commitment to the 
highest standards of research ethics.

2.2 MRI acquisition and assessment in 
CSVD patients

In our study, all participants were subjected to brain MRI 
examinations using a state-of-the-art 3.0 T GE scanner. The 
identification of CSVD was reliant on the detection of specific 
neuroimaging indicators, which included any combination of lacunes, 
white matter hyperintensities (WMH), enlarged perivascular spaces 
(EPVS), and cerebral microbleeds (CMBs). In this context, WMH 
were defined as regions showing elevated signal intensity on 
T2-weighted images, often symmetrically distributed across brain 
hemispheres. Lacunes were described as round or ovoid cerebrospinal 
fluid-signal lesions with diameters ranging between 3 and 15 mm. 
Additionally, CMBs manifested as small, round, hypointense areas, 
2–10 mm in size, evident in susceptibility-weighted imaging 
sequences. In line with the comprehensive CSVD scoring 
methodology initially developed by Wardlaw et  al. (5, 11), 
we evaluated the total CSVD burden employing an ordinal scale that 
spans from 0 to 4. This evaluation process included assigning one 
point for each of the following criteria: the severity of WMH, as 
indicated by a periventricular WMH score of 3 or a deep WMH score 
between 2 and 3; the presence of lacunes; the existence of CMBs; and 
the significant presence of basal ganglia EPVS, particularly exceeding 
a count of 10 (12). For an accurate and unbiased evaluation of these 
CSVD markers, neuroimaging specialists Yan Hou and Huan Zhou, 
devoid of access to the participants’ clinical information, undertook 
the assessment. Their analysis adhered rigorously to the Standards for 
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Reporting Vascular Changes on Neuroimaging (STRIVE) criteria (11, 
13), which provided a framework for consistent and reliable 
interpretation of CSVD-related neuroimaging findings.

2.3 Clinical blood biochemistry assessment

In this study, we performed an extensive assessment of clinical 
blood biochemistry parameters in patients with CSVD. Our evaluation 
included a broad spectrum of 44 laboratory markers, categorically 
divided into routine and specialized tests. Routine assessments 
comprised complete blood count, renal and liver function tests, 
electrolyte balance, lipid profiles, and coagulation parameters. In 
addition to these standard measures, we conducted a detailed analysis 
of inflammatory markers, crucial in elucidating CSVD’s 
pathophysiological landscape. These markers encompassed cytokines, 
acute phase reactants, and specific inflammatory indices, offering 
insights into the inflammatory status of CSVD patients. Notably, all 
laboratory data were transformed into binary categorical variables, 
based on either their median values or clinically established cutoffs. 
This transformation enabled a nuanced exploration of the potential 
correlations between these biochemical markers and cognitive 
impairment in CSVD, forming a critical component of our predictive 
model development.

2.4 Clinical evaluation

In this study, we conducted a thorough clinical evaluation of 377 
patients diagnosed with CSVD. The participants’ demographic 
information, including age and sex, was meticulously recorded. 
Medical histories were detailed, focusing on the presence of 
hypertension, diabetes, and hypercholesterolemia. Hypertension was 
defined as having a systolic blood pressure ≥140 mmHg, diastolic 
blood pressure ≥90 mmHg, or being under antihypertensive 
medication. Diabetes was identified by fasting blood glucose levels 
≥7.0 mmol/L, OGTT2h levels ≥11.1 mmol/L, or the use of 
hypoglycemic medications. Hypercholesterolemia was recognized by 
total cholesterol or LDL cholesterol levels exceeding normal range 
limits. Additionally, lifestyle factors such as smoking and alcohol 
consumption histories were gathered, alongside information on the 
duration of the disease.

2.5 Statistical methodology

In our investigation involving 377 CSVD patients, the cohort was 
randomly divided into a training set with 265 participants and a 
validation set comprising 112 participants, following a 7:3 allocation 
ratio. This randomization ensured a balanced and unbiased approach 
to model development. we opted for the stratification of continuous 
laboratory variables into tertiles. This approach was employed to 
facilitate a more meaningful interpretation of the data by categorizing 
it into low, medium, and high ranges. Utilizing tertiles allows for a 
clear delineation of patient subgroups based on their laboratory 
values, aligning with the clinical relevance of these categories. The 
selection of thresholds for continuous variables was informed by 
clinical expertise and mirrored established norms in contemporary 

research and statistical methodologies. For categorical data, 
we  presented frequencies and percentages. To ascertain baseline 
similarities or disparities between the training and validation cohorts, 
we utilized appropriate statistical tests, opting for the χ2 test or Fisher’s 
exact test for categorical data.

Within the training dataset, the LASSO regression method was 
employed to pinpoint crucial risk factors linked to cognitive 
impairment in CSVD patients. LASSO regression was utilized for its 
efficacy in both variable selection and regularization, enabling the 
identification of the most predictive features for cognitive impairment 
in CSVD while mitigating overfitting. This technique helped in 
selecting variables with non-zero coefficients for further analysis. 
These identified variables were then incorporated into a logistic 
regression model to ascertain independent predictors of cognitive 
impairment in CSVD. We  constructed a nomogram from these 
identified risk factors, derived from the logistic regression model. The 
nomogram’s predictive performance was evaluated using the receiver 
operating characteristic curve (AUC-ROC), and calibration curves 
were generated to align predicted probabilities with actual outcomes. 
Furthermore, the clinical utility of the model was assessed using 
decision curve analysis (DCA). To mitigate overfitting, we employed 
several strategies. First, we used LASSO regression to perform variable 
selection and reduce model complexity. Second, we conducted 10-fold 
cross-validation to determine the optimal regularization parameter 
(λ), ensuring the model’s performance on multiple data subsets. 
Finally, we validated the model using an independent dataset to test 
its generalizability. These combined strategies enhance the model’s 
robustness and reduce the risk of overfitting. All statistical procedures 
were carried out using R software (version 4.3.0),1 and a p-value of less 
than 0.05 (two-tailed) was considered to denote statistical significance.

3 Results

3.1 Baseline characteristics

From July 2022 to October 2023, this investigation initially 
recruited 427 participants who satisfied the inclusion benchmarks. 
Subsequent application of exclusion criteria led to the withdrawal of 
50 participants, yielding a dataset of 377 individuals for subsequent 
analyses as depicted in Figure 1. Of these, 265 formed the training 
cohort, while the remaining 112 were allocated to the validation 
cohort. Table 1 delineates the demographic and clinical profiles at 
baseline for both cohorts. This study incorporated the following 52 
potential indicators related to cognitive impairment in CSVD: CSVD 
Burden, Gender, Smoking, Drinking, Hypertension, Diabetes, 
Hyperlipidemia, Age, White Blood Cell Count, Platelet Count, 
Neutrophil Count, Lymphocyte Count, Monocyte Count, Urea, 
Creatinine, Uric Acid, Prothrombin Time, Activated Partial 
Thromboplastin Time, Thrombin Time, Fibrinogen, Hemoglobin 
A1c, Total Cholesterol, Triglycerides, High-Density Lipoprotein, 
Low-Density Lipoprotein, Very Low-Density Lipoprotein, 
Apolipoprotein A1 (ApoA1), Apolipoprotein B100, ApoA1 to 
ApoB100 Ratio, Lipoprotein(a), Total Protein, Albumin, Globulin, 

1 http://www.r-project.org/
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Albumin to Globulin Ratio, Homocysteine, Systemic Immune-
Inflammatory Index, Systemic Inflammation Response Index, 
Neutrophil-to-Lymphocyte Ratio, Lymphocyte-to-Monocyte Ratio, 
Neutrophil-to-Monocyte Ratio, Neutrophil-to-HDL Ratio, 
Lymphocyte-to-HDL Ratio, Monocyte-to-HDL Ratio, IL-6, TNFα, 
VCAM-1, LP-PLA2, CD40L, E-Selectin, ADMA, vWF, and ICAM-1. 
The lack of significant disparities in the 52 evaluated variables 
between the training and validation sets underscores the homogeneity 
of the study population. This parity is critical as it suggests that the 
predictive model derived from the training set has the potential for 
generalizability to other patient cohorts, affirming the robustness of 
the model’s predictive capacity for cognitive impairment associated 
with CSVD (Table 1).

3.2 Variable selection

In our endeavor to elucidate the variables significantly associated 
with cognitive impairment in CSVD, we  rigorously analyzed a 
dataset comprising 52 variables, which spanned demographic 
information, clinical history, and a wide array of laboratory 
measurements. Employing LASSO regression, a method recognized 
for its efficiency in variable selection and overfitting prevention, 
we utilized the glmnet package in R, integrating a 10-fold cross-
validation technique to determine the optimal regularization 
parameter (λ). The selection of λ was guided by the one standard 
error rule from the minimum criterion in cross-validation error, 
ensuring the model’s parsimony without compromising its predictive 
accuracy (Figures 2A,B).

This meticulous process distilled the multitude of factors down 
to 4 pivotal indicators that bear a statistically significant relationship 
with cognitive impairment in CSVD patients. These indicators-
Hypertension, CSVD Burden, ApoA1, and Age-demonstrated the 
strongest associations with cognitive impairment, underscoring 
their importance in the predictive model (Table  2). During the 
LASSO regression process, coefficients of less important variables 
shrink towards zero. We selected features with non-zero coefficients, 
which ensures that only the most relevant predictors are included 
in the final model. This approach balances model simplicity and 
predictive performance, enhancing both interpretability and 
robustness of the model. Although the coefficient for CSVD Burden 
is relatively small, it was retained due to its clinical significance in 
reflecting the overall severity of cerebral small vessel disease.

3.3 Multivariable analysis

Our multivariable logistic regression analysis, adjusting for potential 
confounders, identified significant associations between CSVD-related 
cognitive impairment and several key factors from the 12 variables 
initially pinpointed by LASSO regression. Notably, Hypertension (OR: 
1.78, 95% CI: 1.32–3.84, p < 0.001) and Age (OR: 1.85, 95% CI: 1.55–
3.55, p < 0.001) were potent predictors of impairment, indicating 
substantially elevated risks. A higher CSVD Burden also heightened the 
risk (OR: 1.83, 95% CI: 1.23–2.72, p = 0.003), whereas increased ApoA1 
levels demonstrated a protective effect (OR: 0.64, 95% CI: 0.43–0.97, 
p = 0.034). These variables reflect critical demographic and biological 
aspects influencing CSVD prognosis, as detailed in Table 3.

FIGURE 1

Patient selection flowchart. This diagram details the process of selecting eligible CSVD patients for the study, highlighting the inclusion  
and exclusion criteria. It shows the initial number of participants, the application of exclusion criteria, and the final number of patients  
included in the analysis.
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TABLE 1 Comparative analysis of potential predictive factors in a cerebral small vessel disease (CSVD) cognitive impairment predictive model between 
training and validation sets.

Variables Total (n  =  377) training set (n  =  265) validation set (n  =  112) p-value

Cognitive impairment, n (%) 0.438

  No 132 (35) 89 (34) 43 (38)

  Yes 245 (65) 176 (66) 69 (62)

CSVD.Burden, n (%) 0.912

  0–1 173 (46) 120 (45) 53 (47)

  2 89 (24) 64 (24) 25 (22)

  3–4 115 (31) 81 (31) 34 (30)

Gender, n (%) 0.273

  Female 183 (49) 134 (51) 49 (44)

  Male 194 (51) 131 (49) 63 (56)

Smoking, n (%) 0.8

  No 261 (69) 185 (70) 76 (68)

  Yes 116 (31) 80 (30) 36 (32)

Drinking, n (%) 0.174

  No 124 (33) 81 (31) 43 (38)

  Yes 253 (67) 184 (69) 69 (62)

Hypertension, n (%) 0.3

  No 103 (27) 77 (29) 26 (23)

  Yes 274 (73) 188 (71) 86 (77)

Diabetes, n (%) 0.3

  No 267 (71) 183 (69) 84 (75)

  Yes 110 (29) 82 (31) 28 (25)

Hyperlipidemia, n (%) 0.956

  No 250 (66) 175 (66) 75 (67)

  Yes 127 (34) 90 (34) 37 (33)

Age, n (%) 0.9

  ≤69 249 (66) 174 (66) 75 (67)

  >69 128 (34) 91 (34) 37 (33)

White blood cell count (×109/L), n (%) 0.842

  <6.04 126 (33) 91 (34) 35 (31)

  6.04–7.70 128 (34) 89 (34) 39 (35)

  >7.70 123 (33) 85 (32) 38 (34)

Platelet count (×109/L), n (%) 0.973

  <200 126 (33) 89 (34) 37 (33)

  200–250 128 (34) 89 (34) 39 (35)

  >250 123 (33) 87 (33) 36 (32)

Neutrophil count (×109/L), n (%) 0.581

  <3.83 127 (34) 86 (32) 41 (37)

  3.83–5.34 125 (33) 92 (35) 33 (29)

  >5.34 125 (33) 87 (33) 38 (34)

Lymphocyte count (×109/L), n (%) 0.533

  <130 126 (33) 93 (35) 33 (29)

  1.30–1.74 126 (33) 85 (32) 41 (37)

  >1.74 125 (33) 87 (33) 38 (34)

(Continued)
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TABLE 1 (Continued)

Variables Total (n  =  377) training set (n  =  265) validation set (n  =  112) p-value

Monocyte count (×109/L), n (%) 0.612

  <0.40 128 (34) 87 (33) 41 (37)

  0.40–0.54 128 (34) 94 (35) 34 (30)

  >0.54 121 (32) 84 (32) 37 (33)

Urea (mmol/L), n (%) 0.791

  <5.00 120 (32) 87 (33) 33 (29)

  5.00–6.19 120 (32) 84 (32) 36 (32)

  >6.19 137 (36) 94 (35) 43 (38)

Creatinine (μmol/L), n (%) 0.482

  <57 128 (34) 88 (33) 40 (36)

  57–70 128 (34) 95 (36) 33 (29)

  >70 121 (32) 82 (31) 39 (35)

Uric acid (μmol/L), n (%) 0.301

  <260 127 (34) 89 (34) 38 (34)

  260–325 127 (34) 95 (36) 32 (29)

  >325 123 (33) 81 (31) 42 (38)

Prothrombin time (s), n (%) 0.308

  <11.1 143 (38) 94 (35) 49 (44)

  11.1–11.6 111 (29) 82 (31) 29 (26)

  >11.6 123 (33) 89 (34) 34 (30)

Activated partial thromboplastin time (s), n (%) 0.273

  <27.6 126 (33) 82 (31) 44 (39)

  27.6–31.9 128 (34) 92 (35) 36 (32)

  >31.9 123 (33) 91 (34) 32 (29)

Thrombin time (s), n (%) 0.305

  <14.5 131 (35) 87 (33) 44 (39)

  14.5–17.4 121 (32) 91 (34) 30 (27)

  >17.4 125 (33) 87 (33) 38 (34)

Fibrinogen (g/L), n (%) 0.954

  <2.68 130 (34) 91 (34) 39 (35)

  2.68–3.26 122 (32) 87 (33) 35 (31)

  >3.26 125 (33) 87 (33) 38 (34)

Hemoglobin A1c (mmol/L), n (%) 0.423

  <5.6 132 (35) 95 (36) 37 (33)

  5.6–6.2 133 (35) 88 (33) 45 (40)

  >6.2 112 (30) 82 (31) 30 (27)

Total cholesterol (mmol/L), n (%) 0.874

  <3.92 128 (34) 91 (34) 37 (33)

  3.92–4.97 124 (33) 85 (32) 39 (35)

  >4.97 125 (33) 89 (34) 36 (32)

Triglycerides (mmol/L), n (%) 0.24

  <1.00 128 (34) 88 (33) 40 (36)

  1.00–1.47 125 (33) 83 (31) 42 (38)

  >1.47 124 (33) 94 (35) 30 (27)

High-density lipoprotein (mmol/L), n (%) 0.124

(Continued)
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TABLE 1 (Continued)

Variables Total (n  =  377) training set (n  =  265) validation set (n  =  112) p-value

  <1.02 129 (34) 96 (36) 33 (29)

  1.02–1.23 128 (34) 93 (35) 35 (31)

  >1.23 120 (32) 76 (29) 44 (39)

Low-density lipoprotein (mmol/L), n (%) 0.707

  <2.39 124 (33) 86 (32) 38 (34)

  2.39–3.23 127 (34) 87 (33) 40 (36)

  >3.23 126 (33) 92 (35) 34 (30)

Very low-density lipoprotein (mmol/L), n (%) 0.983

  <0.36 127 (34) 90 (34) 37 (33)

  0.36–0.54 126 (33) 88 (33) 38 (34)

  >0.54 124 (33) 87 (33) 37 (33)

Apolipoprotein A1 (g/L), n (%) 0.083

  <0 0.97 127 (34) 91 (34) 36 (32)

  0.97–1.12 128 (34) 97 (37) 31 (28)

  >1.12 122 (32) 77 (29) 45 (40)

Apolipoprotein B100 (g/L), n (%) 0.982

  <0.68 130 (34) 92 (35) 38 (34)

  0.68–0.88 125 (33) 88 (33) 37 (33)

  >0.88 122 (32) 85 (32) 37 (33)

ApoA1 to ApoB100 ratio, n (%) 0.394

  <1.19 126 (33) 94 (35) 32 (29)

  1.19–1.55 127 (34) 85 (32) 42 (38)

  >1.55 124 (33) 86 (32) 38 (34)

Lipoprotein(a) (mg/L), n (%) 0.675

  <121 126 (33) 89 (34) 37 (33)

  121–678 140 (37) 95 (36) 45 (40)

>678 111 (29) 81 (31) 30 (27)

  Total protein (g/L), n (%) 0.361

  <62 143 (38) 95 (36) 48 (43)

  62–67 125 (33) 93 (35) 32 (29)

  >67 109 (29) 77 (29) 32 (29)

Albumin (g/L), n (%) 0.424

  <35 159 (42) 110 (42) 49 (44)

  35–40 124 (33) 84 (32) 40 (36)

  >40 94 (25) 71 (27) 23 (21)

Globulin (g/L), n (%) 0.272

  <26 165 (44) 109 (41) 56 (50)

  26–28 106 (28) 77 (29) 29 (26)

  >28 106 (28) 79 (30) 27 (24)

Albumin to globulin ratio, n (%) 0.653

  <1.38 134 (36) 98 (37) 36 (32)

  1.38–1.56 119 (32) 81 (31) 38 (34)

>1.56 124 (33) 86 (32) 38 (34)

  Homocysteine (μmol/L), n (%) 0.505

  <15 135 (36) 94 (35) 41 (37)

(Continued)
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TABLE 1 (Continued)

Variables Total (n  =  377) training set (n  =  265) validation set (n  =  112) p-value

  15–20 123 (33) 91 (34) 32 (29)

  >20 119 (32) 80 (30) 39 (35)

Systemic immune-inflammatory index, n (%) 0.928

  <515.27 126 (33) 89 (34) 37 (33)

  515.27–878.63 126 (33) 87 (33) 39 (35)

  >878.63 125 (33) 89 (34) 36 (32)

Systemic inflammation response index, n (%) 0.761

  <1.02 126 (33) 89 (34) 37 (33)

  1.02–1.75 126 (33) 91 (34) 35 (31)

  >1.75 125 (33) 85 (32) 40 (36)

Neutrophil-to-lymphocyte ratio, n (%) 0.918

  <2.36 126 (33) 87 (33) 39 (35)

  2.36–3.64 126 (33) 90 (34) 36 (32)

  >3.64 125 (33) 88 (33) 37 (33)

Lymphocyte-to-monocyte ratio, n (%) 0.627

  <2.86 126 (33) 92 (35) 34 (30)

  2.86–3.93 126 (33) 85 (32) 41 (37)

  >3.93 125 (33) 88 (33) 37 (33)

Neutrophil-to-monocyte ratio, n (%) 0.942

  <8.3 126 (33) 88 (33) 38 (34)

  8.3–10.0 125 (33) 87 (33) 38 (34)

  >10.0 126 (33) 90 (34) 36 (32)

Neutrophil-to-HDL ratio, n (%) 0.411

  <3.32 126 (33) 83 (31) 43 (38)

  3.32–4.90 126 (33) 91 (34) 35 (31)

  >4.90 125 (33) 91 (34) 34 (30)

Lymphocyte-to-HDL ratio, n (%) 0.551

  <1.10 126 (33) 91 (34) 35 (31)

  1.10–1.61 126 (33) 84 (32) 42 (38)

  >1.61 125 (33) 90 (34) 35 (31)

Monocyte-to-HDL ratio, n (%) 0.551

  <0.34 126 (33) 91 (34) 35 (31)

  0.34–0.51 126 (33) 84 (32) 42 (38)

  >0.51 125 (33) 90 (34) 35 (31)

IL-6 (pg/mL), n (%) 0.533

  <6.69 126 (33) 85 (32) 41 (37)

  6.69–12.99 126 (33) 93 (35) 33 (29)

  >12.99 125 (33) 87 (33) 38 (34)

TNF-α (pg/mL), n (%) 0.294

  <9.17 126 (33) 89 (34) 37 (33)

  9.17–16.90 126 (33) 94 (35) 32 (29)

  >16.90 125 (33) 82 (31) 43 (38)

VCAM-1 (ng/mL), n (%) 0.302

  <613.22 126 (33) 95 (36) 31 (28)

  613.22–873.64 126 (33) 86 (32) 40 (36)

(Continued)
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3.4 Predictive model development

In this study, a nomogram was developed to predict the probability 
of cognitive impairment in patients with CSVD, based on four 
identified predictive factors: Hypertension, CSVD Burden, ApoA1 
levels, and Age (Figure 3). Each factor contributes to an individualized 
risk score, calculated using the nomogram, which correlates with the 
likelihood of cognitive decline. This tool provides clinicians with a 
concise and quantifiable method to assess risk and tailor patient 
management strategies effectively.

3.5 Evaluation of the predictive nomogram

The predictive accuracy of our CSVD cognitive impairment 
nomogram was assessed using the area under the receiver operating 
characteristic (AUC-ROC) curve, with the training set demonstrating 
an AUC of 0.866 (95% CI: 0.823–0.909), and the validation set 

showing an AUC of 0.852 (95% CI: 0.781–0.923). These results 
indicate excellent discriminative ability across both datasets 
(Figures 4A,B). Calibration curves closely align with the ideal line in 
both training (Figure 5A) and validation (Figure 5B) sets, suggesting 
that the nomogram’s predicted probabilities of cognitive impairment 
are accurate. Decision curve analysis (DCA) for both datasets 
confirms the model’s clinical usefulness, with the net benefit 
substantially outweighing the treat-all or treat-none strategies 
(Figures 6A,B). In application, the nomogram showed high sensitivity 
and specificity, further evidencing its robustness. In the training set, 
the model exhibited a sensitivity of 75.3% and a specificity of 79.7% 
(Figure 4A). In contrast, in the validation set, the model showed a 
sensitivity of 76.9% and a specificity of 74.0% (Figure 4B). For the 
training set, the nomogram achieved a PPV of 87.32% and an NPV 
of 63.47%, and for the validation set, the PPV was 84.60% and NPV 
was 63.30%. These additional metrics further reinforce the 
nomogram’s strong and consistent performance, advocating its 
potential utility in clinical practice for risk stratification and 
management of CSVD-associated cognitive impairment.

TABLE 1 (Continued)

Variables Total (n  =  377) training set (n  =  265) validation set (n  =  112) p-value

  >873.64 125 (33) 84 (32) 41 (37)

LP-PLA2 (ng/mL), n (%) 0.79

  <203.60 126 (33) 90 (34) 36 (32)

  203.60–307.46 126 (33) 90 (34) 36 (32)

  >307.46 125 (33) 85 (32) 40 (36)

CD40L (ng/mL), n (%) 0.536

  <2.01 126 (33) 84 (32) 42 (38)

  2.01–4.54 126 (33) 90 (34) 36 (32)

  >4.54 125 (33) 91 (34) 34 (30)

E-selectin (ng/mL), n (%) 0.409

  <23.75 126 (33) 87 (33) 39 (35)

  23.75–48.32 126 (33) 94 (35) 32 (29)

  >48.32 125 (33) 84 (32) 41 (37)

ADMA (μmol/L), n (%) 0.334

  <0.52 126 (33) 83 (31) 43 (38)

  0.52–0.73 126 (33) 89 (34) 37 (33)

  >0.73 125 (33) 93 (35) 32 (29)

vWF (%), n (%) 0.562

  <97.47 126 (33) 85 (32) 41 (37)

  97.47–149.19 126 (33) 88 (33) 38 (34)

  >149.19 125 (33) 92 (35) 33 (29)

ICAM-1 (ng/mL), n (%) 0.605

  <182.04 130 (34) 88 (33) 42 (38)

  182.04–199.66 27 (7) 18 (7) 9 (8)

  >199.66 220 (58) 159 (60) 61 (54)

This table presents a comprehensive comparison of potential predictive factors for cognitive impairment in a cohort of 377 patients with cerebral small vessel disease (CSVD). Divided into a 
training set comprising 265 patients for model development and a validation set consisting of 112 patients for efficacy assessment, the data encompass a range of clinical characteristics and 
inflammatory biomarkers. These include gender, smoking and drinking habits, hypertension, diabetes, hyperlipidemia, along with inflammatory markers like white blood cell count, platelet 
count, neutrophil count, and specific indicators closely related to CSVD such as IL-6, TNFα, and VCAM-1. The objective of this table is to demonstrate the comparability of the training and 
validation sets in these potential predictors, ensuring the generalizability and reliability of the predictive model’s outcomes. Statistical differences between the sets are indicated by p-values, 
with p < 0.05 denoting significant disparities.
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4 Discussion

The development of our predictive model for cognitive 
impairment in CSVD is a significant stride in neurovascular research, 
bridging a gap in early diagnostic methodologies. By integrating a 
diverse range of variables-demographic, clinical, neuroimaging, and 
biomarkers-our study sheds new light on the intricate relationship 

between CSVD and cognitive decline. This approach not only 
enhances our understanding of CSVD’s impact on cognitive functions 
but also introduces a valuable tool for early detection and intervention, 
marking a crucial step forward in addressing this complex condition.

Our study contributes to the evolving landscape of CSVD research 
by presenting a comprehensive predictive model for cognitive 
impairment. This model integrates a wide array of variables, akin to 
the multifaceted approaches seen in recent literature. The deep 
learning approach of Duan et al. (14) in segmenting CSVD features 
on imaging contrasts with our model that combines clinical, 
biochemical, and imaging data for a more rounded prediction. Egle 
et al. (15) emphasized diffusion tensor imaging’s role in predicting 
dementia, a perspective that complements our model’s inclusion of 
imaging alongside other clinical variables. Our work resonates with 
the findings of Jiménez-Balado et al. (16) regarding the predictive 
value of blood pressure monitoring in CSVD. However, our approach 
is more comprehensive, encompassing a broader range of indicators. 
Similarly, while Li et al. (17) explored machine learning models for 
dementia prediction in CSVD, our study adds to this by leveraging 
both advanced statistical and machine learning techniques, 
emphasizing the integration of diverse data types. Furthermore, Liu 
et al. (9) highlighted the combination of Aβ42 levels and total CSVD 
scores in predicting cognitive impairment. Our model expands upon 
this by integrating these biomarkers into a broader predictive 
framework. Lastly, van Uden et al. (18) and Zhang et al. (10) focused 
on specific imaging and clinical parameters. Our research builds upon 
these studies by offering a more comprehensive model that 
incorporates their insights into a broader predictive framework. In 
summary, our study not only aligns with current research trends in 
CSVD but also extends them by providing a more holistic approach 

FIGURE 2

(A) LASSO coefficient profiles for CSVD cognitive impairment predictors. This figure shows the coefficient profiles of the predictors in the LASSO 
regression model. The x-axis represents the log of the regularization parameter (lambda), and the y-axis represents the coefficient values of the 
predictors. Each colored line represents a different predictor. As lambda increases (moving from left to right), the coefficients shrink towards zero, 
indicating the regularization effect of LASSO. The numbers at the top indicate the number of predictors included in the model for each lambda value. 
(B) Optimal lambda selection in LASSO model for CSVD cognitive impairment predictors. The graph demonstrates the selection of the optimal lambda 
value using cross-validation. The x-axis represents the log of lambda, and the y-axis represents the binomial deviance (a measure of model error). The 
red dots represent the mean binomial deviance for each lambda value, with error bars showing the standard error. The vertical dashed lines indicate 
the lambda values chosen by cross-validation: the left line represents the lambda that minimizes the binomial deviance, while the right line represents 
the largest lambda within one standard error of the minimum deviance, providing a more regularized and simpler model.

TABLE 2 Coefficients and lambda.1SE value of the LASSO regression.

Variable Coefficients Lambda.1SE

Hypertension 0.311 0.028

CSVD.Burden 0.0314

ApoA1 −0.008

Age 0.3131

This table lists the coefficients and lambda.1SE values for key variables including 
hypertension, CSVD burden, ApoA1, and age in the LASSO regression model for cognitive 
impairment prediction in CSVD.

TABLE 3 Binary logistic regression analysis.

B SE OR CI Z p-
value

Hypertension 3.21 0.557 1.78 1.32–3.84 3.767 <0.001

CSVD.Burden 0.602 0.203 1.83 1.23–2.72 2.97 0.003

ApoA1 −0.443 0.209 0.64 0.43–0.97 −2.126 0.034

Age 3.758 0.656 1.85 1.55–3.55 3.732 <0.001

This table shows key predictors for cognitive impairment in CSVD, including regression 
coefficients, odds ratios, and their statistical significance.
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to the prediction of cognitive impairment. This comprehensive model 
could significantly enhance clinical decision-making and patient 
management in CSVD.

Age is acknowledged as a critical predictor for the progression of 
CSVD and associated cognitive impairments. The study by Hamilton 
et al. (19) corroborates this, demonstrating a significant correlation 

FIGURE 3

Nomogram for CSVD cognitive impairment risk prediction. This nomogram, based on logistic regression analysis, visually represents the contribution 
of each predictor to the overall risk of cognitive impairment in CSVD. Each predictor is assigned a score, and the total score corresponds to a 
probability of cognitive impairment. The predictors included are hypertension, CSVD burden, ApoA1 levels, and age.

FIGURE 4

(A,B) ROC curves for CSVD cognitive impairment prediction model. These curves display the sensitivity and specificity of the model in both the training 
and validation sets, illustrating its diagnostic accuracy. The x-axis represents specificity, and the y-axis represents sensitivity. The area under the curve 
(AUC) values are shown for both sets, indicating the model’s performance. (A) ROC curve for the training set, showing the model’s performance with 
an AUC value of 0.866. (B) ROC curve for the validation set, showing the model’s performance with an AUC value of 0.852.
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between the total burden of CSVD and a decline in cognitive abilities 
in the elderly. This finding not only validates the importance of age as 
a predictive factor but also underscores the heightened risk for 

cognitive health deterioration with advancing age. Hypertension is a 
primary contributor to the development of CSVD and subsequent 
cognitive decline. The research conducted by Amier et al. (20) revealed 

FIGURE 5

(A,B) Calibration plots for CSVD cognitive impairment prediction. These plots compare the predicted probabilities of cognitive impairment with the 
actual outcomes, demonstrating the model’s calibration accuracy in both the training and validation sets. The x-axis represents the predicted 
probability, and the y-axis represents the actual probability. The diagonal line represents perfect calibration, where predicted probabilities exactly 
match the actual outcomes. (A) Calibration plot for the training set. The plot shows how well the predicted probabilities agree with the actual 
probabilities in the training data. The grey line represents the ideal calibration, the solid black line shows the logistic calibration, and the dotted line 
represents the nonparametric calibration. (B) Calibration plot for the validation set. Similar to A, this plot shows the agreement between predicted and 
actual probabilities in the validation data. The grey line represents the ideal calibration, the solid black line shows the logistic calibration, and the dotted 
line represents the nonparametric calibration.

FIGURE 6

(A,B) Decision curve analysis for CSVD cognitive impairment model. These curves assess the clinical usefulness of the model by comparing the net 
benefits of different treatment strategies in both the training and validation sets. The x-axis represents the high-risk threshold, and the y-axis represents 
the standardized net benefit. (A) Decision curve for the training set. The red line represents the net benefit of the predictive model for the training data. 
The grey line, which slopes downward, represents the net benefit assuming all patients are treated. The black line, which is horizontal, represents the 
net benefit assuming no patients are treated. (B) Decision curve for the validation set. Similar to A, the red line represents the net benefit of the 
predictive model for the validation data. The grey line, which slopes downward, represents the net benefit assuming all patients are treated. The black 
line, which is horizontal, represents the net benefit assuming no patients are treated.
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a substantial association between markers of hypertensive exposure, 
as evident in cardiovascular MRI, and both CSVD and cognitive 
impairments. Additionally, the study by Hainsworth et  al. (21) 
accentuates the close link between hypertension and small vessel 
disease, aligning well with our findings and underscoring the necessity 
to consider hypertension’s role in clinical predictive models. The 
imaging burden of CSVD is significantly associated with declines in 
cognitive function. Hosoya et  al. (22) observed an independent 
association between imaging markers of CSVD and reductions in 
global cognitive function and attention. Our research echoes this 
observation, highlighting the crucial role of CSVD imaging burden in 
predicting cognitive impairments. Our study further identifies ApoA1 
as a novel negative predictor for cognitive impairment in CSVD, 
aligning with emerging research in neurodegenerative conditions. 
Studies by Choi et  al. (23) and Slot et  al. (24) reported similar 
associations between ApoA1 levels and cognitive decline, suggesting 
ApoA1’s potential role in amyloid-independent neurodegeneration. 
Moreover, research by Das et al. (25) and Deng et al. (26) underscore 
ApoA1’s neuroprotective effects in Parkinson’s disease, while Rao et al. 
(27) highlight the complex interaction between ApoA1 levels and 
genetic factors in cognitive impairment. These findings collectively 
corroborate our results, emphasizing ApoA1’s significance in 
diagnosing and treating CSVD-related cognitive impairment.

In our study, we have elucidated several pivotal findings that hold 
significant implications for understanding the development of 
cognitive impairment in the context of CSVD. Firstly, we  have 
reaffirmed hypertension and advanced age as the principal risk factors 
for cognitive impairment in CSVD. Both factors exhibit a substantial 
association with an increased risk of cognitive impairment, 
underscoring the imperative need for clinicians to closely monitor 
cognitive functions in patients exhibiting these characteristics. 
Additionally, our model underscores the critical importance of the 
cumulative burden of CSVD-related lesions (CSVD burden) and 
serum levels of apolipoprotein A1 (ApoA1) in predicting cognitive 
function. These findings provide valuable clinical cues to assist 
physicians in identifying high-risk individuals and devising tailored 
management strategies.

The results of our investigation hold profound clinical utility. The 
predictive model we have developed, based on CSVD risk factors, 
serves as a valuable tool for the early identification of individuals at 
risk of developing cognitive impairment. This not only facilitates 
timely intervention and treatment but also has the potential to 
enhance the quality of life for affected individuals. Our model offers a 
personalized risk assessment tool that guides clinicians in formulating 
precise treatment plans, while also empowering patients with 
information about their individual risks. Despite the significant 
achievements of our study, several avenues for future research merit 
exploration. Firstly, we  advocate for further research into the 
biomarkers of CSVD-related cognitive impairment to refine risk 
prediction. Furthermore, as neuroimaging and molecular biology 
techniques continue to advance, we encourage the integration of these 
advanced technologies into a more comprehensive predictive model 
for CSVD. Additionally, longitudinal studies with extended follow-up 
periods are warranted to gain deeper insights into the progression and 
trajectory of cognitive impairment in CSVD.

Our study is not without limitations. Firstly, its cross-sectional 
design precludes the establishment of causal relationships. Although 

our model demonstrates excellent predictive performance for CSVD-
related cognitive impairment, further validation in larger multicenter 
cohorts is warranted. Additionally, the potential for selection bias may 
exist, as all participants were sourced from a single hospital. Despite 
the inclusion of a comprehensive array of clinical, biochemical, and 
imaging data, there may be other unexplored factors that influence the 
risk of cognitive impairment in CSVD. Moreover, the sample size of 
this study is relatively small. Future research should include a larger 
sample size to enhance the reliability and generalizability of 
the findings.

In summary, our study presents a comprehensive predictive 
model that holds significant promise in forecasting the risk of 
cognitive impairment in the context of CSVD. This model integrates 
clinical, biochemical, and imaging data, furnishing clinicians with a 
powerful tool to identify high-risk individuals and devise personalized 
management strategies. While limitations and avenues for future 
research exist, we believe that this study marks a pivotal advancement 
in the early diagnosis and intervention of CSVD-related 
cognitive impairment.
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