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Background: Recent studies proposed cellular immunoprofiling as a surrogate 
for predicting treatment response and/or stratifying the occurrence of adverse 
events (AEs) in persons with multiple sclerosis (pwMS). However, applicability in 
real-world circumstances is not sufficiently addressed.

Objective: We aimed to explore whether standard routine clinical leukocyte 
phenotyping before treatment initiation could help stratify patients according to 
treatment response or AEs in a real-world MS cohort.

Methods: In this retrospective study, 150 pwMS were included, who had been 
newly initiated on a disease-modifying drug (DMD) and had been assessed for 
standard immunophenotyping before DMD initiation (baseline) and at least once 
during the following year. Multivariate models were used to assess an association 
of immune subsets and the association between immune cell profiles regarding 
treatment response and AEs.

Results: We found that the composition of T cell subsets was associated with 
relapse activity, as an increased proportion of CD8+ lymphocytes at baseline 
indicated a higher likelihood of subsequent relapse (about 9% per 1% increase 
in CD8+ proportion of all CD3+ cells). This was particularly driven by patients 
receiving anti-CD20 therapy, where also EDSS worsening was associated with a 
higher number of CD8+ cells at baseline (3% increase per 10 cells). In the overall 
cohort, an increase in the proportion of NK cells was associated with a higher 
risk of EDSS worsening (5% per 1% increase). Occurrence of AEs was associated 
with a higher percentage of T cells and a lower number of percentual NKT cells 
at baseline.

Conclusion: Immune cell profiles are associated with treatment response and 
the occurrence of AEs in pwMS. Hence, immunophenotyping may serve as a 
valuable biomarker to enable individually tailored treatment strategies in pwMS.
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Introduction

Multiple sclerosis (MS) is a chronic inflammatory demyelinating 
disease that affects the brain and spinal cord. Although the exact 
pathogenesis underlying and driving the disease is unknown, an ever-
increasing number of immune-targeting disease-modifying drugs 
(DMDs) have been shown to reduce inflammatory-related disease 
activity as measured by clinical relapses and MRI activity.

However, MS is characterized by a high degree of heterogeneity 
both in terms of disease course and treatment response on an 
individual level. On the other hand, highly effective 
immunosuppressive DMDs carry the risk for severe adverse events 
(AEs) such as infections or malignancies, particularly with increasing 
age and treatment durations (1).

While this would suggest a personalized approach tailored to the 
individual patient, we currently lack biomarkers that provide adequate 
information for individually tailored treatment strategies, thus 
requiring a trial-and-error phase to find an effective and well-tolerated 
treatment for an individual patient.

It is well established and underlined by the success of the DMDs 
that perturbations associated with an abnormal immune response 
involving cellular interactions of peripheral immune cells trafficking 
into the central nervous system (CNS) are participating drivers of 
relapse-related mechanisms (2). Peripheral blood is an easily accessible 
biological sample that provides a biological “window” for assessing 
cellular shifts linked to DMD effects, which might offer the 
opportunity for predicting treatment response and/or occurrence of 
AEs. By identifying specific cellular markers, clinicians could develop 
personalized immunobiological-based treatment plans for persons 
with MS (pwMS), potentially leading to improved clinical outcomes.

Indeed, recent studies proposed cellular immunoprofiling as a 
surrogate for predicting treatment response and/or stratifying the 
occurrence of AEs in pwMS (3–10).

However, in contrast to protein-based biomarkers, reproducibility 
of these results is more difficult due to confounding influences of 
biological variations (such as infections, stress) or technical issues 
(such as sample handling and storage, cytometer setup, gating 
strategies, and antibody selection) (11, 12).

Here, we  aimed to explore whether standard routine clinical 
leukocyte phenotyping before treatment initiation could help stratify 
patients according to treatment response or AEs in a real-world 
MS cohort.

Methods

STROBE guidelines were followed in this report (13).

Patients and definitions

For this retrospective cohort study, we  used the Vienna MS 
Database (VMSD) of the Department of Neurology, Medical 
University of Vienna, which serves as both a primary and reference 
center mainly for Vienna and its geographical catchment area (14).

We included pwMS aged >18 years diagnosed according to the 
respective McDonald criteria (15, 16) who (1) had been newly 
initiated on a DMD between 01/01/2008 and 30/06/2019, (2) were 

assessed for immunophenotyping before DMD initiation (baseline) 
and at least once during the following year, and (3) had at least two 
years of clinical follow-up available.

VMSD case reports include demographic data, details of MS 
course (disease onset, time to diagnosis, relapses, Expanded Disability 
Status Scale [EDSS], and onset of secondary progression), diagnostic 
investigations (MRI, optical coherence tomography [OCT], 
cerebrospinal fluid findings) and DMT history (including initiation, 
interruption, changes and AEs). Data are collected retrospectively at 
the first visit and prospectively whenever the patient returns for 
scheduled (every 3–6 months) follow-up or unscheduled visits.

For the purpose of this study, the following endpoints were used 
for assessing treatment response: relapse (yes/no) within two years 
after baseline (defined as symptoms reported by the patient and 
confirmed by a neurologist, or signs observed by the neurologist, 
indicative of an acute CNS inflammatory demyelinating episode 
lasting at least 24 h, without fever or infection, and occurring at least 
30 days after the previous relapse), EDSS worsening two years after 
baseline (defined as an increase by ≥1.5/1/0.5 points when the baseline 
score was 0/1–5.5/≥6.0, respectively).

Safety was assessed by the occurrence of AEs and severe AEs 
(SAEs) occurring after initiation of the respective DMD. SAEs were 
defined according to the Common Terminology Criteria for Adverse 
Events (CTCAE) V4.0 grading system grades 3 to 5, if detailed 
documentation was available; otherwise, they were considered as AEs. 
AEs were further divided into acute (infusion-related/medication 
intake-related) and non-acute-related AEs if appropriate.

Immunophenotyping

For blood immunophenotyping, fresh blood was collected on 
EDTA-coated tubes by venipuncture and rapidly transferred to the 
local Department of Laboratory Medicine for analysis. 
Immunophenotyping was performed on FACSCanto/FACSCanto II 
cytometers (Becton Dickinson, Franklin Lakes, United  States) by 
applying the following reagents (Antibodies / Clones): BD-Simultest 
CD3-FITC, CD16 + CD56-PE / SK7, B73.1, MY3; CD4-PerCP-cy5.5 
/ SK3 (Leu-3a); CD8-APC-Cy7 / SK1 (Leu-2a); CD19-PE-Cy7 / 
SJ25C1; CD45-V500 /2D1 (HLe-1). Lymphocytes, monocytes, and 
polymorphonuclear leukocytes were gated according to their forward 
(FSC) and side scatter (SSC) properties and based on their 
CD45-expression.

Following populations were gated based on the respective lineage 
markers: For T cells: Total T cells (CD3+), CD4 T cells (CD3 + CD4+), 
CD8 T cells (CD3 + CD8+), Natural Killer (NK) T cells 
(CD3 + CD16 + CD56+), NK cells (CD3-CD16 + CD56+) and B cells 
(CD19+).

For these cell types, we  analyzed their absolute numbers and 
relative percentages at baseline as well as the relative changes in 
absolute numbers and percentages during follow-up compared 
to baseline.

Ethics

The ethics committee of the Medical University Vienna approved 
the study (ethical approval number: 1968/2019).
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Data availability

De-identified data can be made available from the corresponding 
author upon reasonable request and after approval from the ethics 
review board at the Medical University of Vienna.

Statistics

All statistical analyses and graphical representations were 
performed in R (Version 4.2.1). Univariate group comparisons were 
done by Chi-square test, Mann–Whitney U test, or independent t-test 
(with Welch’s correction in case of unequal standard deviations in the 
groups) as appropriate.

For the multivariate binary logistic regression model, the 
dependent variable was either relapse (yes/no), EDSS worsening (yes/
no), AE (yes/no), or SAE (yes/no). Initially, all explanatory variables 
were tested using a univariable model, and significant variables were 
included in the final multivariate binary logistic regression model. Sex, 
disease course, and age were included in the multivariate model 
regardless of their significance in the univariate model due to their a 
priori potential explanatory power. The most parsimonious model was 
selected by using the stepwise Akaike Information Criterion (AIC) to 
obtain the best fit with the lowest AIC for the data set. The significance 
of individual variables was assessed using the Wald Chi-Squared Test.

As we anticipated a large degree of heterogeneity in our cohort 
due to the different DMDs used, we chose a two-step approach were 
we first analyzed the whole cohort regarding the endpoints and then 
conducted subgroup analyses for each DMD class, where a sufficient 
sample size was available.

We checked for linearity assumption (martingale residuals and 
deviance residuals) and proportional hazard assumption and found 
them acceptable. We tested all variables for normal distribution using 
the Lilliefors-test and for collinearity using variance inflation factor 
(VIF). Any variables with a VIF greater than 2.0 were excluded from 
the multivariate regression analysis. McFadden’s R squared was used 
to evaluate the goodness of fit for the logistic regression models. 
We  considered a two-sided p-value less than 0.05 as 
statistically significant.

Results

The detailed inclusion process is shown in Figure 1.
Demographics and characteristics of the whole cohort and the 

treatment groups are shown in Table  1. As expected, there were 
significant imbalances between treatment groups (Table 1).

Monocytes (r(p) = 0.32, p = 0.02) and NK cells (r(p) = 0.35, p = 0.01) 
correlated with age in treatment naïve patients at baseline phenotyping.

Treatment response in the overall cohort

During follow-up, relapses and EDSS worsening occurred in 51 
(34%) 44 (30%) pwMS, respectively.

Relapse occurrence was associated with a higher percentage of 
CD8+ T cells (OR: 1.06, 95% CI: 1.01–1.12 p = 0.013), which 
remained the only significant variable (OR 1.09, CI: 1.02–1.15, 

p = 0.021) in the multivariate model besides the progressive disease 
course (SPMS OR 0.31, CI: 0.10–0.99, p = 0.05) (Table 2). Looking 
only at treatment naïve pwMS, no variable remained associated with 
relapse activity.

There was no association observed between temporal changes in 
cellular composition at one or two years after DMD initiation, and the 
occurrence of relapses.

EDSS worsening was not associated with any baseline 
immunophenotype variables. However, it was associated with a 
relative increase in the percentage of NK cells compared to baseline 
during the follow-up (per %: OR 1.05, CI: 1.01–1.09, p = 0.012). 
Expectedly, the strongest predictor of EDSS worsening was a 
progressive disease phenotype (SPMS OR: 6.09, CI: 1.93–19.24, 
p < 0.001, PPMS OR: 7.95, CI: 1.36–46.66, p = 0.022). In the cohort of 
treatment-naïve pwMS, only disease course was associated with EDSS 
progression (SPMS OR: 23.0, CI: 2.20–564.41, p = 0.016; PPMS OR: 
9.58, CI: 1.72–65.7, p = 0.013).

Treatment response in B cell depleting 
DMDs

The anti-CD20 group was large enough to perform a specific 
subgroup analysis (n = 74).

In this group, 17 pwMS suffered from a relapse (22.9%). In the 
multivariate model, the only significant variable associated with a 
relapse was a higher CD8+ percentage (per %: OR 1.12 CI: 1.01–1.25 
p = 0.028) (Table 3) at baseline. Omitting progressive MS patients did 
not result in a multivariate model with significant associations. 
Excluding all pre-treated patients led to perfect separation due to the 
small number of cases, blocking further analyses.

In the multivariate model, there was no association between 
temporal changes in cellular composition at one or two years after 
DMD initiation and the occurrence of relapses.

As in the overall cohort, EDSS worsening was associated with 
progressive disease course (SPMS OR: 5.81, CI: 1.15–29.51, p = 0.033). 
However, a higher absolute number of CD8+ cells at baseline (per 10 
cells: OR 1.03, CI: 1.00–1.06, p = 0.039) as well as a lower absolute 
number of CD4+ T cells at the 2-year follow-up (per 10 cells: OR 0.96, 
CI: 0.93–0.99, p = 0.024) were both associated with EDSS worsening. 
In the cohort of treatment-naïve pwMS, only the progressive disease 
course remained associated with EDSS progression (SPMS: OR: 30.0, 
CI: 1.41–638.2, p = 0.032).

Safety

AEs occurred in 78 (52%) pwMS. Most AEs were reported under 
anti-CD20 treatment (n = 31) followed by DMF (n = 23). Most 
reported AEs were acute medication intake related (n = 50), while the 
most common non-acute AEs were laboratory abnormalities and 
infections (n = 21). Of the 16 SAEs recorded, 9 were associated with 
acute medication intake, 4 were infections, and 3 were severe 
laboratory abnormalities.

Overall, AE occurrence was associated with male sex (OR: 3.31, 
CI: 1.179.39, p = 0.02), a higher percentage of T cells at baseline 
(CD3+) (per %: OR 1.07, CI: 1.00–1.13, p = 0.03), lower number of 
baseline percentual NKT cells (CD3 + CD16 + CD56+) (per %: OR 
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0.81, CI: 0.70–0.94, p = 0.01), as well as all but PPMS disease courses 
(PPMS OR: 0.05, CI: 0.00–0.55, p = 0.01) (Table 4). When looking only 
at infections, a higher percentage of baseline CD4 T cells was 
associated with the occurrence of infection during follow-up (per %: 
OR 1.14, CI: 1.05–1.25, p < 0.001).

There were no significant associations with the occurrence of 
SAEs in the multivariate model.

Safety in B cell depleting DMDs

In the anti-CD20 group, 12 SAEs recorded, 8 were associated with 
acute medication intake and 4 with infections.

The occurrence of AEs was associated with a higher percentage of 
baseline T cells (CD3+) (per %: OR 1.12, CI: 1.03–1.20, p = 0.004) and 
PPMS course (PPMS OR: 0.03, CI: 0.00–0.44, p = 0.011) (Table 5). In 
the multivariate model, there was no association between temporal 
changes in cellular composition at one or two years after DMD 
initiation and the occurrence of AEs.

Considering only infusion-related reactions, a higher percentage 
of baseline T cells (CD3+) (per %: OR 1.09, CI: 1.17–2.24, p = 0.025) 
was associated with a higher likelihood of suffering infusion-
related reactions.

None of the variables was significantly associated with a higher 
likelihood of suffering from infections.

A higher percentage of baseline T cells (CD3+) (per %: OR 1.17, 
CI: 1.04–1.31, p = 0.001) was significantly associated with a higher 
likelihood of suffering from a SAE.

Safety in DMF

In the DMF group, no SAEs was observed in the DMF cohort.
The occurrence of AEs was associated with lower baseline 

leukocyte count (per 10 cells: OR 0.98, CI: 0.97–0.99, p = 0.036) 
(Table 5). In the multivariate model, there was no association between 

temporal changes in cellular composition at one or two years after 
DMD initiation and the occurrence of AEs.

Discussion

Individually tailored treatment strategies are needed to maximize 
clinical benefit as well as minimize AEs in pwMS receiving DMDs. 
Hence, we  explored the value of standardized basic 
immunophenotyping in pwMS as potential cellular biomarkers for 
treatment response and occurrence of AEs.

We found that T cell subset composition is associated with relapse 
activity during treatment as a relatively increased proportion of CD8+ 
lymphocytes at baseline indicated a higher likelihood of subsequent 
relapse (about 9% per 1% increase in CD8+ proportion of all CD3+ 
cells). This was particularly driven by patients receiving anti-CD20 
therapy, where the relapse risk was increased by 12% for every 1% 
higher CD8+ proportion of T cells. Also, a higher absolute number of 
CD8+ cells at baseline (3% increase per 10 cells) as well as a lower 
number of CD4+ cells during follow-up (4% decrease per 10 cells) 
were associated with an increased risk for EDSS worsening. 
Interestingly, an increase in the proportion of NK cells was also 
associated with a higher risk of EDSS worsening (5% per 1% increase).

Concerning safety, we found that a higher percentage of baseline 
CD4+ T cells was associated with the occurrence of infection (14% for 
every 1% higher CD3 + CD4+ proportion), and a lower percentage of 
NKT cells (19% for every 1% lower CD3 + CD16 + CD56+ proportion) 
was associated with the occurrence of any AEs in the overall cohort, 
which was confirmed in the anti-CD20 cohort. While we did not 
observe any SAEs in the DMF cohort, a lower baseline leukocyte 
count was associated with higher likelihood of any AE occurrence (2% 
per 10 cells).

It is well established that DMDs change the cellular immune 
profile in pwMS (17). Prior studies have implicated a predictive value 
of pre-treatment or on-treatment cellular subsets in predicting 
relapses and/or AEs (3, 7, 18, 19). While most studies use peripheral 

FIGURE 1

Inclusion flow chart. IP, Immunophenotyping; NMOSD, neuromyelitis optica spectrum disorders.
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TABLE 1 Characteristics of overall study cohort and DMD subgroups.

Cohort 
(n  =  150)

IFN, N =  3a GLAT, N =  2a DMF, N =  25a Terifluomide, 
N =  4a

Fingolimod, 
N =  22a

NTZ, N =  15a Anti-CD52, 
N =  3a

CD20, N =  74a CLAD, N =  2a pb

Sex 0.5

  Female 3 (100%) 1 (50%) 13 (52%) 1 (25%) 14 (64%) 12 (80%) 2 (67%) 44 (59%) 1 (50%)

Disease course

  RRMS 3 (100%) 2 (100%) 25 (100%) 3 (75%) 22 (100%) 15 (100%) 3 (100%) 33 (45%) 1 (50%)

  SPMS 0 (0%) 0 (0%) 0 (0%) 1 (25%) 0 (0%) 0 (0%) 0 (0%) 25 (34%) 1 (50%)

  PPMS 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 16 (22%) 0 (0%)

Age at Onset (y) 31 (26, 34) 26 (26, 27) 30 (26, 36) 29 (25, 32) 24 (20, 30) 24 (21, 34) 27 (21, 30) 27 (21, 39) 26 (22, 30) 0.7

Age at BL IP 31 (26, 34) 29 (28, 30) 35 (28, 42) 45 (45, 47) 38 (32, 43) 33 (30, 41) 31 (31, 32) 38 (30, 47) 38 (37, 39) 0.2

Prior DMD 0 (0%) 0 (0%) 13 (52%) 2 (50%) 20 (95%) 12 (86%) 2 (67%) 46 (62%) 1 (100%) <0.001

  Unknown 0 0 0 0 1 1 0 0 1

Prior DMD

  None 3 (100%) 2 (100%) 12 (55%) 2 (50%) 1 (5.9%) 2 (18%) 1 (50%) 27 (40%) 0 (0%)

  IFN 0 (0%) 0 (0%) 7 (32%) 0 (0%) 0 (0%) 2 (18%) 0 (0%) 2 (2.9%) 0 (0%)

  GLAT 0 (0%) 0 (0%) 1 (4.5%) 0 (0%) 3 (18%) 4 (36%) 0 (0%) 5 (7.4%) 0 (0%)

  DMF 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (18%) 0 (0%) 5 (7.4%) 0 (0%)

  Terifluomide 0 (0%) 0 (0%) 0 (0%) 2 (50%) 2 (12%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

  Fingolimod 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (5.9%) 1 (9.1%) 1 (50%) 23 (34%) 0 (0%)

  NTZ 0 (0%) 0 (0%) 2 (9.1%) 0 (0%) 10 (59%) 0 (0%) 0 (0%) 6 (8.8%) 0 (0%)

  Anti-CD52 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (100%)

  N.a. 0 0 3 0 5 4 1 6 1

EDSS at BL 0.00 (0.00, 0.00) 1.50 (1.25, 1.75) 1.00 (0.00, 2.00) 2.00 (1.50, 2.88) 2.75 (1.00, 3.62) 2.00 (1.88, 3.12) 2.50 (2.25, 3.00) 3.00 (2.00, 5.00) 5.00 (4.50, 5.50) <0.001

Time to relapse 

(months)

7.00 (5.00, 14.00) 11.00 (6.00, 16.00) 2.00 (0.00, 7.00) 5.00 (5.00, 5.00) 3.00 (2.00, 14.00) 14.00 (4.00, 29.00) 17.00 (17.00, 17.00) 10.00 (4.00, 15.00) 3.00 (3.00, 3.00) 0.3

Time to last FU 

(years)

1.75 (1.59, 5.01) 2.63 (2.31, 2.95) 4.30 (2.58, 5.13) 4.21 (3.06, 5.35) 4.53 (3.49, 6.07) 5.94 (3.50, 7.26) 3.53 (3.50, 3.79) 3.39 (2.52, 4.39) 2.52 (2.48, 2.55) 0.033

Relapse before BL 

IP (weeks)

1.00 (1.0, 12.00) 137.00 (72.00, 203.00) 35.00 (12.00, 73.00) 82.00 (34.00, 304.00) 47.00 (7.00, 166.00) 15.00 (9.00, 145.00) 15.00 (10.00, 109.00) 24 0.00 (12.00, 109.00) 23.00 (19.00, 28.00) 0.60

Steroids within 

4 weeks before BL 

IP

2 (67%) 0 (0%) 2 (8.0%) 0 (0%) 3 (14%) 1 (6.7%) 1 (33%) 6 (8.1%) 0 (0%) 0.2

BL, Baseline; CLAD, Cladribine; DMF, Dimethyl fumarate; DMD, disease-modifying drugs; GLAT, Glatiramer acetate; INF, Interferon; IP, Immunophenotyping; N.a., Not available; NTZ, Natalizumab.
an (%); Median (IQR).
bFisher’s exact test; Kruskal-Wallis rank sum test.
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blood mononuclear cells (PBMCs) due to their ability to be frozen and 
stored, studies in fresh blood in the standardized clinical certified 
laboratory are rare (20).

Recently, two studies explored the potential of 
immunophenotyping and relapse activity in patients prior to anti-
CD20 treatment. Shinoda and colleagues indicated in an in-depth 
immunophenotyping study that CD20dimCD8+ T cell inversely 
correlated with relapse activity in patients receiving ocrelizumab (3). 
Interestingly, Garcia and colleagues showed that CD8+CCR5+ T cells 
were inversely correlated with time since last relapse, whereas they 
found no correlation between CD20dimCD8+ T cells and time since last 
relapse (21). While this at the first sight seems contradictory to our 

finding of an association between a higher proportion of CD8 T cells 
and subsequent relapses in patients starting an anti-CD20 treatment, 
both groups provide evidence that these subpopulations have 
migratory capacity and therefore might have migrated to the 
CNS. Thus, predictive value of certain cell types might depend on the 
time of sampling in relation to application of an anti-CD20 treatment. 
As both studies were performed on cells collected during a rigorously 
controlled clinical trial, our data from a routine setting further 
underlines the involvement of CD8 T cells in relapse-related 
immunobiology specifically in patients receiving anti-CD20 
treatment, although the exact sub-phenotypes and kinetics remain so 
far unknown.

TABLE 2 General efficacy.

Relapse activity EDSS progression

95% CI 95% CI

OR 2.5% 97.5% p OR 2.5% 97.5% p

Multivariate model

Intercept 0.16 0.01 1.83 0.14 0.18 0.03 1.125 0.08

  Age 0.99 0.94 1.03 0.61 1.00 0.94 1.05 0.9

Sex(male) 0.53 0.24 1.19 0.12 0.68 0.24 1.93 0.47

Disease course

SPMS 0.31 0.10 0.99 0.05 6.09 1.93 19.24 <0.001

PPMS 0.43 0.09 2.21 0.31 7.95 1.36 46.66 0.022

CD3 + CD8+ % of CD3 at BL 1.09 1.02 1.15 0.01

CD3-CD16 + CD56+ % 

Leukocytes at 2yFU

1.05 1.01 1.09 0.012

Leukocyte count at BL

Pseudo-R2 (McFadden) = 0.09 Pseudo-R2 (McFadden) = 0.15

TABLE 3 Anti-CD20 efficacy.

Relapse activity EDSS progression

95% CI 95% CI

OR 2.5% 97.5% p OR 2.5% 97.5% p

Multivariate model

Intercept 0.08 0.00 5.01 0.23 0.32 0.01 11.1 0.53

  Age 0.99 0.99 0.92 1.07 0.99 0.92 1.07 0.85

Sex(male) 0.8 0.16 3.9 0.78 0.97 0.24 3.96 0.96

Disease course

SPMS 0.4 0.08 2.06 0.27 5.81 1.15 29.51 0.033

PPMS 0.48 0.04 5.59 0.56 5.43 0.48 61.9 0.17

CD3 + CD8+ % of CD3 at BL 1.12 1.01 1.25 0.028

CD19% of Lymphocytes at BL 0.92 0.82 1.03 0.14

CD3 + CD8+ cell count at BL 

(per 10 cells)

1.03 1.00 1.06 0.039

Monocyte count at 2yFU 1.00 1.00 1.01 0.17

CD3 + CD4+ cell count at 2yFU 

(per 10 cells)

0.96 0.93 0.99 0.024

Pseudo-R2 (McFadden) = 0.20 Pseudo-R2 (McFadden) = 0.29
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Besides CD8+ T cells, we also observed an association between a 
relative increase in the percentage of NK cells from pre-to post-
treatment and disability progression. Alterations in the proportion of 
NK cell subsets in MS have been previously demonstrated, but the 
detailed relationship is yet unresolved (22). Prior data implicated an 
increase in the proportions of CD56dim NK cells in patients with 
disease progression supporting our findings (23). While we did not 
distinguish between NK-CD56bright and NK-CD56dim cells, 
NK-CD56dim cells are the most abundant in the circulation, likely 
reflecting our findings. In contrast, a lower proportion NK-CD56bright 
cell count was associated with signs of disease activity on MRI, but not 
there was no association with disability progression (24). Of note, 
these findings were reported to be independent of the treatment effect 
(24). However, the respective study cohort did not contain any patients 

receiving depleting DMDs, wherefore comparability to our cohort 
mostly including patients on anti-CD20 treatment is limited.

Concerning safety and AEs, a basic variant of immunophenotyping 
is already well-established in specific indications of clinical practice, 
namely the monitoring of lymphocyte counts to avoid persistent 
lymphopenia, e.g., in patients treated with DMF (25). However, there 
is a relative paucity of studies applying more advanced 
immunophenotyping for predicting safety and AEs in pwMS. An 
important concept in this regard is immunosenescence, a term 
referring to age-related changes in the immune system, increasing 
susceptibility to diseases such as malignancies and infections (26, 27). 
Hallmarks of immune system aging include a transition toward a 
memory phenotype within the T-cell compartment, which can result 
in a reduced ability to respond to new antigens. Additionally, there is 

TABLE 4 General AE.

All AE Infectious AE

95% CI 95% CI

OR 2.5% 97.5% p OR 2.5% 97.5% p

Multivariate model

Intercept 0.13 0.00 19.88 0.43 0.00 0.00 0.67 0.03

  Age 0.97 0.91 1.02 0.20 0.96 0.89 1.03 0.25

Sex(male) 3.31 1.17 9.39 0.02 0.57 0.11 2.81 0.49

Disease course

SPMS 0.86 0.29 2.56 0.78 3.02 0.66 13.79 0.15

PPMS 0.05 0.00 0.55 0.01 0.00 0.00 Inf 0.99

CD3-CD16 + CD56+ at 1y FU 1.00 0.99 1.00 0.08

CD3% of Lymphocytes at BL 1.07 1.00 1.13 0.03

CD3 + 16 + CD56+ % of T cell at BL 0.81 0.7 0.94 0.01

ΔCD3 + CD8+ (BL vs. 1FU) 0.99 0.99 1.00 0.08

CD3 + CD4+ % of CD3 at BL 1.14 1.05 1.25 < 0.001

Monocyte count at 2yFU 1.00 0.99 1.00 0.10

Pseudo-R2 (McFadden) = 0.25 Pseudo-R2 (McFadden) = 0.28

TABLE 5 Treatment specific AE.

AE anti-CD20 AE DMF

95% CI 95% CI

OR 2.5% 97.5% p OR 2.5% 97.5% p

Multivariate model

Intercept 0.0 0.00 0.31 0.02 9.6e10^6 3.69 2.5e10^12 0,03

  Age 0.98 0.92 1.04 0.51 0.92 0.75 1.12 0.39

Sex(male) 3.24 0.88 11.86 0.08 0.91 0.07 12.5 0.94

Disease course

SPMS 0.60 0.15 2.39 0.47 –

PPMS 0.03 0.00 0.44 0.01 –

CD3% of Lymphocytes at BL 1.12 1.03 1.20 0.004

Leukocyte count at BL (per 10 cells) 0.98 0.97 0.99 0.036

CD3 + CD16 + CD56+ count at BL 0.97 0.94 1.00 0.07

Pseudo-R2 (McFadden) = 0.26 Pseudo-R2 (McFadden) = 0.45
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a general decline in immune function and an increased predisposition 
to a proinflammatory state (28). The available evidence indicates that 
this phenomenon may be expedited in pwMS, leading to a higher 
proportion of memory CD4 T cells and impaired regulation via 
immune-checkpoint mechanisms (29, 30).

In line with this concept, we found that a higher percentage of 
CD4 T cells at baseline was associated with a higher likelihood of 
infections during follow-up.

Further studies with more detailed sub-phenotyping will 
be  necessary to unravel the complex mechanisms that underlie 
immune aging in MS.

Limitations

The retrospective analysis of data collected in clinical routine 
creates a variety of possible biases: Most important is the inherent bias 
of patients undergoing leukocyte subtyping depending on the choice 
of treatment, which is not random but determined by the 
characteristics and preferences of patients and the prescribing 
practices of clinicians. Also, different frequencies of clinical visits and 
different periods of follow-up might induce detection bias. As data 
were collected retrospectively, likely causing reporting bias, we have 
considered SAEs as such only if there is clear documentation and 
otherwise classified them as AEs. While this might have resulted in 
the underrepresentation of SAEs, AE rates are consistent with the 
published data. However, safety profiles are, in general, not 
comprehensively captured in retrospective studies. Further, we did not 
have sufficiently dense MRI data available for this study, which reduces 
sensitivity to detect differences in effectiveness. Immunophenotyping 
was based only on a very limited number of lineage markers without 
in-depth characterization of cellular subpopulations, each of those 
likely to possess subpopulations with both deleterious and beneficial 
properties on their own.

Additionally, we could not ascertain the time interval between the 
cessation of the last DMT and baseline immunophenotyping. This 
information is crucial as it may significantly impact baseline 
immunophenotyping due to potential carryover effects and long-term 
influences on peripheral blood phenotypes.

Our study was designed as exploratory and hypothesis-generating 
and, therefore, requires validation in an independent cohort.
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