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Background and objectives: Observational studies have suggested that a 
multitude of pathological processes and biomolecules are involved in the 
initiation and development of epilepsy, and ULK3 is linked to the nervous 
system. However, it remains uncertain whether this association between ULK3 
and epilepsy is causal and the direction of any causal relationship. This study 
employs a two-sample Mendelian randomization (MR) method to investigate 
the relationship between ULK3 and the risk of epilepsy.

Methods: We analyzed genome-wide association study (GWAS) summary 
statistics for ULK3 (sample size = 3,301), focal epilepsy (sample size = 39,348), 
and generalized epilepsy (sample size = 33,446). Bidirectional MR analyses 
were conducted to explore these relationships. We selected a set of single 
nucleotide polymorphisms (SNPs) with an association threshold of less than 
1 × 10−5 as instrumental variables for further analysis. Various MR methods, 
including Inverse Variance Weighted, Weighted Median, MR-Egger Regression, 
Simple Model, Weighted Model, and Robust Adjustment Profile Score were 
used. Sensitivity analyses were performed to ensure the robustness of the 
results.

Results: Our MR analyses revealed a causal relationship where an increased 
level of ULK3 was associated with a decreased risk of focal epilepsy (odds 
ratio = 0.92, 95% confidence interval: 0.86–1.00, p  = 0.041). No significant 
heterogeneity (Q = 7.85, p  = 0.165) or horizontal pleiotropy (Egger regression 
intercept = 0.0191, p  = 0.415) was detected. However, in the reverse analysis, 
we  found no significant causal effect of focal epilepsy on ULK3 (p  > 0.05). 
Furthermore, no significant causation was identified between ULK3 and 
generalized epilepsy (p  > 0.05).

Conclusion: This study suggests a causal relationship between ULK3 and the risk 
of focal epilepsy from a genetic perspective. Nevertheless, further investigation 
is needed to understand the role of ULK3 in epilepsy fully.
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1 Introduction

Epilepsy, one of the most prevalent and debilitating neurological 
disorders, is characterized by active, transient, reproducible, and often 
paroxysmal disruptions of the central nervous system (CNS) (1). It can 
be broadly classified into three groups based on genetic factors, underlying 
mechanisms, and clinical effects: focal epilepsy, generalized epilepsy, and 
unknown epilepsy, depending on the type of seizure. Focal epilepsy 
originates within networks limited to one hemisphere and in subcortical 
structures. It may be discretely localized or more widely distributed. In 
contrast, generalized epilepsy originates from some point within, 
involving bilateral cerebral cortex and subcortical structures, and rapidly 
spreads to bilaterally distributed networks (2). According to the Global 
Epilepsy Burden Report, approximately 130,000 individuals succumb to 
epilepsy-related complications annually, with half a million people 
worldwide diagnosed with epilepsy, resulting in 125,000 annual deaths 
(3). Understanding the causes and mechanisms underlying epilepsy is 
crucial to identifying novel opportunities for ameliorating the condition.

ULK3, a serine/threonine protein kinase located in the cytoplasm, 
plays a key role in regulating Sonic Hedgehog (SHH) signaling and 
autophagy (4). On the one hand, ULK3 can positively regulate the 
transmission of SHH signaling, as a regulator of the SHH signaling 
pathway that regulates various developmental processes, tissue 
homeostasis, and adult neurogenesis, in addition to processes such as 
protein autophosphorylation and regulation of the smoothened signaling 
pathway (5, 6). On the other hand, studies had demonstrated that ULK3 
involved in autophagy as a positive regulator of GLI1 (GLI family zinc 
finger 1) (5). These findings highlight ULK3’s role in both autophagy and 
cell division processes. Autophagy dysfunction is associated with various 
human diseases, including cancer, heart disease, autoimmune disorders, 
and neurological conditions, such as epilepsy (7). In neurons, autophagy 
is dynamically regulated in different cellular compartments, including 
somatic cells, axons, and dendrites. Dysfunctional autophagy in epilepsy 
is primarily due to an imbalance between excitation and inhibition in the 
brain. Autophagy has been considered a potential target for neurological 
disease treatment (8). Consequently, we conducted this study to assess 
the causal relationship between ULK3 and epilepsy, with the aim of 
improving epilepsy treatment strategies.

Mendelian randomization (MR) is a method that utilizes genetic 
variants as instrumental variables (IVs) to determine whether a risk factor 
causally affects a health outcome (9). The Mendelian randomization is 
based on Mendel’s second law, the independent separation of genetic 
alleles when DNA is passed from parent to offspring during gametic 
formation (10). Mendelian randomization analysis can provide critical 
evidence for the potential causal effects of many modifiable exposures, 
including traditional epidemiological risk factors, lifestyle factors, and drug 
targets (11). It is designed to provide unbiased assessments of causality 
as much as possible (12). To address the gaps in our understanding of the 
relationship between ULK3 and epilepsy, we conducted a two-sample 
MR analysis to investigate their causal connection.

2 Methods

2.1 Data source

The genome-wide association study (GWAS) data for epilepsy, 
including generalized epilepsy (cases = 3,769) and focal epilepsy 

(cases = 9,671), was obtained from the 2018 International Alliance 
against Epilepsy (ILAE) Complex Epilepsy Alliance, consisting of 
15,212 cases of epilepsy and 29,677 controls (13). The genetic variation 
data for ULK3 were sourced from the human plasma protein genome 
map,1 derived from a study of 3,301 healthy individuals, linking 
genetic variations to disease and drug databases (14).

2.2 Study design

We conducted a two-sample MR analysis using the GWAS data for 
epilepsy and the ULK3 data. To ensure the robustness of our results, 
we performed multiple sensitivity analyses. MR research necessitates 
meeting three core conditions: (1) IVs are closely related to ULK3; (2) 
IVs are independent of confounding factors; (3) IVs affect focal epilepsy 
and generalized epilepsy exclusively through ULK3 (Figure 1) (15).

2.3 Instrumental variable selection

We rigorously screened single nucleotide polymorphisms (SNPs), 
selecting those with a genome-wide significance threshold (p < 1e−5). 
To ensure the independence of IVs, we selected SNPs with an R2 of 
≥0.01 within a 10,000 kb-sized window (16). We used PhenoScannerV2 
to remove SNPs related to IVs (17), such as height (18), BMI (19), 
smoking (20), drinking (21), and other potential confounding factors. 
We calculated the F-statistic of IVs, selecting SNPs with F ≥ 10 and a 
minor allele frequency ≥ 0.01 to minimize the impact of weak IVs on 
bias (22). The remaining SNPs were used for MR analysis.

2.4 Statistical analysis

To assess the causal relationship between ULK3 and epilepsy, 
we performed MR analysis using the following methods: Inverse Variance 
Weighted (IVW): This method aggregates two or more random variables 
to minimize the sum variance and calculate the Wald ratio of the causal 
effect of each SNP (23). IVW results served as a primary basis, with other 
methods providing Supplementary Data Sheet 1 (24). MR-Egger 
Regression: This method fits regression models to test the existence of 
SNPs’ horizontal pleiotropy and quantifies SNPs with an intercept term. 
An intercept term of 0 indicates no horizontal pleiotropy (25). Weighted 
Median: This method provides a consistent and reliable causal estimate 
even when only half of the effective IVs are available (26). Simple Mode: 
Simple mode is not as powerful as IVW, but it provides robustness for 
pleiotropy. When the largest group of instruments with MR estimates is 
valid, Weighted Mode based causal estimation consistently estimates the 
causal effect mode (27). Robust Adjustment Profile Score (RAPS): This 
method is robust to system multiplicity and heterogeneity, reducing the 
influence of weak IVs and enhancing statistical effectiveness (28).

To ensure the robustness of our analysis, we  conducted several 
sensitivity analyses: Cochran’s Q Statistics were used to evaluate 
heterogeneity among IVs (29). The intercept term of MR-Egger regression 
was calculated to assess horizontal pleiotropy (30). Leave-One-Out 

1 https://www.phpc.cam.ac.uk/ceu/proteins
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(LOO) Analysis was employed to eliminate SNPs one by one, evaluating 
whether the results of MR depended on a specific SNP (31).

The analysis was conducted using R (version 4.3.1) and the 
Two-sample MR analysis package (version 0.5.7). All datasets were 
analyzed in both forward and reverse directions, with a significance 
threshold of p-value < 0.05 applied.

3 Results

3.1 Selection of IVs

A total of 21 SNPs met the genome-wide significance threshold 
for IVs related to ULK3. After matching with the GWAS data for focal 

epilepsy and generalized epilepsy, six SNPs remained. None of these 
SNPs were associated with confounding factors in PhenoScanner, and 
all were employed in subsequent MR analysis. The F-statistic, with a 
value of 26.98, indicated the presence of strong instruments.

3.2 ULK3 and focal epilepsy

The F-statistic for individual SNPs ranged from 19.98 to 28.98, 
suggesting that the causal association was unlikely to be affected by 
weak instrumental variable bias (Supplementary Table 1). Using the 
IVW method, we found a significant association between ULK3 and 
an increased risk of focal epilepsy (odds ratio (OR) = 0.924, 95% 
confidence interval (95% CI): 0.622–0.856, p = 0.041). The MR-Egger, 

FIGURE 1

Study design. (A) Schematic diagram of the assumptions in Mendelian randomization (MR) model. (B) Flow diagram of this current MR framework.

https://doi.org/10.3389/fneur.2024.1376314
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Liu et al. 10.3389/fneur.2024.1376314

Frontiers in Neurology 04 frontiersin.org

FIGURE 3

Scatter plot (A), funnel plot (B), leave-one-out analysis (C) of the suggestive causal effect of ULK3 on focal epilepsy.

weighted median, and weighted model methods yielded more 
conservative estimates that did not reach statistical significance 
(Figure 2). No evidence of pleiotropy (intercept = 0.019, p = 0.414) or 
heterogeneity (p = 0.165) was observed. Scatterplots and funnel plots 
displayed a symmetrical distribution of points of causal effects, 
suggesting minimal susceptibility to potential bias. Additionally, the 
LOO analysis found no significant disproportionate effect for any 
SNP on the causal estimates (Figure 3; Table 1).

3.3 ULK3 and generalized epilepsy

The F-statistic of individual SNPs ranged from 19.98 to 28.98 
(Supplementary Table 2). Using IVW, MR-Egger, weighted median, 
and weighted model methods, no significant causal relationship was 
found between ULK3 and the risk of generalized epilepsy (OR = 1.04, 
95% CI: 0.727–0.952, p = 0.382; Figure 4). No evidence of pleiotropy 
(intercept = 0.005, p = 0.860) or heterogeneity (p = 0.487) was detected 
(Figure 5; Table 1).

3.4 Reverse MR analysis

To investigate whether focal epilepsy and generalized epilepsy had 
any causal effect on ULK3, a reverse MR analysis was conducted. By 

identifying SNPs closely associated with epilepsy as genetic tools for 
exposure, the F-statistic for epilepsy was well above 10 (focal epilepsy: 
33.55, generalized epilepsy: 71.76; Supplementary Tables 3, 4), 
indicating no evidence of weak instrument bias. Focal epilepsy 
(OR = 1.15, 95% CI: 0.471–0.963, p = 0.121) and generalized epilepsy 
(OR = 1.03, 95% CI: 0.510–0.933, p = 0.548) showed no significant 
causal effect on ULK3 (Figures 6, 7; Table 1).

4 Discussion

In this study, we  leveraged subtype classification data from a 
substantial sample size within the 2018 International Union Against 
Epilepsy (ILAE) to enhance the reliability of our subtype-specific data. 
Using bidirectional MR analysis, we explored the association between 
epilepsy and ULK3. In the forward MR analysis, we observed that a 
higher serum level of ULK3 was associated with a protective effect 
against focal epilepsy. However, we  found no causal relationship 
between ULK3 and generalized epilepsy.

Recently, the role of ULK3  in epilepsy development remains 
unclear. There is no significant relationship has not been reported 
previously. ULK3 positively regulates SHH signaling as a pathway 
regulator (32). The SHH signaling pathway is crucial for axon 

FIGURE 2

Forest plot of causal effect between ULK3 and focal epilepsy.
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formation, proliferation, survival, and differentiation (33). SHH can 
inhibit the activity of glutamate transporters in neurons (6), potentially 
impacting the development of epileptic-like activity. Recent studies (5) 
have demonstrated that ULK3 is involved in autophagy as a positive 
regulator of autophagy. The elevation of autophagy-related proteins is 
associated with neuronal plasticity and epileptic behavior (34).

Epilepsy represents a multifaceted neurological disorder 
characterized by the involvement of multiple genes, proteins, and 
signaling pathways in its pathogenesis. Among these contributing 
factors, ULK3 is identified as potentially influential, particularly 
within specific types of epilepsy. It is important to recognize that 

distinct types of epilepsy may engage varying genetic, molecular, and 
cellular mechanisms. Prior studies have postulated that the 
differentiation between generalized epilepsy and focal epilepsy 
manifests as variances in the brain structure of affected individuals. 
In cases of generalized epilepsy, the epileptogenic network implicates 
bilateral thalamic cortical structures and exhibits widespread 
distribution throughout the brain (35), often linked to genetic factors. 
Conversely, focal epilepsy entails neural circuits within the cerebral 
hemispheres, typically the neocortex or limbic cortex, which could 
be  incited by local injury, inflammation, tumors, or other brain 
abnormalities (36). Notably, focal seizures commonly manifest as a 

TABLE 1 Heterogeneity and pleiotropy tests for bidirectional TSMR analyses between ULK3 and epilepsy.

Exposure Outcome Q-value 
(IVW)

P Q (IVW) Q-value 
(MR-ER)

P Q (MR-
ER)

Intercept P Intercept

ULK3 Focal epilepsy 7.8463 0.1649 6.5014 0.1647 0.0191 0.4145

ULK3 Generalized epilepsy 4.4489 0.4868 4.4101 0.3533 0.0047 0.8604

Focal epilepsy ULK3 50.1598 0.3878 48.1278 0.4270 0.0205 0.1655

Generalized epilepsy ULK3 64.4024 0.4273 64.0974 0.4028 0.0108 0.5889

Q-value, the statistics of Cochrane’s Q test; P Q, p-value corresponding to Cochrane’s Q test; P intercept, p-value corresponding to MR-Egger intercept test; TSMR, Two Sample Mendelian 
randomization.

FIGURE 4

Forest plot of causal effect between ULK3 and generalized epilepsy.

FIGURE 5

Scatter plot (A), funnel plot (B), leave-one-out analysis (C) of the suggestive causal effect of ULK3 on generalized epilepsy.
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FIGURE 6

Forest plot of reverse causal effect between ULK3 and focal epilepsy (A), ULK3 and generalized epilepsy (B).

FIGURE 7

Scatter plot (A,D), funnel plot (B,E), leave-one-out analysis (C,F) of the suggestive causal effect of ULK3 on focal and generalized epilepsy, respectively.
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primary symptom in patients with glioma (37). Consequently, 
epilepsy emerges as a diverse condition influenced by a spectrum of 
genetic, environmental, and physiological factors. While elevated 
levels of ULK3 may correlate with reduced susceptibility to partial 
epilepsy in certain individuals, it is essential to acknowledge that 
other factors, such as additional genetic components and 
environmental influences, may exert a more substantial influence on 
the risk of generalized epilepsy, thus resulting the causative 
association of ULK3 inconclusive.

However, our study has several limitations. The study population 
consisted mainly of individuals of European ancestry, which may 
limit the generalizability of our findings to other populations. 
Additionally, the subtypes we studied, generalized epilepsy and focal 
epilepsy, had relatively small case numbers, necessitating analysis of 
larger sample sizes in future research to increase result confidence. In 
addition, the GWAS data in this study are based on results from a 
cross-sectional study, and longitudinal analysis of ULK3 and epilepsy 
is required to confirm our hypothesis. Besides, this study includes 
circulating levels of ULK3 protein, not protein levels in the brain or 
cerebrospinal fluid, which may be  indirect for the assessment of 
epilepsy risk. Unmeasured and residual confounding factors that 
have not been accounted for may introduce bias into the overall 
outcome estimate.

5 Conclusion

This study marks the first exploration of a causal relationship 
between ULK3 and focal epilepsy. It contributes to our understanding 
of the pathological basis of epilepsy. Our findings provide valuable 
insights and impetus for further research.
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