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Introduction: Postoperative urinary retention (POUR) is the inability to urinate 
after a surgical procedure despite having a full bladder. It is a common 
complication following lumbar spine surgery which has been extensively 
linked to increased patient morbidity and hospital costs. This study hopes to 
development and validate a predictive model for POUR following lumbar spine 
surgery using patient demographics, surgical and anesthesia variables.

Methods: This is a retrospective observational cohort study of 903 patients who 
underwent lumbar spine surgery over the period of June 2017 to June 2019 in 
a tertiary academic medical center. Four hundred and nineteen variables were 
collected including patient demographics, ICD-10 codes, and intraoperative 
factors. Least absolute shrinkage and selection operation (LASSO) regression 
and logistic regression models were compared. A decision tree model was fitted 
to the optimal model to classify each patient’s risk of developing POUR as high, 
intermediate, or low risk. Predictive performance of POUR was assessed by area 
under the receiver operating characteristic curve (AUC-ROC).

Results: 903 patients were included with average age 60  ±  15  years, body mass 
index of 30.5  ±  6.4  kg/m2, 476 (53%) male, 785 (87%) white, 446 (49%) involving 
fusions, with average 2.1  ±  2.0 levels. The incidence of POUR was 235 (26%) 
with 63 (7%) requiring indwelling catheter placement. A decision tree was 
constructed with an accuracy of 87.8%.

Conclusion: We present a highly accurate and easy to implement decision tree 
model which predicts POUR following lumbar spine surgery using preoperative 
and intraoperative variables.

KEYWORDS

lumbar surgery, machine learning, postoperative complications, risk factors, urinary 
catheterization, urinary retention

OPEN ACCESS

EDITED BY

Tarun Singh,  
University of Michigan, United States

REVIEWED BY

Joshua Cohn,  
Fox Chase Cancer Center, United States
Thomas Hsueh,  
Taipei City Hospital, Taiwan

*CORRESPONDENCE

Yusuf Mehkri  
 yusuf.mehkri@neurosurgery.ufl.edu

†These authors share first authorship

RECEIVED 16 February 2024
ACCEPTED 11 June 2024
PUBLISHED 26 June 2024

CITATION

Malnik SL, Porche K, Mehkri Y, Yue S, 
Maciel CB, Lucke-Wold BP, Robicsek SA, 
Decker M and Busl KM (2024) Leveraging 
machine learning to develop a postoperative 
predictive model for postoperative urinary 
retention following lumbar spine surgery.
Front. Neurol. 15:1386802.
doi: 10.3389/fneur.2024.1386802

COPYRIGHT

© 2024 Malnik, Porche, Mehkri, Yue, Maciel, 
Lucke-Wold, Robicsek, Decker and Busl. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 26 June 2024
DOI 10.3389/fneur.2024.1386802

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2024.1386802&domain=pdf&date_stamp=2024-06-26
https://www.frontiersin.org/articles/10.3389/fneur.2024.1386802/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1386802/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1386802/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1386802/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1386802/full
mailto:yusuf.mehkri@neurosurgery.ufl.edu
https://doi.org/10.3389/fneur.2024.1386802
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2024.1386802


Malnik et al. 10.3389/fneur.2024.1386802

Frontiers in Neurology 02 frontiersin.org

1 Introduction

Postoperative urinary retention (POUR) refers to a patient’s 
inability to completely empty their distended bladder following 
surgery. POUR is a common complication across all surgical 
specialties with an incidence of 5%–70% (1, 2). Following spine 
surgery, average rates of POUR range from 5 to 38% depending on the 
definition of POUR, study population, and surgical characteristics (1, 
3–8). The occurrence of POUR leads to discomfort and the potential 
need for catheterization, factors that overtly impact patient well-being. 
POUR has also been extensively linked to increased risk for serious 
complications such as urinary tract infection, sepsis, increased length 
of stay, higher medical costs, and increased rates of readmission to the 
hospital (4, 5, 9–11). In addition to immediate patient well-being and 
comfort, POUR was found to lower patient satisfaction, with patients 
who experienced POUR being less likely to be satisfied with spine 
surgery even at long-term follow up (11).

Several patient specific risk factors have been associated with the 
development of POUR following lumbar spine surgery with age and 
male sex being the most frequently described factors (4, 5, 9, 10, 12). 
Likewise, numerous surgical factors such as operative time, number 
of operative levels, and fusion/surgical instrumentation have been 
associated with POUR (4, 5, 11–13). While dozens of factors have 
been analyzed, few of these analyses have brought forth actionable 
plans for identifying patients at greatest risk for POUR outside of 
single variable analysis. These univariate approaches fail to adequately 
analyze the complex interactions of patient and surgical variables 
which limits their predictive accuracy.

Machine learning has become widely popularized in the spine 
surgery literature over the past decade with its application being put 
forward toward diagnosis of spinal conditions and prediction of 
surgical complications and outcomes (14). Previously, our group 
published a highly accurate model using preoperative variables to 
predict POUR through regression and neural network analysis (15); 
however, it did not account for intraoperative and perioperative 
variables during anesthesia, such as administration of narcotics, that 
have been demonstrated to affect a patient’s likelihood to develop 
POUR (16–18). Herein, we present a machine learning comprehensive 
approach for identification and classification of patients at risk for 
POUR following lumbar spine surgery with patient, surgical and 
anesthesia variables. We hypothesize that the inclusion of a greater 
spectrum of variables will increase the fidelity of the predictive model. 
Practically, this would enable the surgical team to better identify 
patients at greatest risk for POUR, proactively adjust expectations, and 
arrange for proper monitoring and mitigating strategies.

2 Methods

2.1 Study design

We performed a retrospective review of consecutive patients who 
underwent spine surgery at our tertiary care academic medical center 
from June 2017 to June 2019. Patients were identified for inclusion in 
the database by query of CPT codes specific to lumbar spine operations: 
22533, 22534, 22558, 22585, 22612, 22614, 22630, 22633, 22634, 63005, 
63012, 63017, 63030, 63035, 63042, 63047, 63048, 63056, 63057. Patients 
were excluded if surgery was not done through the clinic setting, had 

surgery in a non-lumbar region (i.e., thoracic, or cervical level), or 
were <18 years old. Study design and data security methods were 
approved by our Institutional Review Board under protocol #201902403.

2.2 Identification of variables

The data were retrospectively collected from charted demographic 
information, nursing and anesthesia reports, and neurosurgical operative 
reports. Preoperative variables included age, body mass index (BMI), and 
pre-surgical use of opioids or urinary retention medication (i.e., 5-alpha 
reductase inhibitors and/or alpha inhibitors). International Classification 
of Diseases (ICD) codes preexisting the surgical visit were collected from 
electronic health record (EHR) as well as Epic’s Care Everywhere® 
feature, a network connecting UF Health’s EHR to hundreds of other 
EHRs utilizing the Epic system (Epic Systems Corporation, Verona, 
Wisconsin). Intraoperative and post-operative variables were chosen 
based on previous studies and clinical suspicion of relevance (1, 9, 11–13, 
15, 17–22). Intraoperative surgical variables included duration of surgery, 
indwelling catheter use, type of surgery (discectomy, laminectomy, and/
or fusion), type of fusion if relevant, pelvic screw placement, number of 
levels, use of minimally invasive techniques, and surgical approach. 
Intraoperative anesthesia variables included total intravenous fluid 
administration, total volume of blood products transfused, and all 
medications administered during the surgical procedure.

2.3 Definition of POUR

Patients were monitored in the neuroscience intensive care unit, 
post-anesthesia care unit, and neurosurgical floor unit for failure to 
void and distended or painful bladders. Indwelling urinary catheters 
were placed intraoperatively for cases with expected surgery duration 
exceeding 3 h. In the absence of indwelling catheters, urine volume was 
determined per standard of care with nurse-led bladder scanning. 
POUR was defined as the reinsertion of indwelling urinary catheter, or 
the need for straight catheterization for urine volumes exceeding 
400 mL on bladder scan (23, 24). Bladder scan was done with 
ultrasound in standard fashion. Timing of postoperative removal of the 
indwelling urinary catheter occurred at the discretion of the surgeon.

3 Statistical analysis

3.1 Variable selection

Four hundred and nineteen variables were collected including 
patient characteristics, ICD-10 codes, and intraoperative factors. Only 
patients with complete data sets were included in the analysis. To set up 
a model for predicting POUR, variables were selected in two steps. In 
the first selection stage, all variables were subjected to univariate 
analysis to reveal patterns of association with POUR. Mann–Whitney 
U-tests were used for continuous and nominal variables while 
chi-square tests were used for categorical variables. Following this 
analysis, variables were selected depending on statistical significance 
and refined based on previous literature (2, 15). Then, a LASSO 
regression approach based on a penalized regression to obtain shrinkage 
estimators where only variables that did not shrink to 0 were kept.
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The data were randomly split into training (80%) and validation 
sets (20%). The training set was used to develop models to predict 
POUR. The validation set was used to evaluate the performance of the 
prediction models that fitted from the training data.

3.2 Predictive modeling

In building the predictive models, a logistic regression model is 
first fitted to predict POUR using the selected variables. The area 
under the curve (AUC) on both training and validation dataset was 
assessed to show the performance. Then, the predicted probability of 
having POUR for all patients from training and validation set is 
calculated from the logistic regression model. Based on the 
distribution of outcomes found in prior modeling based on 
pre-operative risk factors, we defined the top 11% of the predicted 
probability as high risk, the 74% as intermediate risk and the last 15% 
as low risk (15). Using the risk levels as outcome, a decision tree model 
is fitted to classify each patient’s risk level in the training set. Five-fold 
cross validation is utilized for hyper parameter tuning on minimum 
split and maximum depth. The accuracy of the decision tree is 
calculated from the validation set for performance evaluation. Brier 
score (measure of the accuracy of the probalistic prediction) was used 
to compare the forecasting ability of each aspect of the model, where 
the lower the score, the better the predictions are calibrated (25). All 
statistical analyses were performed using SAS statistical software.

4 Results

4.1 Clinical characteristics

Of the 1,387 patients enrolled via CPT codes, 362 were 
non-lumbar, 77 were found to be non-elective, and 45 patients had 

missing data as shown in Figure 1. Of 903 patients included in this 
study, the mean age was 59.5 ± 15.4 years, BMI of 30.5 ± 6.4 kg/m2, 476 
(53%) male, and 785 (87%) white. 24/903 (2.7%) had a history of 
UTI, and 27/903 (2.9%) had a history of retention. The incidence of 
POUR was 235 (26.1%) with 63 (7%) requiring indwelling urinary 
catheter placement. Patients who developed POUR were significantly 
older (62.2 ± 15.4 years vs. 58.5 ± 15.4 years, p = 0.002) but did not 
significantly differ with regards to BMI (30.6 ± 6.63 kg/m2 vs. 
30.3 ± 5.85 kg/m2, p = 0.488), male sex (44.9% vs. 48.0%, p = 0.414), or 
white race (86.1% vs. 87.3%, p = 0.659). Differences in the rates of 
POUR based on preoperative clinical characteristics are shown in 
Figure 2. Patients who developed POUR were statistically more likely 
to have taken tamsulosin (+16.6%, p = 0.050) or opioids prior to 
surgery (+11.7%, p < 0.002), had an American Society of 
Anesthesiologist Physical Status Classification System (ASA) score > 2 
(+11.2%, p = 0.001), and had a Charlson Comorbidity Index (CCI) > 1 
(+10%, p = 0.001).

4.2 Surgical characteristics

The differences in rates of POUR based on surgical variables are 
shown in Figure 3. There were multiple significant surgical predictors 
of POUR. Rates of POUR were significantly higher in patients with 
surgeries involving fusion (+18.4%, p < 0.001) or laminectomy 
(+13.2%, p < 0.001). The rates of POUR in patients who underwent 
multilevel laminectomy (+22.1%, p < 0.001) and multilevel fusion 
(+24.1%, p < 0.001) were higher. Intraoperative indwelling urinary 
catheter placement (+20.1%, p < 0.001) was a strong predictor of 
POUR. Similarly, there was a significant difference in the likelihood 
to develop POUR in patients who underwent surgery involving 
posterolateral fusion (+18.8%, p < 0.001), pelvic screw placement 
(+15.9%, p = 0.014) or interbody fusion (+9%, p < 0.003). Conversely, 
rates of POUR were significantly lower in patients whose surgery 

FIGURE 1

Flow diagram. CPT, Current procedural terminology.
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included discectomy only (−22.1%, p < 0.001) or involved discectomy 
(−19.1%, p < 0.001). Similarly, rates of POUR were significantly lower 
in patients who underwent minimally invasive technique operations 
(−10.7%, p < 0.001).

4.3 Anesthesia characteristics

A total of 69 variables were extracted and analyzed from 
intraoperative charts including muscle relaxants, reversal agents, 

FIGURE 2

Bar graph of the differences in the rates of POUR based on preoperative clinical characteristics for patients who underwent lumbar spine surgery. 
Frequency (n) and p-values comparing those who did and did not develop POUR. Asterisk (*) indicates p  <  0.05 in chi-square tests. BMI, Body mass 
index.

FIGURE 3

Bar graph of the differences in the rates of POUR based on categorical surgical variables for patients who underwent lumbar spine surgery. Frequency 
(n) and p-values comparing those who did and did not develop POUR. Asterisk (*) indicates p  <  0.05 in chi-square test.
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vasopressors, antihypertensives, antibiotics, neuromuscular agents, 
sedatives, analgesics (opioids and non-opioid), intravenous fluids, and 
blood product transfusions. The average amount of 25 anesthesia 
variables were found to be significantly different between the groups 
of patients (Table 1). Patients who developed POUR had a significantly 
longer average surgical time (310 ± 147 min vs. 236 ± 130 min, 
p < 0.001), received greater volume of intravenous fluids 
(3,000 ± 2,330 mL vs. 1,960 ± 1,520 mL, p < 0.001), and received greater 
oral morphine equivalents (OME) of intravenous opioids 
(21.3 ± 35.0 mg OME vs. 13.1 ± 28.4 mg OME, p < 0.001).

Following initial univariate analysis of patient, surgical and 
anesthesia-related factors, 94 variables were selected for LASSO 
regression of which 13 variables did not shrink to 0. The LASSO 
regression model achieved an AUC of 0.676 on the testing set on the 
receiver operating characteristic (ROC) curve (training set AUC 0.743). 
The AUC on the precision recall curve (PRC) were 0.332 and 0.560 for 
the testing and training sets, respectively. After the model selection 
step, 14 variables including patient, surgical and anesthesia factors were 
isolated and included in logistic regression (Table  2). The logistic 
regression outperformed the LASSO regression model with an 
AUC-ROC of 0.737 (training set AUC 0.768; Figure 4). The AUC-PRC 

for this model on the testing and training sets were 0.614 and 0.402, 
respectively. After hyper-parametric tuning of selected predictors from 
the LASSO regression model, a decision tree model was constructed 
(Figure 5). The accuracy for the final decision tree model was confirmed 
to be 87.8% on a 3-class confusion matrix (which reduces to 70.9% on 
a confusion matrix excluding the intermediate category), with 
sensitivity 91.3%, specificity 55.2%, positive predictive value 61.0%, and 
negative predictive value 89.2%. Brier score was noted to be 0.19.

5 Discussion

POUR is an incompletely understood but frequently encountered 
barrier to patient recovery and satisfaction following lumbar spine 
surgery occurring in 25% of patients. Its pathogenesis is thought to 
be related to several factors including anesthetic agents, perioperative 
medications, and postoperative pain, all of which can alter the 
complex urinary signaling pathway. Anesthetics can act centrally at 
the pontine micturition center and peripherally as smooth muscle 
relaxants to decrease bladder contractility (26). Surgical pain or 
inadequate pain control further stimulates the sympathetic nervous 

TABLE 1 Selected anesthesia variables found to have statistically significant differences between the group of patients that developed POUR and the 
group of patients that did not develop POUR.

Variables—Mean (SD)* POUR No POUR p-value Correlation

Albumin (g) 17.7 (29.3) 7.5 (1.8) <0.001 +

Calcium chloride 189 (711) 67.1 (342) 0.001 +

Calcium gluconate 189 (711) 71.5 (451) 0.014 +

Cefazolin 2,830 (2,060) 2,390 (1,720) 0.003 +

Dexamethasone 1.68 (3.43) 2.52 (3.98) 0.001 −

Ephedrine 12.2 (14.8) 9.18 (14.6) 0.005 +

Hydromorphone 0.397 (0.867) 0.262 (0.702) 0.031 +

Total IV Fluid Volume (mL) 3,000 (2,330) 1,960 (1,520) <0.001 +

Ketorolac 1.91 (6.52) 4.49 (10.4) <0.001 +

Methadone 3.96 (6.94) 2.41 (5.56) 0.001 +

Midazolam 0.536 (0.944) 0.805 (1.82) 0.003 −

Neostigmine 0.151 (0.784) 0.0419 (0.408) 0.043 +

Ondansetron 3.68 (1.27) 3.82 (1.17) 0.040 −

Oral Morphine Equivalents 21.3 (35.0) 13.1 (28.4) 0.001 +

Phenylephrine 6.39 (7.57) 2.99 (4.88) <0.001 +

Plasma Transfusion (mL) 18.3 (134) 1.22 (23.8) 0.039 +

Plasmalyte (mL) 2,190 (1,480) 1,540 (1,210) <0.001 +

Platelet Transfusion (mL) 6.94 (49.4) 0.753 (19.5) 0.038 +

Promethazine 0.0426 (0.460) 0.161 (1.15) 0.009 −

Propofol 948 (1,980) 645 (1,300) 0.019 +

RBC Transfusion (mL) 156 (546) 26.7 (167) <0.001 +

Remifentanil 0.475 (1.40) 0.242 (1.35) 0.038 +

Rocuronium 87.0 (50.1) 75.9 (39.7) 0.006 +

Sufentanil 0.034 (0.068) 0.023 (0.045) 0.015 +

Surgery Time (min) 310 (147) 236 (130) <0.001 +

Correlation indications relationship between variable and association with POUR. *Units in mg unless otherwise mentioned. SD, Standard Deviation; POUR, Postoperative urinary retention; 
IV, Intravenous; RBC, Red Blood Cell.
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system which acts to inhibit the detrusor muscle (27). Medications 
such as opioids are known to play dual functions by inhibiting 
parasympathetic and stimulating sympathetic innervations (28).

Thus far, no highly reliable and easily available prediction tools 
have been developed to identify a priori who is at increased risk for 
its development. Here, we  present a model leveraging machine 
learning to classify the risk of a patient developing POUR following 
lumbar spine surgery using patient, surgical and anesthesia 
characteristics. Using machine learning, we were able to condense 
more than 90 variables associated with POUR in univariate analysis 
to a 14-variable logistic regression model and eventually constructed 
an eleven-node decision tree after hyper-parametric tuning of 
selected predictors from the LASSO regression model, with a final 
accuracy for the decision tree model of 87.8% on a confusion matrix 
and AUC-ROC of 0.737. This accuracy outperforms all previously 
available models and hence offers a novel and improved predictive 
tool for POUR.

The incidence of POUR within our study was 26% and is well 
within the incidence of POUR (5.6%–38%) reported across diverse 
studies of lumbar spine surgery (3, 5–7, 9, 12, 13). Previous studies 
have contained extensive inclusion and exclusion criteria for their 
models of POUR. We  chose to include a heterogeneous patient 
population within our analysis to better understand how we  can 
comprehensively evaluate the lumbar spine surgery population for the 

FIGURE 4

Receiver operating curves (ROC) and precision recall curves (PRC) for the logistic regression model. AUC, area under curve. (A) ROC-AUC for training 
set. (B) PRC-AUC for training set. (C) ROC-AUC for testing set. (D) PRC-AUC for testing set.

TABLE 2 Multivariate logistic regression analysis for the development of 
the POUR model.

Variable Estimate SE Statistic
p-

value

Age (years) 0.012 0.007 1.738 0.082

Arthrodesis—Z98.1 0.225 0.221 1.019 0.308

Cardiomegaly—I51.7 0.725 0.439 1.649 0.099

Constipation—K59.00 1.777 0.568 3.128 0.002

Discectomy Involvement −0.389 0.317 −1.228 0.220

Ileus—K56.7 1.178 0.621 1.896 0.058

Intraoperative Foley 0.569 0.245 2.323 0.020

IV Fluid Volume (mL) <0.001 <0.001 −0.579 0.562

Neostigmine (mg) 0.388 0.151 2.562 0.010

Number of Disc Levels 0.025 0.056 0.45 0.653

Phenylephrine (mg) 0.054 0.019 2.887 0.004

Pleural Effusion—J90 0.709 0.557 1.274 0.203

RBC Transfusion (mL) 0.001 <0.001 1.913 0.056

Retention of Urine—

R33.9 2.621 0.678 3.866 <0.001

SE, Standard error of the coefficient; IV, Intravenous; RBC, Red Blood Cells. 
Bold values are statistically significant values defined as p-value < 0.05.
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development of POUR. By utilizing the logistic and LASSO regression 
models, a decision tree was able to be constructed that outperforms 
any prior predictive tool with accuracy of 0.878.

5.1 Limitations and future aims

Our model has limitations. As with all algorithms, it is only as 
accurate as the data which it contains. In this case, it is derived from a 
large tertiary care referral center where comprehensive data about a 
patient’s past medical and surgical history may not be  complete. 
We minimized this variability by extracting the medical history of 
patients from Epic’s Care Everywhere network (Epic Systems 
Corporation) which accesses patient’s medical charts from hundreds 
of other healthcare organizations, not exclusively our hospitals 
electronic medical record. Likewise, the study was retrospectively 
designed which carries biases inherent to a retrospective study.

This study was aimed at prediction of POUR, and not at interpretation 
of component variables. It serves as a diagnostic tool for POUR instead of 
identifying the critical variables that cause it. It can be  tempting to 
elaborate on the meaning of predictors featured in the final model; 
however, these specific predictors are likely confounded by extensive 
patient and surgical variables and would warrant further prospective 
investigation. For factors such as phenylephrine (used for intraoperative 
blood pressure augmentation), a feasible alternative that is not associated 
with POUR, regardless of causality between the factor and POUR, might 
not exist. However, the use of intraoperative urinary catheters which 
appears to be statistically significant in all models, presents a potentially 
modifiable variable. While this variable is extensively confounded by 
surgical time and associated anesthesia requirements via medications and 
fluids, it remains important to investigate. Additionally, further 
improvement in the predictive capabilities of this model can be achieved 
by including baseline bladder/urologic functional status and preoperative 
urologic medication requirements.

6 Conclusion

In conclusion, we  describe a highly accurate postoperative 
predictive model for POUR following lumbar spine using diverse 

preoperative and operative (surgical and anesthesia) variables. 
We were able to leverage machine learning to develop a 14 variable 
logistic regression model with an ROC-AUC of 0.737 and a decision 
tree model with an accuracy of 87.8%. These models substantially 
outperform previously published models of POUR in this patient 
population and include a greater spectrum of variables to highlight 
the effect of many less frequently appreciated variables. 
Furthermore, the final decision tree model is easy to implement 
clinically and can be  put forth toward further studies aimed at 
preventing POUR following lumbar spine surgery. A prospective, 
multi-center study is needed to further validate our 
prediction model.
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