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Objective: Bronchial Asthma (BA) is a common chronic respiratory disease 
worldwide. Earlier research has demonstrated abnormal functional connectivity 
(FC) in multiple cognition-related cortices in asthma patients. The thalamus (Thal) 
serves as a relay center for transmitting sensory signals, yet the modifications in 
the thalamic FC among individuals with asthma remain uncertain. This research 
employed the resting-state functional connectivity (rsFC) approach to explore 
alterations in thalamic functional connectivity among individuals with BA.

Patients and methods: After excluding participants who did not meet the 
criteria, this study finally included 31 patients with BA, with a gender distribution 
of 16 males and 15 females. Subsequently, we  recruited 31 healthy control 
participants (HC) matched for age, gender, and educational background. All 
participants underwent the Montreal Cognitive Assessment (MoCA) and the 
Hamilton Depression Rating Scale (HAMD) assessment. Following this, both 
groups underwent head magnetic resonance imaging scans, and resting-state 
functional magnetic resonance imaging (rs-fMRI) data was collected. Based 
on the AAL (Automated Anatomical Labeling) template, the bilateral thalamic 
regions were used as seed points (ROI) for subsequent rsFC research. Pearson 
correlation analysis was used to explore the relationship between thalamic 
functional connectivity and neuropsychological scales in both groups. After 
controlling for potential confounding factors such as age, gender, intelligence, 
and emotional level, a two-sample t-test was further used to explore differences 
in thalamic functional connectivity between the two groups of participants.

Result: Compared to the HC group, the BA group demonstrated heightened 
functional connectivity (FC) between the left thalamus and the left cerebellar 
posterior lobe (CPL), left postcentral gyrus (PCG), and right superior frontal gyrus 
(SFG). Concurrently, there was a decrease in FC with both the Lentiform Nucleus (LN) 
and the left corpus callosum (CC). Performing FC analysis with the right thalamus as 
the Region of Interest (ROI) revealed an increase in FC between the right thalamus 
and the right SFG as well as the left CPL. Conversely, a decrease in FC was observed 
between the right thalamus and the right LN as well as the left CC.

Conclusion: In our study, we have verified the presence of aberrant FC patterns in 
the thalamus of BA patients. When compared to HCs, BA patients exhibit aberrant 
alterations in FC between the thalamus and various brain areas connected to 
vision, hearing, emotional regulation, cognitive control, somatic sensations, and 
wakefulness. This provides further confirmation of the substantial role played by 
the thalamus in the advancement of BA.
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Introduction

Asthma is a condition marked by recurrent wheezing, 
breathlessness, and coughing. Over 400 million individuals across the 
globe are affected by asthma. Currently, asthma affects 6.3% of the 
youth population in China (1). Previous research on the pathological 
mechanisms of asthma has primarily focused on airway inflammation 
and airway remodeling (2). However, peripheral inflammatory 
substances can also impact the central nervous system via various 
pathways (3). In a prior study, brain MRI scans revealed abnormal 
changes in the brains of asthma patients (4). Furthermore, markers 
associated with central nervous degeneration and neuroinflammation 
have been detected in the blood of asthma patients, suggesting 
potential consequences of asthma on the central nervous system (5).

The mechanisms through which asthma affects the central 
nervous system are not yet fully understood. However, it is currently 
believed that the long-term chronic hypoxia induced by asthma may 
initiate and exacerbate certain pathophysiological processes, such as 
reduced perfusion, endothelial dysfunction, and neuroinflammation. 
In addition to these factors, chemotactic factors produced by airway 
inflammation can directly traverse the blood–brain barrier, leading to 
increased release of reactive oxygen species by microglial cells, 
inducing neuronal apoptosis (6). A recent study found that allergens 
can reduce communication activity between the amygdala and the 
respiratory control cortex, exacerbating respiratory difficulties (7). 
Furthermore, asthma exhibits an overall suppression of the HPA axis, 
and long-term corticosteroid use also inhibits the HPA axis. This 
alteration is associated with a reduction in hippocampal volume, 
thereby impacting working memory (8). Additionally, asthma-related 
nocturnal sleep disturbances are associated with poorer cognitive 
function (9). Inherent difficulties in respiratory regulation, cognitive 
deficits, and emotional control disturbances all contribute to the 
duration and severity of asthma attacks.

When neuronal metabolic activity is ongoing, local changes in 
cerebral oxygen content and blood supply occur. fMRI is capable of 
detecting magnetic field fluctuations resulting from the mismatch 
between local oxygen consumption and cerebral blood flow in various 
brain areas, thereby reflecting the metabolic activity of brain areas. 
Rs-fMRI has increasingly been employed to investigate brain activity 
alterations in BA patients. Li et al. (10) found abnormal activity in the 
angular gyrus, prefrontal cortex, temporal gyrus, superior frontal 
gyrus, and occipital lobe when using fMRI to analyze brain region 
activity and neural networks in asthma patients. Ritz et  al. (11) 
conducted an fMRI study on individuals with poorly controlled 
asthma and found increased activation in their dorsal anterior 
cingulate cortex (dACC). A study revealed abnormalities in these 
metrics in the frontal and superior lobes of the brains of asthmatic 
children, closely associated with attention deficits (12). Most of these 
studies focus on regional activity in the asthmatic brain cortex or 
changes in connectivity at the network level. In previous research, 
we found a substantial reduction in bilateral thalamic connectivity in 
asthma individuals (13). On the other hand, recent research has 

revealed an inverse relationship between the length of time an 
individual has had asthma, the level of asthma management, and the 
frequency of asthma attacks and the volume of the thalamus (14).

The thalamus is often described as an intermediary station for 
sensory information, playing a pivotal role in not only transmitting 
sensory input but also participating in cognitive processes. 
Additionally, it exerts significant control over visceral functions, 
motor coordination, and the maintenance of cerebral arousal (15). The 
thalamus acts as a gatekeeper for information directed to the cerebral 
cortex, selectively enhancing or inhibiting the activation of specific 
information pathways based on the behavioral state (16). With 
extensive and global connections to numerous brain regions, the 
thalamus and its constituent nuclei are likely major hubs within 
multiple brain networks (17). Consequently, conducting a 
comprehensive investigation into the functional connections between 
the thalamus and various other cerebral areas is deemed essential. The 
rs-FC primarily assesses the statistical associations among signals 
throughout the entire brain and particular brain areas, demonstrating 
the potential for exploring how different brain regions coordinate 
their operations. In this study, we will be the first to employ rs-FC to 
uncover evidence of abnormal functional connections within the 
thalamus in asthma patients. We hypothesize that thalamic FC differs 
from that of the healthy population, and this difference may 
be implicated in potential neurobiological mechanisms underlying 
cognitive impairments and emotional dysregulation in 
asthma patients.

Materials and methods

Clinical data

The criteria for selecting asthma subjects are as follows: (1) Adults 
under the age of 60; (2) presence of recurrent wheezing, with the 
forced expiratory volume in 1 s (FEV1) falling between 45 and 80% of 
the predicted normal value; (3) a positive bronchodilator test (FEV1 
reversibility of at least 12% and 200 mL after the administration of 200 
to 400 μg of salbutamol sulfate); and (4) individuals in a non-acute 
phase of asthma.

The criteria that are not suitable for the research object are as 
follows: (1) The presence of other respiratory system diseases; (2) 
Psychiatric disorders or other chronic diseases that may affect 
brain structure and function; (3) Drug dependence or adverse 
habits; (4) Lack of necessary MRI data or clinical assessment 
information; (5) Maximum head displacement exceeding 2.5 mm 
in the x, y, and/or z directions, or angle rotation exceeding 2.5 
degrees around any axis; (6) Contraindications related to MRI 
examinations; (7) Absence of claustrophobia and the ability to 
tolerate MRI examinations. In the end, a total of 31 patients 
diagnosed with BA participated, comprising 16 males and 15 
females. Simultaneously, We  selected 31 HCs (16males and 15 
females) with basic information matching.
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The situations in HCs that are inappropriate for participation are 
as follows: (1) Presence of asthma or other diseases; (2) Brain or 
psychological disorders; (3) Completing an MRI examination carries 
risks; (4) Maximum head displacement exceeding 2.5 mm in the x, y, 
and/or z directions, or angle rotation exceeding 2.5 degrees around 
any axis; (5) Incomplete relevant data.

Neuropsychological assessment

To ensure the reliability of the measured results, we employed the 
Montreal Cognitive Assessment (MoCA) scale as a cognitive function 
measurement tool. The maximum score on the scale is 30 points, with 
an additional point given if the participant has an education level of 
≤12 years. Scores between 18 and 26 indicate mild cognitive 
impairment (MCI) (18). Furthermore, we  utilized the 17-item 
Hamilton Depression Rating Scale (HAMD-17) to evaluate the 
emotional status of the two groups of participants (19). The test results 
from this scale will provide a basis for analyzing cognitive and 
emotional differences among the subjects.

fMRI data acquisition

Utilizing an 8-channel phased-array head coil, we acquired MRI 
data employing the Trio 3-Tesla MR scanner from Siemens, Germany. 
Participants were instructed to remain awake but refrain from 
engaging in any cognitive activities. Head motion was minimized 
using a foam cushion, and noise interference was mitigated through 
the use of earplugs. The parameters for obtaining fMRI images are 
shown in Table 1.

Data preprocessing

To begin, we  validated the quality of the MRI data using the 
MRIcro software package (Montreal Neurological Institute, Canada) 
and excluded those with poor quality. Subsequently, we employed the 
DPABI V5.0 toolbox for brain imaging data processing and analysis 
to preprocess the fMRI data. This toolbox operates on the MatLab 
2018b platform (Mathworks, Natick, MA, United States). We perform 
data preprocessing, including the following steps: (1) Converted the 
DICOM (Digital Imaging and Communications in Medicine) format 
to the NIFTI (Neuroimaging Informatics Technology Initiative) 

format (2) Discarding the first 10 time records (3) Correction of 
temporal differences between slices (4) Correction of head motion 
exceeding 2 millimeters or 2 degrees (5) Alignment and division of 
functional and structural images, normalized to the standard space, 
with Resampling to 3 mm x 3 mm x 3 mm Voxel Units (6) An isotropic 
Gaussian kernel with a Full-Width at Half-Maximum (FWHM) value 
of 6 mm was applied for spatial smoothing. Temporal filtering in the 
frequency range of 0.01–0.08 Hz was used to address linear drift (7) 
The regression covariates included the Friston-24 head motion 
parameters, as well as white matter, cerebrospinal fluid, and 
scale scores.

Functional connectivity analysis based on 
seed regions

To begin, we adopted a cubic size of 6 × 6 × 6 mm for the bilateral 
thalamus, designated as our region of interest (ROI). This choice 
ensured thorough coverage of critical thalamic regions while 
mitigating biases associated with oversized or undersized ROIs. Next, 
we established the thalamic ROI in the standardized MNI (Montreal 
Neurological Institute) space using the AAL (Automated Anatomical 
Labeling) template. This template, offering detailed anatomical 
partitioning of the brain, facilitated the creation of a uniform reference 
framework for consistent cross-individual comparisons. Subsequently, 
we employed affine transformation and non-linear transformation via 
SPM (Statistical Parametric Mapping) software to accurately map the 
ROI to individual subject space. This step was essential for 
accommodating anatomical variability across individuals and 
ensuring the precision of functional connectivity analyses. Once the 
thalamic ROI was accurately defined and mapped, we  computed 
Pearson correlation coefficients between the bilateral thalamus and 
every voxel in the entire brain. These correlation coefficients 
underwent Fisher’s Z transformation to approximate a normal 
distribution. The resulting Z values represented the strength of 
functional connectivity, offering a quantitative assessment of the 
functional interactions between the thalamus and the broader 
brain network.

Statistical analysis

We conducted statistical analyses using SPSS 27 software, and 
continuous data were presented as means ± standard deviations. 
Group comparisons for age, level of education, and BMI were 
performed using independent sample t-tests. Additionally, a 
one-way ANOVA was conducted to compare the scores of 
psychological assessments and cognitive functions, adjusting for the 
effects of age, gender, and educational level. After controlling for 
potential confounders such as age, gender, intelligence, and 
emotional level, a two-sample t-test was further employed to explore 
the differences in thalamic functional connectivity between the two 
groups of participants. Subsequently, the DPABI software was 
employed to analyze intergroup differences while considering age, 
education level, and head motion as covariates. Utilizing AlphaSim 
for correction, p < 0.05. Finally, the xjView software was utilized to 
report the locations of brain regions with significant 
functional connectivity.

TABLE 1 Magnetic resonance imaging acquisition parameters.

Parameters GRE-EPI T1WI

Matrix size 64 × 64 256 × 256

Field of view 240 × 240 mm 240 × 240 mm

Echo time 40 ms 2.26 ms

Repetition time 2,000 ms 1,900 ms

Slice thickness 4.0 mm 1.0 mm

Slice gap 1 mm 0.5 mm

Flip angle 90° 9°

GRE-EPI, gradient echo sequences echo planar imaging; T1WI, T1-weighted images.
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Results

Demographic statistics and clinical scales

In our investigation, there were no notable disparities in terms of 
age, gender, body weight, or BMI between the BA patients and HCs 
(p  > 0.05). The findings are displayed as the mean value with its 
corresponding standard deviation (SD). The duration of asthma in our 
study was observed to be 24.12 years, with a standard deviation of 
4.61 years. The HAMD scores for the BA group and the HC group are 
8.13 ± 2.39 and 4.74 ± 1.77, respectively, while the MoCA scores for the 
BA group and the HC group are 25.52 ± 1.93 and 27.55 ± 1.34, 
respectively. The BA group shows mild cognitive impairment and 
emotional changes. Please refer to Table 2 for detailed results.

Differences in resting-state functional 
connectivity between the two groups

The results of inter-group rs-FC comparisons based on bilateral 
thalamic seed regions and voxels from other brain areas are presented 
in Table 3. In comparison to the HC group, the BA group exhibited 
increased FC between the left thalamus and the left cerebellar 
posterior lobe (CPL), left postcentral gyrus (PCG), and right superior 
frontal gyrus (SFG). Simultaneously, it demonstrated decreased FC 
with both the lentiform nucleus (LN) and the left corpus callosum 
(CC). The right thalamus showed increased FC with the right SFG and 
the left CPL, while FC with the right LN and the left CC decreased. 
The anatomical locations, voxel sizes, and corresponding MNI peak 
coordinates of differential brain regions between the two groups are 
detailed in Table 3. Figures 1, 2 depict the brain regions where notable 
alterations in bilateral thalamic rs-FC were observed in both groups.

Correlation analysis

Partial correlation analysis revealed a negative correlation between 
the FC values of the left thalamus (L-Thal) and right superior frontal 
gyrus (R-SFG) in the BA group and MoCA scores (r = −0.7437, 
p < 0.0001, Figure 3A), as well as a positive correlation with HAMD 
scores (r = 0.7232, p < 0.0001, Figure 3C). Furthermore, the FC values 
of L-Thal and left cerebellar posterior lobe (L-CPL) showed a negative 
correlation with MoCA scores (r = −0.6701, p < 0.0001, Figure 3B) and 
a positive correlation with HAMD scores (r = 0.7449, p  < 0.0001, 
Figure 3D). The FC values between the bilateral thalamus and other 

differential brain regions did not show significant correlations with 
neuro-psychological measurement assessments.

Discussion

Previous research has found a significant decrease in voxel-
mirrored homotopic connectivity (VMHC) between the bilateral 
thalamus in asthma patients, reflecting specific changes in internal 
information exchange, integration, and coordination within the 
thalamus (13). However, unlike discussions on functional changes 
between homologous regions of the bilateral thalamus with VMHC, 
functional connectivity (FC) analysis focuses more on alterations in 
the interaction between the thalamus as a key relay station and 
different brain regions (20, 21). This study is the first to look into 
rs-FC in BA patients between the thalamus and other brain areas. The 
principal discoveries of this study demonstrate that individuals with 
asthma show extensive FC deficiencies in multiple brain regions 
associated with emotion regulation, cognitive control, somatic 
sensation, arousal, visual processing, and auditory processing. These 
findings align with our initial hypothesis. Despite statistical analyses 
revealing only mild cognitive impairment and emotional 
abnormalities in the BA group based on the scores from the two 
assessment scales, subsequent correlation analyses unveiled potential 
neurobiological indicators reflecting cognition and emotion. 
Specifically, the functional connectivity strength between the left 
thalamus (L-Thal) and the right superior frontal gyrus (R-SFG), as 
well as the left cerebellar posterior lobe (L-CPL), was identified.

The cerebellum posterior lobe (CPL) constitutes a significant 
portion of the human cerebellum (22). The thalamus conveys signals 
originating from the dentate nucleus of the CPL and subsequently 
projects them to the cerebral cortex, providing processed information 
back to the cerebellum (23). This neural circuit is typically associated 
with precision task execution, visual processing, speech expression, and 
emotional responses (24, 25). Similarly, we  observed a significant 

TABLE 2 Demographics and clinical measurements by group.

Conditions BA HC t p-value

Male/female 16/15 16/15 N/A 1

Age (years) 46.23 ± 8.41 47.41 ± 7.30 −0.590 0.557

Education (years) 11.86 ± 1.52 12.47 ± 1.31 −1.693 0.096

BMI (kg/m2) 21.64 ± 2.53 21.88 ± 2.74 −0.358 0.721

Duration of asthma 24.12 ± 4.61 N/A N/A N/A

HAMD score 8.13 ± 2.39 4.74 ± 1.77 6.340 <0.001

MoCA score 25.52 ± 1.93 27.55 ± 1.34 −4.819 <0.001

BA group, bronchial asthma group; HC group, healthy control group; BMI, body mass index; 
HAMD, Hamilton Depression Scale; MoCA, Montreal Cognitive Assessment; p > 0.05.

TABLE 3 Differences in FC with the thalamus were observed in brain 
regions between two groups.

Seed-
ROIs

L/R Brain 
area

Voxel MNI t-value

X Y Z

Left thalamus

L CPL 205 −12 −81 −18 6.6873

L LN 91 −12 −3 0 −6.1981

R LN 158 24 12 −6 −6.4019

L CC 59 −12 15 24 −4.9463

L PCG 81 −24 −33 72 6.0385

R SFG 102 6 6 69 5.6002

Right thalamus

L CPL 82 −15 −78 −18 5.7834

R LN 214 21 18 −6 −7.1578

L CC 62 −9 27 6 −5.8531

R SFG 95 18 27 60 6.9249

Voxel level P < 0.05, AlphaSim corrected. MNI, Montreal Neurological Institute; CPL, 
Cerebellum Posterior Lobe; LN, Lentiform Nucleus; CC, Corpus Callosum; PCG, Postcentral 
Gyrus; The negative t-values are decreased functional connectivity in BA vs. control, and that 
the positive t-values are increased functional connectivity.
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correlation between increased functional connectivity (FC) between the 
thalamus and cerebellar posterior lobe (CPL) and the presence of 
cognitive impairment and emotional abnormalities. Aberrant FC results 
in a decline in functional interaction capacity between brain regions, 
thereby weakening the efficiency of information transmission. In 
research examining primary nocturnal enuresis in children, 
disturbances in arousal were linked to diminished functional 
connectivity between the thalamus and CPL (26). In the study 
conducted by Liu and colleagues (27), it was also observed that 
individuals suffering from sleep disorders exhibited elevated metabolic 
activity in both the thalamus and the CPL. Xie et al. (28) investigated 
the spontaneous brain activity in patients with obstructive sleep apnea 
(OSA) using the percentage of amplitude fluctuation (PerAF). Their 
findings revealed an increased PerAF in the CPL, which correlates with 
the presence of sleep disturbances. Another study also indicates 
enhanced regional activity in the left CPL in BA patients (29). In our 
study, we observed enhanced FC between the Thal and CPL. This may 
potentially amplify projections to the cortical areas of CPL, resulting in 
cortical excitation. This could possibly explain the higher prevalence of 
nocturnal awakenings and sleep disturbances in asthma patients. 
Prolonged insufficient sleep can lead to decreased vigilance, resulting in 
reduced responsiveness of individuals with asthma to external threats 
(30, 31). This may contribute to an increased risk of triggering asthma-
related behaviors. Research indicates that, compared to non-depressed 
individuals with asthma, those with depression exhibit significantly 
increased cerebral blood flow in the CPL (32–34). The inclination 

toward depression is also related to CPL metabolism (35). Furthermore, 
as a region with a “proofreading” function for information, the increased 
signal strength in the cerebellum reflects abnormal control of respiratory 
muscles, and this change in asthmatic individuals may be associated 
with alterations in their respiratory rate (36, 37). It is worth noting that 
in the cerebellum-thalamus-cerebral cortex (CTC) ascending loop, 
we  have only identified FC changes between the cerebellum and 
thalamus in BA patients. In the future, probabilistic fiber tractography 
can be  used to determine the regions with strong fiber bundle 
connections between the thalamus and the cerebellum, serving as ROIs 
for the projection of the cerebellum onto the thalamus. This approach 
can be employed to construct the FC between the thalamus and the 
cortex within this circuit, thereby elucidating the specific changes within 
the CTC in individuals with asthma.

LN, including the pallidum and the putamen nucleus, is a critical 
part of the basal ganglia, projecting to the ventrolateral nucleus of 
the thalamus and the lateral geniculate body (38). The basal ganglia-
thalamus-cortical loop (BTC) is involved in arousal and attention 
functions (39). It also mediates regulatory control over a wide range 
of cortical areas, playing a pivotal role in emotional processing, 
motor control, cognitive processing, and motivational behavior (40). 
In our study, we  observed a reduction in FC between the left 
thalamus and bilateral LN, while the right thalamus exhibited 
decreased FC, specifically with the right LN. The altered FC patterns 
may contribute to an overall decrease in information transmission 
efficiency between the thalamus and the cerebral cortex. Previous 

FIGURE 1

Spatial distribution maps of functional connectivity (FC) in the brain regions of the bronchial asthma group (A) and the healthy control group (B), based 
on the seed point of the left thalamus. (C, D) The brain regions where there are significant differences in FC between the two groups (with a voxel-level 
p-value less than 0.05, corrected using AlphaSim). Color bars indicate t-scores; cool colors indicate regions in BA with lower FC values compared to 
HC, while warm colors indicate the opposite.
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fMRI studies have indicated that the pallidum and the putamen 
nucleus often exhibit abnormal spontaneous activity when 
individuals are experiencing emotions such as fear, anxiety, and 
sadness (41). Individuals with asthma are more likely to trigger 
anxious thoughts about the dire consequences of an asthma attack. 
Additionally, it is widely hypothesized that the aberrant neural 
activity in this circuit serves as a fundamental neural mechanism in 
individuals with obsessive-compulsive disorder (42). Decreased 
thalamic gating efficiency can lead to a greater projection of 
intrusive, distressing thoughts into the cortex (16). Under the 
influence of obsessive thoughts and anxious emotions, this can result 
in more frequent oral corticosteroid and bronchodilator use. 
Prolonged corticosteroid treatment is linked to a decrease in LN 
volume, which in turn leads to more severe anxiety occurrences (14, 
43). Furthermore, damage to dopaminergic neurons in LN is closely 
associated with cognitive impairments in schizophrenia, including 
deficits in attention, working memory, reward processing, and 
executive functions (44). The LN is involved in the reward processing 
system and is responsible for linking different sensory cues with 
rewarding outcomes. In individuals suffering from severe depression, 
LN becomes abnormally activated during the occurrence of negative 
emotions, thereby intensifying the avoidance motivation to alleviate 
the experience of negative emotions (45, 46). Impairments in reward 
and executive functions in BA patients may lead to reduced 
proactiveness in seeking medication and a higher likelihood of 

experiencing negative emotions. In the future, it is also possible to 
integrate multimodal data from DTI and fMRI to segmentally 
construct a detailed profile of BTC changes in BA patients.

The SFG is situated in the anterior medial prefrontal cortex, a key 
region within the default mode network (DMN), and is primarily 
involved in functions such as attention selection, inhibitory control, 
stress perception, and working memory (47, 48). The DMN consumes 
a substantial amount of energy during rest, making it particularly 
susceptible to oxidative stress damage and the influence of diseases (49). 
Previous research has shown reduced activity in other brain regions of 
the DMN in individuals with asthma, such as the angular gyrus and the 
precuneus, confirming regional functional and network-level intrinsic 
activity abnormalities in the brains of BA patients (10). Hwang et al. (17) 
discovered robust functional connections between the DMN and 
various thalamic nuclei. Therefore, we hypothesize that, to compensate 
for the reduction in internal network activity, the thalamus and SFG’s 
FC will increase adaptively. The thalamus mediates top-down regulation 
and the filtering and integration of sensory information, as well as 
serving as a crucial hub for selective inhibition of external stimuli and 
focused attention (50). Meanwhile, the prefrontal cortex plays a central 
role in processing higher-level emotional and cognitive information. 
The enhanced functional connection between SFG and the thalamus is 
considered a neurofunctional characteristic of schizophrenia, often 
characterized by excessive attention to external stimuli and abnormal 
emotional reactions to these stimuli (51). Furthermore, these changes 

FIGURE 2

Spatial distribution maps of functional connectivity (FC) in the brain regions of the bronchial asthma group (A) and the healthy control group (B), based 
on the seed point of the right thalamus. (C, D) The brain regions where there are significant differences in FC between the two groups (with a voxel-
level p-value less than 0.05, corrected using AlphaSim). Color bars indicate t-scores; cool colors indicate areas in BA with lower FC values compared to 
HC, while warm colors indicate the opposite.
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in BA patients may lead to a reduction in the use of adaptive strategy, 
potentially resulting in emotional regulation disorders (52, 53). Research 
indicates a positive correlation between spontaneous activity in SFG and 
perceived stress, with excessive perceived stress typically stemming from 
negative emotions such as anxiety and depression (54). The thalamus 
also plays a role in mediating noxious input to the cortex, and the 
functional reorganization of the SFG is crucial in top-down modulation 
of pain experiences, with strong FC between them potentially 
contributing to the sustained perception of pain (55). The thalamus and 
SFG’s FC serve as a shared pathway in the experiences of breathlessness 
and pain perception (56, 57). We hypothesize that asthma patients, in 
the long-term management of their breathing difficulties, gradually 
adapt to the stress associated with pain, transforming their adaptation 
to breathlessness into a tolerance for pain. This adaptation is manifested 
through increased spontaneous activity in the superior frontal gyrus 
(SFG). Therefore, the heightened functional connectivity (FC) between 
the thalamus and SFG in BA patients may be  linked to emotional 
regulation disorders, perceived stress, and experiences related to pain 
and breathlessness.

PCG is a crucial region within the sensorimotor network 
responsible for processing various types of sensory perceptions. 

Sensory stimuli are conveyed through C-fibers to the spinal 
thalamic tract and are then relayed to the PCG via the thalamic 
ventral posterior nucleus (58). In their analysis of gender differences 
in chronic cough, Morice et al. (59) found that females exhibited 
higher sensitivity in their cough reflex, which was associated with 
increased activation in the PCG. Our research has revealed that, in 
comparison to HCs, asthma patients exhibit increased FC between 
the thalamus and PCG. This finding aligns with the tendency 
for  asthma patients to experience coughing more frequently. 
Furthermore, damage to the PCG cortex could potentially affect 
respiratory motor control. Zhang et al. (60), in their fMRI analysis 
of COPD patients, observed enhanced low-frequency amplitude of 
fluctuations (ALFF) in the PCG, which was closely related to over-
breathing. As the condition worsens, patients with asthma may 
gradually experience decreased sensitivity in perceiving asthma 
symptoms within the somatosensory cortex. This decline in 
perception sensitivity may hinder their ability to promptly address 
their condition due to reduced perception strength (61). Previous 
research has yielded varying results, showing reduced functional 
connectivity (FC) between the insular cortex and the PCG in BA 
patients (42). This reduction may be  attributed to pathological 

FIGURE 3

Correlation between inter-group differential brain regions based on thalamus functional connectivity analysis and scores on neuro-psychological 
assessment scales. The vertical axis represents the functional connectivity (FC) values, while the horizontal axis corresponds to the scores on the 
neuro-psychological assessment scales. MoCA, Montreal Cognitive Assessment; HAMD, Hamilton Depression; Thal, thalamus; SFG, superior frontal 
gyrus; CPL, cerebellar posterior lobe; L for Left; R for Right.
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activation in the PCG, which subsequently diminishes the FC 
between the insular cortex and PCG. Furthermore, early cognitive 
development often relies on essential sensory experiences, and 
excessive input from the thalamus can lead to aberrant sensory 
experiences, ultimately impacting cognitive function (58). Hence, 
the PCG is involved in the occurrence of bronchial hyperreactivity 
and respiratory overdrive in asthma, and it can serve as a potential 
biomarker for the severity of asthma symptoms.

Lastly, we  have observed a decrease in FC between the 
CC  and  the thalamus, even though there is no apparent 
anatomical correlation between them. But functionally, they are 
interconnected, such as in the context of visual short-term memory 
capacity (62), visual processing (63), and speech formation (64). In 
fact, the input from the thalamus plays a highly instructive role in 
the maturation trend of the CC area, achieved through the 
regulation of neuronal projection, development, signal 
transduction, and activity-dependent plasticity (65, 66). The CC 
serves as an intermediary for interhemispheric communication 
(67) and indirectly contributes to cognitive functions like language, 
attention, working memory, and visual spatial memory (68–70). 
Previous studies have suggested that CC atrophy in BA patients 
might be  mediated by allergens (71) and affect the cortical 
metabolism associated with cognitive functions (72). In BA 
patients, there is a reduction in the FC between the CC and the 
thalamus, which we hypothesize is associated with a decline in the 
coordinated processing of sensory stimuli across both brain 
hemispheres. This decline includes the ability to recognize odors 
from olfactory stimuli (73, 74). This might explain why asthma 
patients have difficulty identifying harmful gases, which can trigger 
asthma symptoms. In an fMRI study, Wang et al. (75) found that 
damage to the white matter integrity of the CC is related to the 
severity of anxiety. Changes in FC between the thalamus and these 
brain structures contribute to understanding the pathophysiological 
mechanisms underlying cognitive impairments, emotional 
dysregulation, and motor control failures in BA patients. In the 
future, inducing positive plastic changes may be considered in the 
treatment of BA to promote brain function recovery.

Limitations

Nonetheless, there are certain constraints associated with this 
study. In the first place, the sample size was rather limited owing to 
rigorous inclusion criteria. Furthermore, during the administration 
of the neuro-psychological assessment scales, it is noteworthy that 
the subjects may not have fully adhered to a conservative 
representation of their condition, introducing a potential bias to the 
test results. Thirdly, this study did not investigate how these FC 
differences change over time. Future research could employ dynamic 
FC analysis to elucidate this aspect. Hence, it is imperative to 
conduct longitudinal studies using a variety of analytical approaches 
for fMRI. This will enable us to investigate the evolving patterns in 
FC as time progresses. Fourthly, our study only identified brain 
regions where there were differences in FC between the BA group 
and the HCs concerning the thalamus and other cortical regions. In 
the future, machine learning methods such as support vector 
machine (SVM) classifiers can be employed to determine whether 
these brain regions can serve as discriminative features for 
distinguishing these groups.

Conclusion

In our study, we have verified the presence of aberrant FC patterns 
in the thalamus of BA patients. When compared to HCs, BA patients 
exhibit abnormal changes in functional connectivity between the 
thalamus and various brain regions associated with vision, hearing, 
emotional regulation, cognitive control, somatic sensations, and 
wakefulness. This provides further confirmation of the substantial role 
played by the thalamus in the progression of BA.
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