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Objectives: To explore the effectiveness of diffusion quantitative parameters 
derived from advanced diffusion models in detecting brain microstructural 
changes in patients with chronic kidney disease (CKD).

Methods: The study comprised 44 CKD patients (eGFR<59  mL/min/1.73  m2) 
and 35 age-and sex-matched healthy controls. All patients underwent diffusion 
spectrum imaging (DSI) and conventional magnetic resonance imaging. 
Reconstructed to obtain diffusion MRI models, including diffusion tensor 
imaging (DTI), neurite orientation dispersion and density imaging (NODDI) 
and Mean Apparent Propagator (MAP)-MRI, were processed to obtain multi-
parameter maps. The Tract-Based Spatial Statistics (TBSS) analysis was utilized for 
detecting microstructural differences and Pearson correlation analysis assessed 
the relationship between renal metabolism markers and diffusion parameters 
in the brain regions of CKD patients. Receiver operating characteristic (ROC) 
curve analysis assessed the diagnostic performance of diffusion models, with 
AUC comparisons made using DeLong’s method.

Results: Significant differences were noted in DTI, NODDI, and MAP-MRI 
parameters between CKD patients and controls (p < 0.05). DTI indicated a decrease 
in Fractional Anisotropy(FA) and an increase in Mean and Radial Diffusivity (MD 
and RD) in CKD patients. NODDI indicated decreased Intracellular and increased 
Extracellular Volume Fractions (ICVF and ECVF). MAP-MRI identified extensive 
microstructural changes, with elevated Mean Squared Displacement (MSD) and 
Q-space Inverse Variance (QIV) values, and reduced Non-Gaussianity (NG), 
Axial Non-Gaussianity (NGAx), Radial Non-Gaussianity (NGRad), Return-to-
Origin Probability (RTOP), Return-to-Axis Probability (RTAP), and Return-to-
Plane Probability (RTPP). There was a moderate correlation between serum uric 
acid (SUA) and diffusion parameters in six brain regions (p  <  0.05). ROC analysis 
showed the AUC values of DTI_FA ranged from 0.70 to 0.793. MAP_NGAx in the 
Retrolenticular part of the internal capsule R reported a high AUC value of 0.843 
(p  <  0.05), which was not significantly different from other diffusion parameters 
(p  >  0.05).

Conclusion: The advanced diffusion models (DTI, NODDI, and MAP-MRI) are 
promising for detecting brain microstructural changes in CKD patients, offering 
significant insights into CKD-affected brain areas.
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1 Introduction

Chronic kidney disease (CKD) is a long-term condition marked 
by renal damage or a reduced glomerular filtration rate (eGFR) under 
60 mL/min/1.73m2 for over 3 months. With a global prevalence of 
about 9.1%, CKD presents a major public health issue (1). CKD 
increases the risk of cerebrovascular diseases (2, 3) and leads to 
oxidative stress escalation and vascular integrity compromise, 
resulting in neurological decline and structural brain damage, 
including cognitive impairment, brain atrophy, cerebral 
microhemorrhage and demyelination changes (4–6). Consequently, 
early detection of neuroimaging changes in CKD patients is vital for 
effective treatment and prognosis.

Magnetic resonance imaging (MRI) is a non-invasive technique 
extensively employed in clinical settings to identify structure and 
function changes in the brain. Studies on diffusion tensor imaging 
(DTI) have confirmed that the integrity of brain white matter in 
patients with CKD is altered (7–9). Among others, Liu et  al. also 
pointed out the existence of an association between abnormal WM 
integrity and clinical indicators (such as hemoglobin, serum urea, 
serum creatinine, serum calcium, and serum potassium levels).

However, DTI has certain limitations when analyzing nerve fiber 
intersection areas. Recently, more advanced models have been 
developed, such as neurite oriented diffusion and density imaging 
(NODDI) and mean apparent spread volume (MAP-MRI), able to 
provide clinically more specific characterization about the internal 
and external environment of nerve cells and the configuration of nerve 
fibers. Notably, the human body comprises different tissue types, each 
characterized by distinct dispersion sizes and directions. NODDI, 
enhances the understanding of the microstructural features of tissues 
by transcending the limitations of traditional DTI and non-Gaussian 
model-based approaches, categorizing brain tissue into three different 
compartments: intracellular volume fraction (ICVF), extracellular 
volume fraction (ECVF), and cerebrospinal fluid (10). In contrast to 
DTI and NODDI, MAP-MRI represents a cutting-edge, advanced 
quantitative diffusion model. MAP-MRI encompasses several key 
parameters, including return-to-origin probability (RTOP), return-to-
axis probability (RTAP), return-to-plane probability (RTPP), mean 
squared displacement (MSD), q-space inverse variance (QIV) and 
non-Gaussianity (NG). These parameters are sensitive to diffusion 
restriction and tissue composition variations (11).

Currently, NODDI and MAP-MRI have been applied in studying 
central nervous system diseases such as Alzheimer’s disease (12–15) 
and Parkinson’s disease (16–19), showing more advantages than DTI 
in describing complex nerve fiber structures in some studies. Research 
also extends to the identification, grading, and evaluation of central 
nervous system tumors (20, 21). Some researchers have asserted that 
NODDI and MAP-MRI represent formidable tools for in vivo 
assessment of brain microstructure, and they can provide new insights 
into the intricacies of cerebral tissue (10, 11). Nevertheless, to our 

knowledge, there have been limited reports on the application of 
NODDI and MAP-MRI models in evaluating both the microstructure 
and function of the brain in CKD patients (22). Moreover, there is a 
scarcity of studies comparing the diagnostic efficacy of DTI, NODDI 
and MAP in detecting changes in brain microstructure among CKD 
patients. Therefore, we intend to do a preliminary exploration of using 
diffusion MRI models to detect brain microstructure information 
among individuals with CKD.

Additionally, these diffusion MRI models can be simultaneously 
derived from diffusion spectral imaging (DSI), a grid acquisition 
model that reconstructs various diffusion MRI models through the 
raw diffusion data. This method not only epitomizes efficiency and 
cost-effectiveness but also facilitates the comparative evaluation of 
different models in discerning the brain’s microstructural nuances.

However, this study did not include diffusion kurtosis imaging 
(DKI), instead DTI, NODDI, and MAP-MRI were chosen because of 
their proven track record, clinical applicability, and the distinct but 
complementary information they provide about brain tissue 
microstructure. From general diffusion features (DTI) and neurite 
structure (NODDI) to complex water molecular diffusion patterns 
(MAP-MRI), this selection fits into our initial exploration of the 
expected microscopic changes in the brain in patients with 
CKD. Moreover, the inclusion of DKI, would require additional 
validation and analysis, potentially complicating the interpretation of 
our primary endpoints without significantly enhancing our 
understanding of CKD-related changes. However, we acknowledge the 
utility of DKI in broader neuroimaging research and suggest that 
future studies could include DKI to provide a more comprehensive 
assessment of microstructural alterations in CKD.

In this study, we conduct a preliminary prospective analysis using 
the DSI data,16 quantitative microstructural parameters derived from 
DTI, NODDI, MAP-MRI diffusion models to explore the changes in 
brain microstructure in CKD patients, and evaluate the correlation of 
these diffusion parameters with clinical experimental indicators 
related to renal function in CKD patients. Ultimately, we aimed to 
evaluate the diagnostic value of these parameters in reflecting 
CKD-related brain alterations.

2 Materials and methods

2.1 Participants

This study received approval from the Ethics Committee, and all 
subjects signed informed consent forms. A total of 44 CKD patients 
diagnosed were recruited in the study. The exclusion criteria were as 
follows: (1) obvious neurological disease, mental disease; (2) 
Traumatic brain injury, cerebral infarction, brain tumor; (3) Magnetic 
resonance imaging (MRI) to examine contraindications; (4) Audio-
visual impairment, (5) poor-quality MR images due to movement 
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artifacts. The inclusion criteria were as follows: (1) CKD patients 
diagnosed in the Department of Nephrology of our hospital followed 
the kidney disease outcomes quality initiative (K/DOQI) criteria with 
eGFR<59 mL/min/1.73 m2; (2) No history of kidney transplantation; 
(3) No drug abuse. In addition, 35 healthy volunteers, matched for sex 
and age, were recruited in this study.

2.2 Data acquisition

All subjects underwent structural MRI and DSI on a 3.0 T MRI 
scanner (MAGNETOM VIDA, Siemens Healthcare, Erlangen, 
Germany) with a 64-channel head coil. The DSI sequence was 
obtained in the axial plane using a half q-space Cartesian grid 
sampling procedure under the following parameters: TR/
TE = 4400/97 ms; FOV = 220 × 220 mm2; SMS factor = 2; slice 
thickness = 2.0 mm; voxel size = 2.0× 2.0× 2.0mm3; number of 
slices = 60; a total of 18 b-values = 0, 200, 350, 400, 550, 750, 950, 1,150, 
1,500, 1,700, 1,850, 1,900, 2,050, 2,100, 2,250, 2,450, 2,650, and 3,000 s/
mm2; a total of 128 diffusion sampling were acquired. High resolution 
3D T1-weighted imaging was performed using the MPRAGE 
sequence, with the following parameters: TR = 2,300 ms, TE = 2.45 ms, 
flip angle = 9°, FOV = 256 × 256 mm2, thickness = 0.9 mm, number of 
slices = 176, voxel size = 1 × 1 × 1 mm3, and the total scan time was 
4 min 8 s.

2.3 Diffusion data analysis

Multiple parameter maps of DTI, MAP-MRI and NODDI were 
obtained from DSI data calculated using an in-house prototype 
software developed by MR Station (Chengdu Zhongying Medical 
Technology Co., Ltd.). All raw diffusion imaging data need to 
be  converted to NIFTI format and subjected to eddy current 
correction (FSL). The maps of quantitative microstructural parameters 
are shown in Figure 1. The quantitative microstructural parameters 
are as follows:

DTI: axial diffusivity (AD), fractional anisotropy (FA), mean 
diffusivity (MD), Radial diffusivity (RD).

NODDI: extracellular volume fraction (ECVF), intracellular 
volume fraction (ICVF), isotropic volume fraction (ISOVF), 
orientation dispersion index (ODI).

MAP-MRI: mean squared displacement (MSD), non-Gaussianity 
(NG), Axial non-Gaussianity (NGAx), radial non-Gaussianity 
(NGRad), q-space inverse variance (QIV), return-to-axis probability 
(RTAP), return-to-origin probability (RTOP), return-to-plane 
probability (RTPP).

2.4 Tract-based spatial statistics processing

In order to evaluate the difference between CKD patients and 
healthy controls, diffusion parameter maps underwent processing 
through the Tract-Based Spatial Statistics (TBSS) pipeline within the 
FSL toolbox from the Oxford Center for Functional MRI of the Brain.1 
This involved: (a) nonlinear registration of FA maps for CKD and 
healthy controls to the FMRIB58_FA template; (b) affine alignment of 
all subjects to the 1 × 1 × 1 mm3 Montreal Neurological Institute 
(MNI152) standard space; (c) averaging, skeletonizing, and creating a 
mean FA skeleton from aligned images; (d) projecting FA and other 
parameter maps onto this mean FA skeleton. The brain was segmented 
into 50 regions using Johns Hopkins University (JHU) White Matter-
labels as masks.

2.5 Statistical analysis

For group difference analysis, nonparametric permutation tests 
were performed utilizing the randomize tool. The random 
permutations were set to 5,000. Threshold-free cluster enhancement 
(TFCE) was used for multiple comparison correction. The statistical 
threshold was set at p < 0.001. Finally, the results of comparison 
between groups were overlaid on JHU-White Matter-labels templates 
to localization of significant brain regions.

Statistical analyses were performed by using the IBM SPSS 23.0 
(IBM Corp, Armonk, NY, United States) software package. Pearson 
correction analysis was used to evaluate relationship between clinical 
data and diffusion parameter maps. The criterion for statistical 
significance was p < 0.05, with false discovery rate (FDR) used to 
correct for multiple comparisons.

1 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

FIGURE 1

Comparison of three diffusion MRI maps showing brain 
microstructure. The top panel shows DTI parameters with Axial 
Diffusivity (AD), Fractional Anisotropy (FA), Mean Diffusivity (MD), and 
Radial Diffusivity (RD). The middle panel presents NODDI parameters: 
Extracellular Volume Fraction (ECVF), Intracellular Volume Fraction 
(ICVF), Isotropic Volume Fraction (ISOVF), and Orientation Dispersion 
Index (ODI). The bottom panel displays MAP-MRI parameters: Mean 
Squared Displacement (MSD), Non-Gaussianity (NG), Axial Non-
Gaussianity (NGAx), Radial Non-Gaussianity (NGRad), Q-space 
Inverse Variance (QIV), Return-to-Axis Probability (RTAP), Return-to-
Origin Probability (RTOP), and Return-to-Plane Probability (RTPP). 
Each parameter map reveals specific aspects of brain tissue 
microstructure.
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Receiver operating characteristic (ROC) curves were obtained and 
the area under the receiver operating characteristic curves (AUC) was 
calculated to measure the predictive performance of the diffusion MRI 
models in identifying structural changes in the CKD brain. The AUCs 
of different diffusion models were compared using Delong’s method. 
A significance threshold of p < 0.05 was applied, with differences 
reaching this level considered statistically significant.

3 Results

3.1 Study population

44 patients of CKD (27 males and 17 females; mean age, 
61.205 ± 11.496 years; age range, 43–86 years) and 35 healthy 
volunteers (12 males and 23 females; mean age, 63.286 ± 11.052 years; 
age, 42–87 years) were included in our study. There were no significant 
differences observed in terms of age and gender between the two 
groups. The demographic data results are presented in Table 1.

3.2 Diffusion quantitative parameters of 
DTI, NODDI and MAP-MRI

For the DTI model, brain areas with significantly higher AD 
values were mainly located in the Superior corona radiata L, Superior 
longitudinal fasciculus L, Inferior fronto-occipital fasciculus L in the 
CKD group compared to the HC group (p < 0.001). The FA values were 
significantly lower in the Middle cerebellar peduncle, Genu of corpus 
callosum, Body of corpus callosum, Splenium of corpus callosum, 
Anterior corona radiata R/L, Superior corona radiata R/L, Posterior 
thalamic radiation R/L in the CKD group compared to the HC group. 
However, the MD and RD values of these brain areas were increased 
(p < 0.001; Figure 2A).

For the NODDI model, brain areas with significantly higher 
ECVF values were mainly located in the Genu of corpus callosum, 
Body of corpus callosum, Splenium of corpus callosum, and bilateral 
Posterior limb of internal capsule, Retrolenticular part of internal 
capsule, Anterior corona radiata, Superior corona radiata, Posterior 
corona radiata, Posterior thalamic radiation, Superior longitudinal 
fasciculus. The ICVF values of these brain areas were decreased 
(p < 0.001; Figure 2B).

For the MAP-MRI model, the MSD and QIV values of frontal and 
occipital lobes were significantly higher in the CKD group compared 
to the HC group (p < 0.001). Compared with HC group, the NG, 
NGAx, NGRad values of the occipital and parietal lobes were lower in 
the CKD group (p < 0.001). Meanwhile, the RTAP and RTOP values 

of frontal, occipital and parietal lobes were also significantly decreased 
in the CKD (p < 0.001). The RTPP values of the left Superior corona 
radiata and Superior longitudinal fasciculus were lower in the CKD 
compared to the HC group (p < 0.001; Figure 2C).

3.3 Correlation between diffusion 
quantitative parameters and clinical 
indicators

Associations were found between Serum Uric Acid (SUA) and 
diffusion parameters, including MD, ECVF, ICVF, NGRad, QIV and 
RTOP across multiple fiber tracts. MD values in Superior cerebellar 
peduncle L were negatively correlated with SUA (r = −0.522, p < 0.001). 
ECVF values in Cerebral peduncle L, Retrolenticular part of internal 
capsule R, and Fornix L were negatively correlated with SUA 
(r = −0.431 to-0.496, p ≤ 0.003). ICVF values in Cerebral peduncle R/L 
and Fornix L showed positive correlations with SUA (r = 0.483 to 
0.546, p < 0.001). NGRad values in Corticospinal tract L, Cerebral 
peduncle R/L, and Fornix L were positively correlated with SUA 
(r = 0.444 to 0.535, p ≤ 0.001). QIV values in Cerebral peduncle R had 
a negative correlation with SUA (r = −0.511, p < 0.001). RTOP values 
in Cerebral peduncle R/L also correlated positively with SUA (r = 0.461 
to 0.540, p ≤ 0.002; Figure 3).

3.4 Diagnostic performances of advanced 
diffusion models

ROC analysis evaluated the diagnostic capabilities of diffusion 
parameters in six brain regions linked to SUA, namely Corticospinal 
tract L, Superior cerebellar peduncle R, Cerebral peduncles R/L, 
Retrolenticular part of internal capsule R, and Fornix L. The AUC 
values varied across these regions. The DTI model’s FA parameter 
showed comparable performance in the above brain regions 
(AUC = 0.707 to 0.793, p < 0.05). In addition, RD of the DTI performed 
well in Cerebral peduncle L, with an AUC value of 0.814. In the 
NODDI model, the AUC values of the ECVF and ICVF of the 
Retrolenticular part of internal capsule R were 0.771 and 0.743, 
respectively (p < 0.05). In the MAP-MRI model, NG and NGAx in the 
Retrolenticular part of internal capsule R performed well (AUC = 0.80, 
0.843, p < 0.05). MSD, QIV, and RTAP in Cerebral peduncle L, and 
RTOP and RTPP in Fornix L performed well (AUC = 0.714 to 0.793, 
p < 0.05; Figure 4). The results of DeLong’s tests showed that MAP_
NGAx (the highest AUC value) had no statistical significance with 
other diffusion parameters (p > 0.05). Detailed DeLong’s statistical 
analysis results are provided in Supplementary Material 1.

TABLE 1 Characteristics of subjects.

CKD (n  =  44) HC (n  =  35) p-value

Age(years) 43–86(61.205 ± 11.496) 42–87 (60.731 ± 10.654) p = 0.425

Gender (Male/Female) 27/17 12/23 p = 0.690

Hypertension 24 (54.5%) 0 NA

Diabetes 19 (43.2%) 0 NA

Duration (years) 0–15 (3.984 ± 4.422) 0 NA

Values are expressed as mean ± standard deviation. CKD, chronic kidney disease; HC, healthy controls; NA, not applicable.
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4 Discussion

Utilizing 3 different diffusion MRI models (DTI, NODDI, 
MAP-MRI), our study investigated the brain microstructure in CKD 
patients, revealing significant differences from controls and suggesting 
impaired neural integrity. We found a moderate correlation between 
serum uric acid (SUA) and diffusion parameters in key brain areas 
primarily the corticospinal tract L, cerebral peduncle, retrolenticular 
part of internal capsule R and fornix L. These findings illuminate the 
complex relationship between renal function and brain structure, 
indicating the potential of advanced imaging in probing CKD’s 
neurological impacts and SUA’s role as a biomarker.

4.1 Diffusion quantitative parameters

For DTI, the brain of CKD patients displayed alterations in the 
diffusion characteristics of corpus callosum, anterior and superior 
corona radiata, and posterior thalamic radiation, marked by reduced 
FA and elevated MD and RD. In addition, we found that AD values 
increased in Superior corona radiata L, Superior longitudinal 
fasciculus L, Inferior fronto-occipital fasciculus L. The decrease of FA 
signifies a disruption in the microstructural integrity of the white 
matter. The increase in MD, which represents the mean diffusivity of 

water molecules, may be due to the loss of axons and myelin sheaths 
and the increase in extracellular fluid. Such alterations align with 
previous studies that reported decreased FA and increased MD in 
CKD patients’ white matter (8, 23, 24). The inclusion of AD and RD 
in our analysis offers a more comprehensive understanding, as they 
indicate water molecules dispersion parallel and perpendicular to the 
fiber orientation, hinting at axon integrity and myelin damage. 
Moreover, our study uniquely identified reduced FA in the middle 
cerebellar peduncle, with only one similar finding reported 
previously (24).

In our NODDI analysis, CKD patients showed higher ECVF and 
lower ICVF values compared to controls. The increase of ECVF is 
related to the diffusion of neurite blocking molecules. ICVF, 
correlating with neurite density (NDI) (25), decreases when nerve 
cells are destroyed or lost, resulting in a smaller volume of the 
intracellular space. In our results, NODDI detected microstructural 
changes in areas not identified by DTI, like the posterior limb of the 
internal capsule and posterior radiative crown. A study comparing 
DTI and NODDI to assess brain white matter abnormalities found 
significant differences in NDI in certain voxels not detected by DTI_
FA (26). And they suggested that NODDI should be used in addition 
to DTI. Another previous research has also demonstrated that FA is 
less effective in areas with complex fiber structures (27). Obviously, 
our result is the support for their proposal. However, no significant 
changes in ODI were observed, possibly due to the limited statistical 

FIGURE 2

Diffusion parameter maps displaying microstructural differences between CKD patients and healthy controls. (A) Illustrates diffusion tensor imaging 
(DTI) parameters: axial diffusivity (AD), fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD). (B) Depicts Neurite Orientation 
Dispersion and Density Imaging (NODDI) parameters: extracellular volume fraction (ECVF) and intracellular volume fraction (ICVF). (C) Shows Mean 
Apparent Propagator MRI (MAP-MRI) parameters: mean squared displacement (MSD), non-Gaussianity (NG), axial non-Gaussianity (NGAx), radial non-
Gaussianity (NGRad), and q-space inverse variance (QIV). Each column represents axial brain slices at different Z-coordinates, indicating the spatial 
distribution of these parameters within the brain. Green represents the mean FA skeleton of all subjects. Red–blue represent regions with significant 
statistical values (p  <  0.05).
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power resulting from the small sample size. This warrants further 
investigation through future longitudinal studies.

In complex biological tissues, water molecules’ diffusion often 
shows a non-Gaussian distribution due to cellular constraints (28). 
These microstructures cannot be adequately obtained by DTI and 
NODDI, but MAP-MRI can overcome this limitation. Our study 
revealed higher MSD and QIV values in CKD patients than in healthy 
individuals. MSD, is closely related to the MD metric (29, 30). But 
MSD is more sensitive to restricted diffusion components than MD 
(21, 29). The lower NG value in CKD patients, indicating neurite 
density, suggests reduced tissue complexity, possibly signifying axonal 
loss and demyelination. At present, there are limited studies on the 

direct relevance of MAP-MRI for chronic kidney disease. However, 
our findings are similar to a study on MAP-MRI in hemodialysis 
patients (22). Supporting this, research on Alzheimer’s disease has 
indicated that a decreased NG value could be indicative of axonal loss 
and demyelination (31). Changes in axial (NGAx) and radial (NGRad) 
neurite density also indicate changes in NG (11). Additionally, CKD 
patients had lower RTAP and RTOP values across most of the 
cerebrum. A previous study has reported that the family of zero 
displacement probabilities, including RTOP, RTAP, and RTPP, might 
better represent tissue microstructure changes than DTI metrics (32). 
The comprehensive results highlight the potential of MAP-MRI in 
advancing our understanding of CKD’s structural changes.

FIGURE 3

Serum uric acid (SUA) levels in CKD patients were significantly correlated with diffusion parameters in six brain regions. The regions and parameters 
include the corticospinal tract L, Superior cerebellar peduncle R, cerebellar peduncles R/L, Retrolenticular part of internal capsule R, and fornix L, with 
diffusion parameters (MD, ECVF, ICVF, NGRad, QIV, and RTOP). Each scatterplot displays the relationship between SUA levels (x-axis) and specific 
diffusion imaging parameters (y-axis) for the corresponding brain region, with red lines representing positive correlations and blue lines indicating 
negative correlations. L, left; R, right.
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4.2 Correlation analysis

Our study delineates a moderate relationship between SUA levels 
and diffusion parameters in brain regions, particularly in the cerebral 
peduncle and fornix L, suggesting a link with CKD. SUA is one of the 
indicators of renal function. Elevated SUA correlates negatively with 
MD in the superior cerebellar peduncle R, hinting enhanced water 
molecule diffusion, a marker of diminished tissue density or 
microstructural impairment. Such changes are frequently linked to 
oxidative stress from high SUA (33, 34), potentially triggering 
neuronal damage and compromising brain integrity (35, 36). 
Furthermore, SUA demonstrated a negative correlation with ECVF in 
the cerebral peduncle L and fornix L, coupled with a positive 
correlation with ICVF. This underlines the potential role of SUA in 
influencing cellular stress responses or metabolic alterations. The 
NGRad values in the bilateral cerebral peduncles and fornix L were 
positively correlated with SUA. This may be due to cellular stress and 
metabolic changes caused by high SUA levels, leading to changes in 
neurons and nerve fibers, thereby increasing NGRad values. Elevated 
SUA also associates positively with RTOP values in these regions, 
implying effects on cerebral microcirculation, possibly from 
SUA-induced microvascular damage or hemodynamic changes (37, 
38). Conversely, SUA exhibits a negative correlation with QIV in the 
superior cerebral peduncle R, indicating its adverse effects on vascular 
function, possibly reducing blood flow or causing vasoconstriction.

Overall, our results are similar to previous studies. These parallels 
underscore the role of elevated SUA, often resulting from impaired 

renal function, in inducing oxidative stress and vascular changes, 
thereby affecting brain structure in CKD patients. Although our 
results show that the correlation between SUA and brain 
microstructural changes in CKD patients is not obvious, our future 
work will address this issue by expanding the sample size.

4.3 Diagnostic performances of DTI, 
NODDI and MAP-MRI

The ROC curve analysis elucidates the diagnostic capabilities of 
various diffusion imaging parameters for CKD, highlighting the 
differential effectiveness of models in detecting CKD-related brain 
changes. The DTI model, particularly its FA parameter, demonstrated 
consistent diagnostic accuracy across multiple brain regions associated 
with SUA levels, with AUC values between 0.70 and 0.793. This 
consistency emphasizes DTI’s reliability in identifying brain 
microstructural alterations due to CKD, though it has limitations in 
capturing the full complexity of these changes compared to advanced 
techniques. The good diagnostic performance (0.814) of RD in 
Cerebral peduncle L was shown in our analysis, which can also help 
provide a more comprehensive understanding.

For the NOODI model, although it did not showcase outstanding 
AUC values in multiple brain regions, it provided critical insights into 
neurite density and orientation dispersion, complementing DTI and 
MAP-MRI results. This may be  due to the small sample size of 
our study.

FIGURE 4

ROC curves of diffusion imaging parameters in corresponding brain regions of CKD patients. These plots compared the diagnostic capabilities of DTI, 
NODDI, and MAP-MRI diffusion parameters in six SUA-related brain regions (AUC  >  0.5, p  <  0.05).
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In our results, we observed that MAP-MRI’s prowess extended to 
multiple brain regions. In specific regions of the brain, such as the 
retrolenticular part of the internal capsule R, the AUC value of MAP_
NGAx (0.843), was higher than other diffusion parameters, indicating 
potential regions where MAP-MRI may offer enhanced diagnostic 
sensitivity for detecting CKD microstructural changes. However, it is 
important to note that the DeLong’s test results did not provide robust 
statistical support for the overall superiority of MAP-MRI over DTI and 
NODDI. Therefore, while the results are promising for certain parameters 
in specific regions, they do not conclusively demonstrate that MAP-MRI 
is superior to DTI and NODDI across all regions or in a general clinical 
setting. But we cannot deny the ability of MAP-MRI to detect CKD-related 
brain changes. The advantage of MAP-MRI in predicting CKD’s brain 
microstructural changes needs to be verified in future studies with larger 
sample sizes. We will continue this work in the future to validate these 
preliminary findings and explore the underlying reasons for the variability 
in diagnostic performance between different brain regions.

These findings suggest that the three advanced diffusion MRI 
models could provide more detailed information in certain brain 
regions. Their detailed parameterization offers an additional view of 
CKD’s neurological changes, potentially guiding more precise and 
effective clinical interventions in the future.

Our study encountered several limitations. Firstly, owing to the 
small sample size and medication use, we  found no significant 
differences in serum creatinine and blood urea nitrogen levels between 
groups. Larger future studies or those involving varied populations 
could further explore the relationships between these biomarkers and 
CKD. In addition, the cross-sectional design of our study limits causal 
inferences about the severity of CKD and white matter integrity. 
Longitudinal studies tracking the progression of CKD will enhance 
our understanding of its impact on white matter microstructures. 
Additionally, future studies requiring more refined statistical models 
may help elucidate the differences and potential advantages of various 
diffusion MRI models, such as MAP-MRI, in detecting microstructural 
changes associated with CKD. Moreover, future research should 
integrate broader clinical indicators for a more comprehensive 
correlation analysis with microstructural changes.

5 Conclusion

In conclusion, three different diffusion MRI models (DTI, NODDI, 
MAP-MRI) have potential as non-invasive tools for early detection of 
CKD-related microstructural changes. Meanwhile, further studies with 
larger cohorts are also necessary to validate these preliminary findings.
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