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Introduction: This study aimed to investigate the impact of cognitive load, 
particularly its escalation during the execution of the same test, under varying 
vision conditions, on postural balance among adolescents with intellectual 
disability (ID).

Methods: Twenty adolescents underwent balance assessments under different 
visual conditions (Open Eyes (OE), Closed Eyes (CE), Flash, Goggles, Visual 
Stimulation (VS)) and task settings (Single Task (ST), Dual Task (DT) without 
challenges, and DT with challenges). The cognitive test was assessed using 
Verbal Fluency (VF).

Results and discussion: Significant effects were found for Task (p  < 0.001, 
ηp2 = 0.85), indicating that CoP values significantly increased (p < 0.05) with the 
introduction of the DT. Dual Task Cost (DTC) demonstrated significant effects 
for Vision (p  = 0.008, ηp2  = 0.62), with values varying significantly (p < 0.05) 
among different vision conditions, especially in CE and Flash conditions. Visual 
Dependency Quotient (VDQ) analyses revealed significant effects of condition 
(p < 0.001, ηp2 = 0.84), with significant changes observed in CE/OE and Flash/
OE conditions (p  < 0.05). Significant effects were observed for Cognitive 
performance in the Challenge condition (p < 0.001, ηp2 = 0.86), with decreased 
performance with cognitive task challenges, particularly in Flash and Goggles 
conditions (p < 0.05). In conclusion, cognitive tasks, especially challenging ones, 
and visual variations significantly impact postural balance in adolescents with ID.
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1 Introduction

Intellectual disability (ID) is a neurodevelopmental disorder impacting approximately 3% 
of the population, characterized by deficits in intellectual functioning and adaptive behavior, 
resulting in challenges across various aspects of daily life (1). Among the concerns faced by 
adolescents with ID, difficulties in postural balance have been documented (2–6), potentially 
leading to falls (7). These challenges may be  attributed to deficits in visual perception, 
proprioceptive awareness, and vestibular inputs (4).
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Given the importance of postural balance in navigating daily 
activities, it is necessary to understand the mechanisms involved. The 
postural control system, comprising postural orientation and 
equilibrium, strives to uphold an appropriate relationship between 
body parts and stabilize the body’s center of mass during various 
activities (8). Sensory systems, including visual, vestibular, and 
somatosensory, play essential roles in postural control and balance (8). 
Postural control necessitates significant cognitive resources, evident 
even in quiet standing through increased reaction times when 
compared to sitting with support. The complexity of postural tasks 
correlates with heightened cognitive processing demands (9, 10).

Considering adolescents with ID, cognitive load, reflecting the 
demands on cognitive resources during a task, becomes a crucial 
consideration. These individuals may experience heightened cognitive 
load due to their condition, potentially exacerbating their challenges 
in maintaining postural balance. Indeed, cognitive functions represent 
a large area of impairment in ID and are often assessed through IQ 
assessments where the score is below 70 (11). Within this population, 
deficits typically manifest in attention, memory, and executive 
functions, posing significant challenges to daily functioning (12). 
When individuals with ID engage in tasks that require cognitive 
processing, such as dual-task (DT) paradigms, they may experience 
an increased cognitive load that exceeds available resources (13). This 
increased cognitive load can impair their ability to effectively allocate 
attention and cognitive resources toward maintaining postural balance 
(14). Previous studies have indicated that individuals with ID often 
face difficulties when concurrently performing motor tasks, including 
postural balance, and cognitive activities, introducing an additional 
layer of complexity to their motor control difficulties (15–18). This 
simultaneous engagement may impact their proficiency in managing 
daily activities. Importantly, existing studies have primarily focused 
on investigating the effects of DT using various tests on postural 
balance, leaving a gap in the literature concerning investigations into 
the effect of cognitive load, particularly when intensified during the 
execution of the same test, on postural balance in adolescents with ID.

Furthermore, acknowledging the significance of vision as a 
primary sensory input for postural control, this study extends its focus 
to encompass vision variability that may introduce additional layers 
of complexity to the motor control challenges faced by adolescents 
with ID. Previous research has shown that engaging in a cognitive task 
while standing with CE or delayed visual feedback diminishes postural 
balance in individuals without ID (19–22). According to Wickens’ 
Multiple Resource Theory of information processing (23), when 
individuals perform both a cognitive task and visually control an 
upright stance, interference occurs. This interference arises from the 
competition for common central resources between cognitive and 
visual processing streams (24). Consequently, the effects of cognitive 
tasks on postural balance differ under visual and non-visual conditions.

The present study addresses an important gap in the literature 
concerning the impact of cognitive load, particularly when performing 
the same task, on postural balance in adolescents with ID. While 
previous research has examined the challenges of maintaining postural 
balance in individuals with ID and the effects of DT on postural 
stability, uncertainties persist regarding how variations in cognitive 
task complexity influence postural balance in this population. 
Therefore, this study aims to provide knowledge about this 
relationship, which could inform the development of more effective 
interventions to enhance postural balance and improve the overall 

quality of life for individuals with ID. Moreover, our study considers 
the role of vision variability, incorporating an additional layer of 
complexity to the postural balance challenges faced by adolescents 
with ID. With the inclusion of conditions that introduce variability in 
sensory inputs, such as altered visual feedback or visual distractions, 
our methodology reflects the real-world difficulties experienced by 
adolescents with ID in maintaining postural balance. This method 
enables us to investigate how variations in visual conditions interact 
with cognitive load to influence postural balance, offering a valuable 
understanding of the multifaceted nature of postural balance 
difficulties in this population. Hence, this study aims to examine the 
impact of cognitive load, especially its escalation during the execution 
of the same test, while varying vision conditions, on postural balance 
in adolescents with ID. It is hypothesized that increased cognitive 
load, especially while performing a more challenging cognitive task 
will exacerbate the difficulties that adolescents with ID have in 
maintaining postural balance. Furthermore, the effect of cognitive 
load on postural balance will vary depending on visual variations 
introducing an additional layer of complexity to the investigation.

2 Methods

2.1 Participants

The sample size was determined in advance using G*power 
software (version 3.1.9.2; Heinrich Heine University Düsseldorf, 
North Rhine-Westphalia, Germany) (25). Parameters such as effect 
size (Cohen’s f), alpha, power, correlation among repeated measures, 
and non-sphericity correction (ε) were set at 0.4, 0.05, 0.80, 0.50, and 
1, respectively. The chosen parameters were based on established 
guidelines for statistical analysis and power calculations, consistent 
with methodologies employed in previous studies (15, 16, 26). A 
minimum of 13 participants was calculated to achieve the desired 
power and minimize the risk of Type II statistical error. To account for 
potential participant withdrawals, additional individuals were 
recruited beyond the G*power recommendation.

Our recruitment strategy involved a three-stage screening 
process to define the sample for this study. Initially, we randomly 
selected 27 adolescents aged 14 to 18 with ID from the special 
educational center’s database (Figure 1). In the subsequent stage, 22 
individuals meeting the specified inclusion and exclusion criteria 
were identified. The inclusion criteria were as follows: moderate to 
mild ID, with an average intelligence quotient of 55 ± 3.89, 
determined by the Wechsler Intelligence Scale for Children fourth 
edition (27), administered by the center’s psychologist, and similar 
ethnicity, socioeconomic status, and low physical activity level 
(International Physical Activity Questionnaire score < 600 Met). 
Exclusion criteria included the presence of neuroleptic medications, 
recent lower limb injuries or surgeries, and visual or vestibular 
disorders. General health status was assessed through medical 
records provided by the special education center, including 
information on any existing medical conditions, medication usage, 
and recent health history. The recruitment criteria were designed to 
ensure homogeneity within the sample population, thereby 
minimizing potential confounding variables that could affect the 
study outcomes. Following the screening process, the final sample 
size was determined, excluding two individuals who were absent 
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during the familiarization session, resulting in a total of 20 
participants (mean age: 16.30 ± 1.17 years, mean height: 
167.11 ± 4.35 cm, mean weight: 58.24 ± 5.11 kg).

Before the commencement of the study, a detailed explanation of 
the experimental protocol was provided to the participants, their 
parents, and caregivers. Written informed consent was obtained from 
the parents, and assent was obtained from the participants themselves. 
This consent process ensured that all participants fully understood the 
purpose, procedures, and potential risks of the study in a manner 
appropriate to their developmental level. Moreover, measures were 
taken to ensure participant privacy and confidentiality by anonymizing 
all data collected and securely storing any identifiable information. 
Additionally, participants were assured of their right to withdraw from 
the study at any time without consequence. The study adhered strictly 
to the ethical principles set forth in the Declaration of Helsinki and 
received approval from the ethics committee of Vasile Alexandri 
University of Bacau, Romania, under approval number 5/2/06.02. 2024.

2.2 Study design

This study employed a within-subject, repeated-measures design, 
comparing postural balance performance within the same individuals 

across different visual conditions and cognitive task complexities. The 
study comprised three laboratory visits:

 - Initial Visit (First day): This visit was dedicated to familiarization 
with the experimentation, instructions, and procedures. 
Participants underwent preliminary assessments to ensure 
eligibility for the study and the correct execution of the tests.

 - Testing Visits (Second and Third days): The subsequent two visits 
focused on testing sessions. Each testing session occurred on 
separate days, spaced 1 day apart, to ensure participants were 
adequately rested between sessions. During these visits, 
participants completed postural balance assessments under 
various visual conditions and cognitive task complexities.

All testing sessions were conducted in the morning to minimize 
variations due to circadian rhythms or daily fatigue.

During these sessions, instructions were provided to participants 
verbally by a research team member, who has extensive experience in 
conducting research with individuals with ID. This team member was 
trained to adapt his communication methods to suit the individual 
needs and abilities of participants with ID. Besides, the participants 
were provided simplified explanations, breaking down complex 
instructions into smaller steps, and using visual aids when appropriate. 

FIGURE 1

Recruitment process flowchart.
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Participants were encouraged to ask questions and seek clarification 
if needed, and the team member assessed their understanding through 
verbal feedback. Furthermore, the assessments took place in the 
presence of a caregiver familiar with the participants to create a 
supportive and inclusive environment.

The experiment assessed postural balance, through center of 
pressure (CoP) recordings, under various visual conditions. These 
conditions included:

 • Open Eyes (OE): Participants maintained a stable bipedal stance 
with unrestricted vision.

 • Closed Eyes (CE): Participants wore a blindfold to eliminate 
visual input.

 • Flash: Participants were briefly exposed to an intense burst of 
bright light.

 • Goggles: Participants wore goggles with prismatic lenses.
 • Visual Stimulation (VS): Participants were exposed to dynamic 

color motion videos.

To ensure consistency, all visual conditions were systematically 
administered, maintaining standardized protocols across participants. 
Participants were instructed to maintain a stable bipedal stance 
throughout the assessments. For the OE condition, participants 
maintained unrestricted vision, while for the CE condition, 
standardized blindfolds were used to ensure complete occlusion of 
vision. Goggles were calibrated to induce uniform visual distortion, 
and the Flash condition was carefully controlled for distance and 
duration. Additionally, VS was standardized in terms of content, 
duration, and presentation. These measures were implemented to 
minimize variability in visual input across participants.

Participants engaged in a cognitive task involving verbal fluency 
(VF) tests during postural balance assessments. The VF task required 
participants to generate words from specific categories, with variations 
in task complexity. Postural balance assessments were conducted 
under Single Task (ST) and Dual Task (DT). In the ST condition, 
participants solely focused on maintaining postural balance under the 
visual conditions. In contrast, the DT condition required participants 
to concurrently perform the cognitive task while maintaining postural 
balance under the same visual conditions. Throughout the testing 
sessions, cognitive load and task complexity were systematically 
manipulated using a cognitive task with and without challenges to 
elucidate their effects on postural balance. It is important to note that 
while some participants may have undergone general postural balance 
assessments or cognitive tests in the past, the specific tasks and 
conditions investigated in our study were novel to all participants. All 
assessments were conducted in a standardized manner by trained 
researchers who were experienced in working with individuals 
with ID.

2.3 Measurements

2.3.1 Postural balance
Participants were instructed to maintain a stable bipedal stance on 

a static stabilometric platform (PostureWin©, Techno Concept®, 
Cereste, France) while barefoot. This platform, known for its precision 
with a sampling frequency of 40 Hz and 12-bit A/D conversion, has 
been extensively used in postural studies involving individuals with 

ID (17, 28–32), providing evidence for its validity and suitability. The 
experiment included five visual conditions: OE, CE, Flash, Goggles, 
and VS. In the OE condition, participants focused their gaze on a 3 cm 
target positioned 3 m away, providing a stable visual reference. In the 
CE condition, participants wore a blindfold to eliminate visual input, 
allowing investigation into its impact on postural balance. In the Flash 
condition, participants were briefly exposed to an intense burst of 
bright light emitted from a standard smartphone flashlight using the 
“SmartTorch” application, positioned at a distance of 50 cm within a 
dimly lit environment. This flash of light lasted for 10 s, then the flash 
automatically stopped. In the Goggles condition, participants wore 
goggles with prismatic lenses that induced visual distortion. These 
goggles were made of transparent plastic. The prismatic lenses caused 
light entering the goggles to bend, resulting in visual distortion and 
blurriness. In the VS condition, participants were exposed to VS 
through dynamic color motion videos on YouTube. Specifically, 
participants viewed the “Abstract Liquid Background Video (No 
Sound) — 4 K UHD Abstract Liquid Screensaver.” These videos 
featured vibrant and fluid patterns in motion, displayed on a computer 
screen positioned approximately one meter away from the 
participants. To reduce the influence of sequence effects, the order of 
the visual conditions was counterbalanced for each participant in our 
study. Each condition comprised three trials, each lasting 30 s, with a 
30-s rest interval to minimize fatigue and learning effects. Participants 
were allowed to sit during the rest period to maintain postural 
consistency. The selected parameter was the mean velocity of the 
Center of Pressure (CoPVm), calculated as the sum of scalar 
displacements of the CoP divided by the total recording time, 
expressed in mm/s. CoPVm reflects the efficiency of the postural 
control system, with lower values indicating better postural control, 
making it a reliable measure (33). CoPVm is commonly used to measure 
postural stability and has been referenced in several studies across 
different contexts, including ID (26, 30), Parkinson’s disease (34), 
multiple sclerosis (35), and functional ankle instability (36). These 
studies demonstrate its sensitivity in detecting changes in 
postural stability.

2.3.2 Cognitive task
The VF category test assesses semantic VF by prompting 

participants to generate words from specific categories like animals, 
fruits, or colors. Before formal testing, participants completed a 
practice trial with a different category. Cognitive performance was 
quantified by the number of correct words produced within the 
duration of postural balance assessment. Tasks without challenges 
included generating words for categories like “animals,” “fruits,” and 
“colors,” while tasks with challenges involved more specific criteria 
such as “only big animals,” “only small animals,” “animals that swim,” 
“only small fruits,” or “only fruits that are not yellow.” This test was 
widely used in individuals with ID (15, 37).

2.4 Statistical analyses

The statistical analysis was conducted using SPSS 25.0 (Statistical 
Package for the Social Sciences Inc., Chicago, IL, United States). The 
normality of data distribution was confirmed through the Shapiro–
Wilk test. To analyze postural balance performance, a two-way 
ANOVA with repeated measures (5 Vision × 3 Task) was employed 
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to examine the influence of Vision (OE / CE / Flash / Goggles / VS) 
and Task (ST / DT without challenges / DT with challenges) on 
CoPVm values. DT costs (DTC) were assessed using the following 
formula (38): DTC = Condition 1: [(DT without challenges - ST)/ST] 
* 100 or Condition 2: [(DT with challenges - DT without challenges)/
ST] * 100 or Condition 3: [(DT with challenges - ST)/ST] * 100. For 
the analysis of DTC, a two-way ANOVA with repeated measures (5 
Vision × 3 Condition) was conducted to examine the influence of 
Vision (OE / CE / Flash / Goggles / VS) and Condition (Condition 1 
/ Condition 2 / Condition 3) on DTC values. The Visual Dependency 
Quotient (VDQ) was calculated using CE/OE, Flash/OE, Goggles/
OE, or VS/OE. For the VDQ, a two-way ANOVA with repeated 
measures (4 Condition × 3 Task) was employed to examine the 
influence of Condition (CE/OE, Flash/OE, Goggles/OE, VS/OE) and 
Task (ST / DT without challenges / DT with challenges) on VDQ 
values. Concerning cognitive performance, a two-way ANOVA (5 
Vision × 2 Challenge condition) was conducted to examine the 
influence of Vision (OE / CE / Flash / Goggles / VS) and Challenge 
condition (DT without challenges / DT with challenges) on the 
number of correct answers on the VF task. To assess the practical 
significance of statistically significant differences, effect sizes for each 
outcome measure were computed using the partial eta squared (ηp2) 
formula. Effect sizes were categorized as small (0.01 < ηp2 < 0.06), 
moderate (0.06 < ηp2 < 0.14), or large (ηp2 > 0.14) (39). To account for 
multiple comparisons, a Bonferroni adjustment was conducted. The 
level of statistical significance was set at p < 0.05.

3 Results

The analysis of postural balance performance, the two-way 
ANOVA, revealed significant main effects for the Vision and Task 
factors. A significant interaction (Vision × Task) was observed 
(Table 1).

Across all tasks (ST, DT without challenges, and DT with 
challenges), CoPVm values significantly increased in CE (p < 0.001 
for all tasks), Flash (p < 0.001 for all tasks), and Goggles (p < 0.001 
for all tasks) conditions compared to the OE one. There was a 
significant decrease in CoPVm values in VS condition (p = 0.032) 
compared to the OE one, observed only in the analyses of DT 
without challenges. Furthermore, CoPVm values significantly 
increased in the Goggles condition (p < 0.001, p < 0.001, p = 0.042, 
respectively), and significantly decreased in the VS condition 
(p < 0.001 for all tasks) compared to the CE one. However, no 
significant difference was observed between CE and Flash 
conditions in all tasks. As well, no significant difference was 
observed between Goggles and Flash conditions in all tasks. 
Additionally, there was a significant decrease in CoPVm values in the 
VS condition compared to Goggles (p < 0.001 for all tasks) and Flash 
(p < 0.001 for all tasks) conditions (Figure 2).

Across all visual conditions, post hoc analyses revealed an increase 
in CoPVm values when introducing DT, both without challenges (OE 
and Flash: p < 0.001, CE: p = 0.001, Goggles: p = 0.01, VS: p = 0.003) and 
with challenges (p < 0.001 for all visual conditions) compared to 
ST. Furthermore, CoPVm values exhibited an increase in DT with 
challenges compared to DT without challenges in all visual conditions: 
CE (p < 0.001), Flash (p = 0.001), Goggles (p = 0.005), VS (p = 0.002), 
with the exception of OE condition (p = 0.050) (Figure 2).

Concerning the analysis of DTC, the two-way ANOVA revealed 
significant main effects for the Vision and Condition factors, along 
with a significant interaction (Vision × Condition) (Table 1).

In Condition 1, post hoc analyses revealed no significant difference 
in DTC among all vision conditions. In Condition 2, the post hoc 
analyses showed a significant increase in DTC in CE compared to the 
OE condition (p = 0.012). In Condition 3, the post hoc analyses 
indicated a significant increase in DTC in CE and Flash conditions 
compared to the OE one (p < 0.001, p = 0.010, respectively). 
Additionally, the post hoc analysis demonstrated no significant 
difference between Condition 1 and Condition 2. However, there was 
a significant increase in DTC in Condition 3 compared to Condition 
1 in all visual conditions (OE: p = 0.046, CE: p < 0.001, Flash: p = 0.003, 
Goggles: p = 0.003, VS: p = 0.002), as well as between Condition 3 and 
Condition 2 (OE: p < 0.001, CE: p = 0.003, Flash: p = 0.003, Goggles: 
p < 0.001, VS: p = 0.004) (Figure 3).

In terms of the analysis of the VDQ, significant main effects were 
observed for the Condition and Task factors, although no interaction 
(Condition × Task) was found (Table 1).

Significant changes in VDQ were noted specifically in CE/OE 
and Flash/OE conditions. In the CE/OE condition, the VDQ 
increased significantly in DT with challenges compared to DT 
without challenges (p = 0.002) and ST (p < 0.001). Conversely, in the 
Flash/OE condition, the VDQ increased only in DT with challenges 
compared to DT without challenges (p = 0.009). Additionally, in the 
ST, there was a significant decrease in VDQ in the VS/OE condition 
compared to CE/OE (p = 0.001), Flash/OE (p < 0.001), and Goggles/

TABLE 1 ANOVA results.

F Degree of 
freedom

p ηp2

Postural balance performance

Vision 64.17 4,16 <0.001 0.91

Task 192.92 2,18 <0.001 0.85

Vision× Dual-

task
24.92 8,12 <0.001 0.92

DTC

Vision 4.45 4,16 =0.008 0.62

Condition 5.77 2,18 =0.010 0.36

Vision × 

Condition
4.48 8,12 =0.014 0.62

VDQ

Condition 29.88 3,16 <0.001 0.84

Task 5.62 2,17 =0.013 0.39

Condition × 

Task
1.78 6,13 =0.179 –

Cognitive performance

Vision 18.78 4,16 <0.001 0.81

Challenge 

condition
125.62 1,19 <0.001 0.86

Vision× 

Challenge 

condition

2.52 4,16 =0.81 –

DTC, Dual-Task Cost; VDQ, Visual Dependency Quotient.
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OE (p < 0.001) conditions. In the DT without challenges, there was 
a significant increase in VDQ in the Goggles/OE condition 
compared to the CE/OE condition (p = 0.030), and a significant 

decrease in VDQ in the VS/OE condition compared to CE/OE 
(p < 0.001), Flash/OE (p < 0.001), and Goggles/OE (p < 0.001) 
conditions. Similarly, in the DT with challenges, there was a 

FIGURE 2

Center of pressure velocity mean (CoPVm) in single task (ST), dual-task (DT) without challenges, and DT with challenges under open eyes (OE), closed 
eyes (CE), Flash, Goggles, and visual stimulation (VS) conditions. **, ***: Significance difference (p <  0.01, p <  0.001) between ST and DT without 
challenges, and DT with challenges; $$, $$$: Significance difference (p <  0.01, p <  0.001) between DT without challenges and DT with challenges; aa, 
aaa: Significance difference (p <  0.01, p <  0.001) between OE and the rest of the conditions; bbb: Significance difference (p <  0.001) between CE and 
the rest of the conditions; ccc: Significance difference (p <  0.001) between Flash and the rest of the conditions; ddd: Significance difference (p <  0.001) 
between Goggles and VS.

FIGURE 3

Dual-task costs values (DTC) in Condition 1, 2, and 3 under open eyes (OE), closed eyes (CE), Flash, Goggles, and visual stimulation (VS) conditions. *, 
**, ***: Significance difference (p <  0.05, p <  0.01, p <  0.001) between Condition 1 and Condition 2 and Condition 3; $$, $$$: Significance difference 
(p <  0.01, p <  0.001) between Condition 2 and Condition 3; aa, aaa: Significance difference (p <  0.01, p <  0.001) between OE and the rest of the 
conditions.
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significant increase in VDQ in the Goggles/OE condition compared 
to the CE/OE condition (p = 0.020), and a significant decrease in 
VDQ in the VS/OE condition compared to CE/OE (p < 0.001), 
Flash/OE (p < 0.001), and Goggles/OE (p < 0.001) conditions 
(Figure 4).

Regarding the analysis of cognitive performance, significant main 
effects were found for the Vision and Challenge condition factors, 
although no interaction (Vision × Challenge condition) was observed 
(Table 1).

In DT without challenges, post hoc analyses revealed a significant 
decrease in the number of correct answers in Flash and Goggles 
conditions (p < 0.001 for both) compared to the OE one. However, no 
significant difference was observed between OE and CE conditions, 
and between OE and VS conditions. There was a significant decrease 
in Flash (p = 0.003), Goggles (p = 0.009), and a significant increase in 
VS (p < 0.001) compared to CE. No significant difference was observed 
between Flash and Goggles in the number of correct answers, but 
there was a significant increase in VS compared to both Flash and 
Goggles conditions (p < 0.001, for both). In DT with challenges, post 
hoc analyses revealed a significant decrease in the number of correct 
answers in Flash and Goggles conditions (p < 0.001, for both) 
compared to the OE one. However, no significant difference was 
observed between OE and VS conditions. There was a significant 
increase in the number of correct answers in the VS condition 
(p = 0.042) compared to the CE one. No significant difference in the 
number of correct answers was observed between Flash and Goggles 
conditions, but there was a significant increase in the VS condition 
(p < 0.001) compared to both Flash and Goggles conditions. 
Additionally, the results of post hoc analyses indicated a significant 
decrease in the number of correct answers in DT with challenges 

compared to without challenges in all visual conditions (p < 0.001) 
(Figure 5).

4 Discussion

4.1 Effect of visual variability on postural 
balance

Across all tasks, including ST, DT without challenges, and DT 
with challenges, the results showed a consistent increase in CoPVm in 
conditions of visual deprivation or distortion, such as CE, Flash, and 
Goggles, compared to OE condition. This finding aligns with the 
fundamental role of visual input in facilitating spatial orientation and 
postural adjustments (40). When visual input is available, 
proprioceptive and vestibular signals align with visual cues to provide 
accurate feedback on body position and movement, enhancing spatial 
awareness and balance (41). However, when visual input is 
compromised or distorted, as observed in conditions like CE, Flash, 
or Goggles, the central nervous system compensates by placing greater 
reliance on alternative sensory inputs such as proprioception and 
vestibular cues to maintain balance (41). In cases where these sensory 
inputs are additionally compromised, as commonly seen in individuals 
with ID, it exacerbates postural balance issues due to sensory deficits 
(4). This compounded effect further disrupts the ability to maintain 
postural balance when visual input is compromised or distorted 
compared to normal condition (OE).

Furthermore, the introduction of visual perturbations, such as 
bright flashes or goggles that distort vision, poses additional challenges 
to the adaptive mechanisms of the postural control system. Indeed, 

FIGURE 4

Visual dependency quotient (VDQ) in single task (ST), dual-task (DT) without challenges, and DT with challenges under CE/OE, Flash/OE, Goggles/OE, 
and visual stimulation (VS)/OE conditions. **, ***: Significance difference (p <  0.01, p <  0.001) between ST and DT with challenges; a, aaa: Significance 
difference (p <  0.05, p <  0.001) between CE/OE and the rest of conditions; bbb, ccc, ddd: Significance difference (p <  0.001) between VS/OE and the 
rest of conditions.
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the bright light from a phone’s flash can cause a brief loss of vision, 
introducing transient sensory conflicts that challenge the adaptive 
mechanisms of the postural control system. When exposed to a 
sudden burst of bright light, the intense luminance can overwhelm the 
eyes’ visual receptors, resulting in a phenomenon known as flash 
blindness (42). This brief period of visual impairment disrupts the 
normal functioning of the visual system, temporarily compromising 
the brain’s ability to process visual information accurately (42). 
Compensatory mechanisms may engage, with individuals relying 
more on proprioception and vestibular cues to offset unreliable visual 
input. Consequently, the adaptive capabilities of the postural control 
system may be challenged, potentially leading to transient posture 
instability (43). Previous research on the effects of ambient lighting on 
postural sway with OE has suggested reduced efficiency of the visual 
system under reduced lighting conditions in typically developed 
individuals (44–46). However, to our knowledge, there is a gap in data 
regarding the effects of high brightness on postural balance. Similarly, 
visual distortion caused by wearing goggles introduces a perceptual 
mismatch between visual and both proprioceptive and vestibular 
feedback, creating a discrepancy between perceived and actual body 
position, and reducing postural balance. When individuals wear 
prismatic goggles, their visual input undergoes distortion, leading to 
a discrepancy between what their eyes perceive and the body’s internal 
sense of position, which relies on proprioception and vestibular cues 
(47). These goggles alter the way the individual sees the world, 
confounding the brain’s ability to accurately gauge the body’s 
orientation in space and leading to a state of perceptual confusion. As 
a result, the integration of sensory inputs necessary for maintaining 
postural stability is compromised, contributing to increased postural 

sway. Individuals with ID experience heightened challenges in 
integrating proprioceptive input without adequate visual cues leading 
to further decreased postural balance (15, 17, 48). Hence, the reasons 
why brightness from a phone’s flash or wearing goggles have more 
pronounced effects than others in this population may stem from the 
intensity of the perturbation, individual differences in sensory 
processing, as well as the specific nature of the visual distortion 
induced by these perturbations. Future studies should clarify the 
precise mechanisms driving these varying effects in order to 
understand their implications for the management of postural balance 
in individuals with ID.

On the other hand, the observed decrease in CoPVm values in the 
VS condition compared to OE one in the DT without challenges 
elucidates the potential benefits of VS in enhancing postural balance 
(49), even in individuals with ID, particularly in the absence of 
additional cognitive challenges.VS using color motion, for instance, 
may positively influence postural balance through its effects on the 
brain and cognitive performance. Indeed, the use of dynamic visual 
stimuli, such as color motion, may engage attentional mechanisms 
and cognitive processing (50). Several studies have discussed the 
positive effects of colors on the brain (51–53), which may lead to 
improved postural balance in DT conditions without challenges. 
Additionally, previous studies have suggested that the effective use of 
color design in immersive digital contexts can positively influence an 
individual’s cognitive performance and ID (54). These findings could 
explain the positive effect of VS using color motion on postural 
balance under DT without challenges. Besides, the psychological 
impact of visual stimuli should be  considered. Colors and visual 
stimuli have been shown to influence mood, arousal levels (55). 

FIGURE 5

Number of correct answers of the verbal fluency test in dual-task (DT) without challenges and DT with challenges under open eyes (OE), closed eyes 
(CE), Flash, Goggles, and visual stimulation (VS) conditions. ***: Significance difference (p <  0.001) between DT without challenges and DT with 
challenges; aaa: Significance difference (p <  0.001) between OE and the rest of conditions; bbb: Significance difference (p <  0.001) between CE and the 
rest of conditions; ccc: Significance difference (p <  0.001) between Flash and the rest of conditions; ddd: Significance difference (p <  0.001) between 
Goggles and VS.
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Positive affect induced by visually stimulating environments may lead 
to increased motivation and engagement in postural tasks, potentially 
enhancing postural balance (56). However, further investigations in 
future studies are warranted to explore this effect more 
comprehensively. It is important to note that this effect was not 
observed in DT with challenges. The lack of a similar effect in the DT 
with challenging condition suggested that the cognitive demands 
imposed by the difficult task may overshadow the potential benefits of 
VS on postural balance. When individuals with ID are engaged in 
more demanding cognitive tasks, the influence of visual stimuli on 
postural balance may be diminished by the greater attentional and 
cognitive resources required to perform the task effectively.

4.2 Effect of cognitive load on postural 
balance and cognitive performances

The observed increase in CoPVm values in DT conditions reflects 
the competition for cognitive resources between postural balance and 
cognitive tasks, highlighting the relationship between cognitive and 
motor functions in individuals with ID. The cognitive-motor 
interference hypothesis posits that engaging in cognitive tasks 
concurrently with postural control can lead to impairments in both 
motor and cognitive performance (15, 57–59). Essentially, this 
hypothesis highlights the competition for limited cognitive resources 
within the brain. When individuals perform dual tasks involving both 
postural balance and cognitive activities, the demands on cognitive 
resources can interfere with motor performance and vice versa (60, 
61). This interference occurs due to the limited capacity of cognitive 
resources and the brain’s inability to fully allocate these resources to 
multiple tasks simultaneously. As a result, individuals may experience 
decreased postural balance and cognitive functioning when engaging 
in DT activities. Consequently, as individuals with ID engage in 
cognitive tasks concurrently with postural control, cognitive resources 
that could have been allocated to maintaining balance are diverted, 
leading to compromised balance performance (13, 15–18). The 
increase is exacerbated by the difficulty of cognitive tasks, indicating 
the intricate interaction between cognitive and motor functions in this 
population. In individuals with ID, who may already have cognitive 
deficits or limited cognitive reserve (1), the effects of cognitive-motor 
interference can be particularly pronounced (15). The introduction of 
cognitive tasks, especially those requiring increased cognitive load or 
complexity, may overwhelm the available cognitive resources, leading 
to disruptions in both motor control and cognitive functioning (15).

Our findings extend previous research by examining the effects 
of cognitive load within a single test on postural balance in 
individuals with ID. While previous studies have primarily focused 
on examining the relationship between cognitive tasks and postural 
balance in individuals with ID (13, 16–18), few studies have 
specifically looked at cognitive load. Interestingly, only one study, 
to our knowledge, has directly compared the effects of different 
cognitive tests on postural balance in individuals with Down 
Syndrome (15). This study suggests that adolescents with Down 
Syndrome experience worsened postural balance when their 
attention is divided, even when performing simple motor tasks like 
standing. Additionally, the interference between cognitive tasks and 
postural balance was more significant during a VF task compared 
to a working memory task. Therefore, the present study 

complements the existing literature by highlighting the impact of 
cognitive load within a single test on postural balance in individuals 
with ID. The observed decline in cognitive performance during DT 
conditions with challenges suggested the presence of cognitive 
challenges reduced cognitive processing efficiency and performance. 
For instance, a study found that for tasks involving attention 
demand, response time decreased as time increased, indicating the 
impact of cognitive load on task performance (62). Additionally, 
cognitive load has been associated with changes in operational 
performance, with higher cognitive load leading to decreased 
performance in complex tasks (63). Therefore, the evidence suggests 
that a higher cognitive load can lead to reduced cognitive 
performance, especially in tasks involving attention demand or 
complex cognitive processing.

Interestingly, the impact of visual perturbations on cognitive task 
performance varied across different visual conditions. In the DT 
without challenges condition, the results revealed a significant 
decrease in the number of correct answers in both the Flash and 
Goggles conditions compared to the OE one. This decline in cognitive 
performance suggested that visual perturbations introduced by the 
Flash and Goggles conditions negatively impacted cognitive task 
performance, highlighting the role of visual distractions in affecting 
cognitive processing (64). Interestingly, there were no significant 
differences observed between OE and CE conditions, or between OE 
and VS conditions. However, significant differences were observed 
when comparing CE to Flash and Goggles conditions, with Flash and 
Goggles conditions resulting in a decreased number of correct 
answers, and VS condition showing improved performance compared 
to CE. These findings suggest that certain visual conditions, 
particularly those involving perturbations or distortions like Flash and 
Goggles, may inhibit cognitive task performance, while others such as 
VS may have a neutral or even beneficial effect on cognitive processing. 
The differential impact of visual conditions on cognitive performance 
can be attributed to several factors. For example, the nature of visual 
disturbances, such as sudden flashes of light or distorted vision caused 
by glasses, might have disproportionately strained cognitive resources, 
already depleted by their ID, leading to decreased cognitive task 
performance. Furthermore, psychological effects of visual stimuli, 
such as their impact on mood and arousal levels, might have played a 
role in changing cognitive task performance under different 
visual conditions.

It is important to note that, in our study, we employed the VF 
category test to assess cognitive performance (15, 37). This test 
required participants to generate words from specific categories, such 
as animals, fruits, or colors. Tasks without challenges involved 
generating words for broad categories like “animals,” “fruits,” and 
“colors,” requiring relatively simple cognitive processing. Conversely, 
tasks with challenges imposed more specific criteria, such as “only big 
animals,” “only small animals,” or “animals that swim,” demanding 
higher cognitive load and cognitive flexibility. These differences in task 
complexity likely influenced the observed effects on both postural 
balance and cognitive performance. Tasks with challenges may have 
diverted more cognitive resources away from postural control, leading 
to compromised balance performance. Additionally, individuals with 
ID may have experienced increased cognitive load when 
simultaneously performing more challenging cognitive tasks with 
motor tasks (13), further impacting both postural and 
cognitive performance.
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4.3 The interplay between cognitive tasks 
and vision

The results highlighted the interplay between cognitive task 
complexity and visual conditions in modulating postural balance in 
individuals with ID. In Condition 1, where participants performed DT 
without additional challenges (DT without challenges-ST/ST), the 
lack of significant differences in DTC between all vision conditions 
suggested that visual input alone does not substantially affect the 
allocation of cognitive resources between motor and cognitive tasks. 
This implies that adolescents with ID are able to effectively manage 
DT without challenges without experiencing significant interference 
from varying visual conditions. However, in Condition 2 (DT with 
challenges  - DT without challenges/ DT without challenges), the 
introduction of cognitive challenges led to a significant increase in 
DTC in the CE condition compared to the OE one. This suggested that 
visual deprivation exacerbates conflict for cognitive resources, leading 
to increased postural balance disturbance, especially as cognitive tasks 
become more demanding. Indeed, it has been found that engaging in 
cognitive tasks while standing with CE leads to decreased postural 
balance (65). Similarly, a previous study investigated how cognitive 
tasks affect the visual regulation of upright posture and observed that 
performing cognitive tasks inhibited the visual processing necessary 
for maintaining postural balance (66). Another study supported the 
view that interactions between visual processing and cognitive task 
performance influenced postural balance (19). In Condition 3 (DT 
with challenges -ST/ST), significant increases in DTC were observed 
in both CE and Flash conditions compared to the OE condition 
providing additional light into the relationship between cognitive task 
complexity and visual conditions. This suggested that the combined 
effect of cognitive challenges and visual perturbations significantly 
compromised postural balance. The lack of significant differences 
between Condition 1 and Condition 2 but the significant increase in 
DTC in Condition 3 compared to both highlighted the additive effect 
of cognitive challenges and visual perturbations on postural balance. 
These results are consistent with the cognitive-motor interference 
hypothesis, according to which DT places additional demands on 
cognitive processing, impairing both motor and cognitive 
performance (15, 59, 67, 68). The observed increases in DTC highlight 
the strain placed on cognitive resources as individuals strive to 
maintain balance while simultaneously engaging in cognitive tasks, 
particularly under conditions of visual deprivation or distortion. 
Moreover, the examination of VDQ elucidated the degree of reliance 
on visual feedback for postural balance in individuals with ID. The 
significant increases in VDQ under visual deprivation and disruption 
conditions during DT conditions highlighted the increased visual 
dependence on DT to compensate for cognitive deficits. It appears that 
individuals with ID rely more on visual cues to alleviate cognitive 
challenges during postural balance tasks.

This study faces some limitations that should be addressed in 
future studies. The study sample may not fully represent the diverse 
population of individuals with ID because participants were recruited 
in a specific demographic or clinical setting. Therefore, generalization 
of the results to broader populations of individuals with ID should 
be done with caution. Additionally, the study focused on individuals 
with moderate to mild ID, limiting the generalizability of the results 
to individuals with more severe ID. Moreover, while the study 
identified associations between visual conditions, cognitive tasks, and 

postural balance, causal relationships cannot be inferred due to the 
study’s cross-sectional design. Future studies using experimental or 
intervention designs could elucidate causal mechanisms underlying 
these relationships. Another limitation of our study is the potential 
influence of individual differences in cognitive abilities on the 
observed effects. While we  employed cognitive tasks of varying 
complexity levels, we did not directly assess participants’ cognitive 
profiles, such as attention, working memory, or executive functions. 
These cognitive domains are known to vary widely among individuals 
with ID and can significantly impact performance on cognitive tasks 
and motor functions. The lack of individual cognitive assessments 
limits our ability to elucidate how specific cognitive abilities may have 
interacted with task demands and influenced postural balance 
outcomes. Future studies could benefit from incorporating 
comprehensive assessments of cognitive abilities to better understand 
their role in shaping the relationship between cognition and motor 
function in individuals with ID. Importantly, this study did not 
directly assess certain mechanisms that could explain the observed 
results. For example, the specific neurophysiological pathways 
involved in the interaction between visual processing, cognitive load, 
and postural balance were not investigated. Future studies could use 
techniques such as electroencephalography to elucidate the neural 
correlates of cognitive-motor interactions in individuals with 
ID. Besides, our results may have been influenced by factors such as 
fatigue, motivation, and participants’ familiarity with postural and 
cognitive tasks. While we  attempted to maintain standardized 
protocols, fluctuations in fatigue or motivation could have impacted 
task engagement and postural balance. Also, participants’ prior 
familiarity with tasks might have influenced their performance, 
particularly in the cognitive task. However, we acknowledge that these 
factors were not assessed or addressed, potentially introducing 
confounding variables. Future studies in this area should incorporate 
measures to account for these influences.

Despite the limitations, the findings of this study have important 
practical implications. Given the reliance on visual feedback for 
postural balance observed in this study, interventions incorporating 
multisensory training could be beneficial, reducing the reliance on 
visual stimuli alone. Besides, the findings suggest that integrating 
cognitive rehabilitation strategies into balance training programs 
could be  particularly beneficial. One effective strategy involves 
progressively increasing the cognitive difficulty of training exercises 
to enhance cognitive flexibility and resource allocation during 
concurrent motor and cognitive tasks. This approach not only 
improves postural balance but also addresses the cognitive deficits 
associated with impaired DT performance in individuals with ID. As 
well, reducing visual distractions and obstacles may help create a safer 
environment for individuals with ID to practice balance exercises. 
Providing clear spatial cues can enhance their ability to focus on both 
motor and cognitive tasks simultaneously. Furthermore, caregivers 
working with individuals with ID can benefit from understanding the 
impact of cognitive load and visual perturbations on postural balance 
and cognitive performance. Implementing strategies to minimize 
cognitive demands during activities of daily living and academic tasks 
may help optimize functional outcomes and enhance the overall 
quality of life. By applying the knowledge gained from this study, 
practitioners and caregivers can develop more effective interventions 
that maximize engagement and progress, and ultimately improve the 
quality of life of individuals with ID in real-world settings.
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5 Conclusion

In conclusion, our findings demonstrate that visual perturbations 
and cognitive challenges significantly influence postural balance and 
cognitive performance in individuals with ID. Future studies should 
explore additional mechanisms underlying these effects, while 
practical implications suggest integrating cognitive rehabilitation 
strategies into postural balance training programs to improve DT 
performance and the overall quality of life in this population.
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