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Objectives: This study aimed to validate a sleep staging algorithm using in-
hospital video-electroencephalogram (EEG) in children without epilepsy, with 
well-controlled epilepsy (WCE), and with drug-resistant epilepsy (DRE).

Methods: Overnight video-EEG, along with electrooculogram (EOG) and chin 
electromyogram (EMG), was recorded in children between 4 and 18  years of 
age. Classical sleep staging was performed manually as a ground truth. An 
end-to-end hierarchical recurrent neural network for sequence-to-sequence 
automatic sleep staging (SeqSleepNet) was used to perform automated sleep 
staging using three channels: C4-A1, EOG, and chin EMG.

Results: In 176 children sleep stages were manually scored: 47 children without 
epilepsy, 74 with WCE, and 55 with DRE. The 5-class sleep staging accuracy 
of the automatic sleep staging algorithm was 84.7% for the children without 
epilepsy, 83.5% for those with WCE, and 80.8% for those with DRE (Kappa of 
0.79, 0.77, and 0.73 respectively). Performance per sleep stage was assessed 
with an F1 score of 0.91 for wake, 0.50 for N1, 0.83 for N2, 0.84 for N3, and 0.86 
for rapid eye movement (REM) sleep.

Conclusion: We concluded that the tested algorithm has a high accuracy in 
children without epilepsy and with WCE. Performance in children with DRE was 
acceptable, but significantly lower, which could be explained by a tendency of 
more time spent in N1, and by abundant interictal epileptiform discharges and 
intellectual disability leading to less recognizable sleep stages. REM sleep time, 
however, significantly affected in children with DRE, can be detected reliably by 
the algorithm.

Clinical trial registration: ClinicalTrials.gov, identifier NCT04584385.
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1 Introduction

A bidirectional relationship between sleep and epilepsy has long been considered and 
it has slowly gained more attention in recent years. Most of the literature on this topic 
comes from studies in adults (1), although an increasing amount of pediatric literature is 
emerging (2–4). There is a need to better understand the complex interaction between all 
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sleep and epilepsy-related factors. If we want to study this on a 
larger scale, we need automated sleep staging. The golden standard 
of manual sleep staging according to the American Academy of 
Sleep Medicine (AASM) guidelines is labor-intensive and time-
consuming (5). Moreover, the question arises as to whether 
automated sleep staging algorithms can become more reliable than 
human scoring over time. Inter-rater reliability of human sleep 
stage scoring has been studied in the adult population without 
epilepsy, but not in children (6–8). As classical sleep architecture is 
disturbed in children with drug-resistant epilepsy (DRE) and 
intellectual disability (2, 4), we assume that inter-rater reliability 
will be lower in children without epilepsy or with well-controlled 
epilepsy (WCE). Although sleep parameters such as the qualitative 
presence of spindles and K-complexes are reported on video-EEG, 
sleep staging is not part of standard investigations in current 
childhood epilepsy practice. However, from research, we know that 
even in children with WCE, sleep architecture does change (2), and 
decreased rapid eye movement (REM) sleep time is a consistent 
finding in children with DRE (4). These changes could 
be therapeutic targets, to impact the vicious cycle between sleep and 
epilepsy and improve, for example, daytime sleepiness, a well-
known complaint in children with DRE.

An automated sleep staging algorithm could serve various 
purposes in clinical practice. First, children coming for overnight 
video EEGs can be screened for sleep disturbances. For instance, 
children with epilepsy often have comorbid parasomnias, which 
could be more precisely classified after sleep staging (2). Second, it 
could be beneficial to use automated sleep staging in the presurgical 
work-up in children with epilepsy. Since interictal epileptiform 
discharges are known to focalize during REM sleep, the irritative 
zone could be delineated more easily (9). Finally, it can facilitate 
long-term sleep monitoring, which can help overcome the first-
night effect and reveal ultradian rhythms (10). In such cases, 
at-home monitoring with a wearable device featuring limited 
channels would be ideal. In addition to clinical use, automated sleep 
staging algorithms have the potential to accelerate sleep research 
(11). It will also help to process larger sample sizes and improve the 
reliability of staging.

Most sleep staging algorithms were developed on adult datasets, 
although the performance of state-of-the-art algorithms on 
pediatric populations provided good test results as well (12, 13). The 
pediatric databases used by previous studies included either healthy 
children or children with obstructive sleep apnea syndrome 
(OSAS), but no other sleep disorders or neurologic disorders were 
included, to our knowledge. Recent sleep staging methods 
predominantly rely on deep learning, particularly deep neural 
networks employing a sequence-to-sequence approach, which is 
indispensable for accurate sleep staging. These models are capable 
of taking into account the long-range context of the epoch that is 
being scored, comparable to how a human would visually score 
sleep (11). The most widely used network architectures are recurrent 
neural networks and convolutional neural networks (14).

In this study, we investigated the performance of an end-to-end 
hierarchical recurrent neural network for sequence-to-sequence 
automatic sleep staging (SeqSleepNet) using video-EEG data, with a 
limited number of electrodes, in a cohort of children without epilepsy, 
children with WCE, and children with DRE. We performed automated 

sleep staging on a limited number of electrodes, instead of using full 
scalp EEG, to investigate its usability for at-home monitoring.

2 Methods

2.1 Recruitment

Between March 2021 and January 2023, children aged 4 to 18 years 
who were admitted to the pediatric epilepsy monitoring unit (EMU) 
for 24-h video-EEG were invited to participate. This included children 
with DRE, WCE, or children without epilepsy who were admitted to 
the EMU to either exclude epilepsy or for other reasons. DRE was 
defined as “failure of adequate trials of two tolerated and appropriately 
chosen and used anti-seizure medication (ASM) schedules (whether 
as monotherapies or in combination) to achieve sustained seizure 
freedom,” according to the International League Against Epilepsy 
(ILAE) (15). Informed consent was given by all parents before the 
measurements and an assent was completed in children older than 
11 years, if intellectually able. The study was approved by the ethics 
commission (S64658) of the Catholic University of Leuven, Belgium. 
This study was part of a larger project called “Advanced EEG 
Technology in Childhood Epilepsy” (ClinicalTrials.gov 
NCT04584385). Full scalp video-EEG used a Schwarzer EEG amplifier 
(O.S.G. Belgium) and Ag/AgCl cup electrodes (Ambu Neuroline Cup, 
Ambu, Denmark). Twenty-one electrodes were placed using the 
10–20 system. Furthermore, extra electrodes for eye movements, 
electrooculogram (EOG), and chin electromyogram (EMG) were 
added to make sleep staging possible. Impedance was ≤5 kΩ at the 
beginning of the measurement. In addition, multiple patient and 
epilepsy-related characteristics were obtained from the EEG data and 
the patients’ records.

In total, 182 children were recruited for the study. In six children, 
EOG and chin EMG data were missing, and hence, sleep stages were 
manually scored in 176 children: 47 children without epilepsy, 74 with 
WCE, and 55 with DRE.

2.2 Manual sleep stage annotation

We used BrainRT software (O.S.G. Belgium) to visualize 
video-EEG data. Manual scoring was performed by RP, a certified 
somnologist-technologist by the European Sleep Research Society, 
according to the most recent AASM guidelines (5). In children with 
epilepsy, some additional decisions were made for consistent scoring: 
When no activity without interictal epileptiform discharges (IEDs) 
was present, the frequency of the discharges was used to classify the 
sleep stage: e.g. < 2.5 Hz and > 70 mV was scored as N3. Furthermore, 
in children with epileptic encephalopathies, the presence of low chin 
tone together with rapid eye movements (REM) was classified as REM 
sleep, even in the presence of slow waves instead of low amplitude 
mixed frequency (LAMF). Similar to children with epileptic 
encephalopathies, those with LAMF do not exhibit normal 
background rhythms during wakefulness, nor do they present with 
LAMF during REM sleep. It was particularly noted while scoring if 
there were subjectively abundant IEDs and when sleep scoring was 
particularly difficult.
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2.3 Algorithm

Automated sleep stage scoring was performed with a state-of-
the-art deep learning algorithm for sleep staging called SeqSleepNet 
(16). After segmenting the physiological signals into segments of 30 s, 
we transformed each segment into a time-frequency representation. 
SeqSleepNet takes these time-frequency representations as input and 
returns probabilities for each of the five sleep stages. This neural 
network architecture uses a sequence-to-sequence prediction 
framework, which means it learns the dependencies between 
consecutive segments. Hence, it is fed with a sequence of multiple 
consecutive segments and it returns the corresponding sequence of 
predictions. We used sequences of size N = 10 in this study.

We pre-trained SeqSleepNet on the Montreal Archive of Sleep 
Studies (MASS), with a dataset of 200 healthy adults (17), using three 
channels: the C4-A1 channel, the EOG (ROC-LOC), and the chin 
EMG. Sleep staging rules (5) are the same for adults and children, so 
we expect an algorithm trained on adults to achieve a fair performance 
in a pediatric population. This approach was further motivated by the 
scarcity of publicly available pediatric polysomnography datasets. 
However, small age-related changes in the EEG may result in a 
suboptimal performance when training on an adult dataset. Therefore, 
we fine-tuned the algorithm to the pediatric population, hypothesizing 
that this would correct for age-related differences.

We first evaluated the pre-trained version of the algorithm on the 
pediatric patients. The pre-trained algorithm was then fine-tuned to 
the pediatric dataset using the same three channels and the sleep stage 
labels of the manual scoring. This was achieved with a supervised 
transfer learning approach. In order to evaluate the performance of 
the fine-tuned algorithm, we performed 15-fold cross-validation by 
randomly dividing the dataset into 15 groups of 11–12 patients each. 
At every iteration of the cross-validation, all except one group were 
used for training (fine-tuning), and the remaining group was used 
for testing.

2.4 Data analysis

Agreement between the algorithm and manual hypnogram was 
evaluated for the 5-stage hypnogram (wake/N1/N2/N3/REM). 
Accuracy was defined as the percentage of epochs correctly scored by 
the algorithm compared to the manually scored hypnogram. Kappa 
was calculated as the agreement between the two hypnograms 
corrected for agreement by chance (18). The sensitivity [true positives/
(true positives + false negatives)] and specificity [true negatives/(true 
negative + false positive)] were calculated per sleep stage. The F1 score 
was calculated as the harmonic mean of sensitivity and specificity 
[2x(specificityxsensitivtiy)/(specificity+sensitivity)].

Between-group differences for continuous data were tested using 
either a two-tailed t-test (with unequal variance) for normally 
distributed data or the Mann–Whitney U for non-normally distributed 
data. The chi-square test was performed for categorical data. Simple and 
multiple linear regression was performed to predict continuous 
outcomes. p-values less than 0.05 were considered significant.

3 Results

3.1 Overall accuracy

The accuracy of the pre-trained algorithm was 78.1% in children 
without epilepsy, 74.9% in children with WCE, and dropped to 63.8% 
in children with DRE. After re-training, the accuracy increased to 
84.7% (Kappa 0.79), 83.5% (Kappa 0.77), and 80.8% (Kappa 0.73) 
respectively. All performance results are summarized in Table 1.

3.2 Performance for different sleep stages

The performance of the fine-tuned algorithm was evaluated 
separately for the wake and all sleep stages. The sensitivity was best in 
wake and REM sleep, while the precision was best for wake and N3. 
Both metrics were the lowest for N1 by a large margin. The harmonic 
mean of the sensitivity and precision, the F1-score, was 0.905 for wake, 
0.503 for N1, 0.825 for N2, 0.843 for N3, and 0.860 for REM. The 
performance results per sleep stage are illustrated in Figure 1. The 
confusion matrix is shown as a heat map in Supplementary Figure S1.

3.3 Interpretation of between-group 
differences

Patients with drug-resistant epilepsy Had significantly lower 
kappa scores compared To patients without epilepsy and well-
controlled epilepsy (PDRE-control = 0.005, PDRE-WCE = 0.039). The 
kappa scores, before and after re-training, Per group Are illustrated In 
Figure  2. In order To identify The reasons for lower scoring 
performance In The DRE group, We looked at some sleep and patient 
characteristics. Initially, N1 staging Was difficult for The algorithm; a 
difference between groups for time spent In N1 could explain The 
different performances. Although there Was indeed a trend towards 
more time spent In N1 for The DRE group, this Was Not statistically 
significant (PDRE-WCE = 0.066). In The drug-resistant group, there 
were significantly more patients with intellectual disability and 
multifocal and/or abundant IEDs, for All of whom significantly lower 
kappa-scores In The complete cohort could Be found (p < 0.001 for 

TABLE 1 Performance of SeqSleepNet trained on adult dataset, and fine-tuned on the children’s dataset.

Pre-trained Fine-tuned

Accuracy (%) Kappa score Accuracy (%) Kappa score

No epilepsy 78.1 0.697 84.7 0.789

Well-controlled epilepsy 74.9 0.653 83.5 0.769

Drug-resistant epilepsy 63.8 0.531 80.8 0.726

Accuracy and Kappa scores are reported and segregated by group.
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intellectual disability, p = 0.013 for multifocal IEDs’ and p < 0.001 for 
abundant IEDs) (Figure 3). Multiple linear regression analysis Was 
used To test if intellectual disability, drug-resistant epilepsy, multifocal 
IEDs, and abundant IEDs significantly predicted lower kappa scores. 
The overall model Was statistically significant (F = 9.723, p < 0.001); 
however, only intellectual disability (t = −2.433, p = 0.016) and 

abundant IEDs (t = −4.167, p < 0.001) significantly predicted The lower 
kappa scores, But having DRE (t = 0.891, p = 0.891) or having 
multifocal IEDs (t = 0.403, p = 0.688) Did Not.

In children with DRE, the amount of REM sleep time was 
significantly lower than in children with WCE and without epilepsy 
(PDRE-control < 0.001, PDRE-WCE < 0.001) (Figure  4). This finding could 

FIGURE 1

Performance metrics per sleep stage. Sensitivity: true positives/(true positives + false negatives), specificity: true negatives/(true negative + false 
positive), F1 score: 2x(specificityxsensitivtiy)/(specificity+sensitivity).

FIGURE 2

Box-plot of Kappa scores per group before and after fine-tuning the algorithm on the children’s dataset.
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be  reliably reproduced by the algorithm (PDRE-control < 0.001, 
PDRE-WCE < 0.001). The REM sleep time as calculated by the algorithm 
and with the manual hypnogram was significantly correlated with a 
Pearson correlation coefficient of r = 0.91 (p < 0.001).

4 Discussion

We investigated the performance of an automated sleep staging 
algorithm in a large pediatric cohort. The original SeqSleepNet, 
pre-trained on 200 healthy adults, already had good results in children 
without epilepsy and in children with WCE. After re-training the 
algorithm on the pediatric cohort, the agreement was substantial in 
all three of the groups, with Kappa scores of 0.79 in patients without 
epilepsy, 0.77  in patients with WCE, and 0.73  in patients with 
DRE. Nonetheless, in children with DRE, Kappa scores were 

significantly lower than in the other two groups. Furthermore, when 
looking at the different sleep stages separately, the scoring performance 
of the algorithm was good for all sleep stages except for stage N1.

When it comes to automated sleep staging based on EEG data in 
healthy adults, the problem can be considered solved (11), and as was 
shown by Phan et al. (12), the performance of automated sleep staging in 
healthy children was good. Furthermore, for neonatal sleep staging and 
sleep staging on stereo-EEG, there are promising results as well (19, 20).

There is limited data on automated sleep staging in children with 
epilepsy specifically. Skorucak et al. used a long short-term memory 
recurrent neural network to detect NREM sleep stages 2 and 3 in children 
with epilepsy and found a Kappa of 0.71 on a validation dataset (21). Since 
intellectual disability could have an independent effect on sleep 
architecture, research on patients with intellectual disability both with and 
without epilepsy is warranted. van den Broek et al. investigated an 
automated sleep scoring algorithm in patients older than 16 years old with 

FIGURE 3

Univariate analyses conducted using the Mann–Whitney U test. Kappa per subgroup: intellectual disability ((p  < 0.001), abundant interictal epileptiform 
discharges (IEDs) ((p  < 0.001), multifocal IEDs ((p  = 0.013). Blue = not present, purple = present.

FIGURE 4

Box-plot comparing rapid eye movement (REM) sleep time of the ground truth and scored by the retrained algorithm. REM sleep time in hours on the 
y-axis.

https://doi.org/10.3389/fneur.2024.1390465
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Proost et al. 10.3389/fneur.2024.1390465

Frontiers in Neurology 06 frontiersin.org

intellectual disabiliy, including patients with epilepsy. The algorithm used 
ECG and respiratory effort as modalities (22). They found that the 
algorithm was least reliable in children who also had epilepsy, although 
these were also children with the most severe intellectual disabilities.

Our results showed significantly lower Kappa scores in the DRE 
group. Increased N1 time in this group could not fully explain this 
finding, but lower Kappa scores were found in children with intellectual 
disability and abundant IEDs. It must be said that scoring sleep stages 
on EEG signals is particularly difficult in children with abundant 
epileptiform activity, and one must be cautious in this population to 
assume that the ground truth is correct. One could argue that a more 
data-driven approach in automated sleep interpretation could be more 
informative in sleep and epilepsy research than classical sleep staging 
(23, 24). Sleep has a lot of temporal dynamics, which are not captured 
fully by the quite arbitrary classical sleep staging, divided into 30-s 
epochs. Frthermore, as it is clearly shown in the epilepsy population, 
pathology can disturb the sleep architecture in such a way that sleep 
stages, as such, might not be classifiable anymore. A microstructural 
approach [presence of spindles (25, 26), rapid eye movements (27) or 
cyclic alternating pattern (28)] or spectral power analysis are then 
helpful but are often still combined with sleep staging. Complete 
unsupervised learning could reveal intrinsic patterns, however, 
translating these patterns into clinically relevant information will 
be challenging. Furthermore, at a time when clinicians are only just 
getting to know artificial intelligence and their possibilities, it would still 
be valuable to have an easy way to quantify the sleep stages, something 
they have known and interpreted for the previous decades.

In some studies on sleep and epilepsy, the focus was mainly on 
N2-N3 sleep (21, 29). Although for N3 our algorithm showed a good 
performance, we feel that in the DRE group, encephalopathic slow waves 
and spike–wave discharges can be mistaken for N3 sleep, both by the 
human rater and algorithm at this point. A possible solution might be to 
train the algorithm to recognize the epileptiform activity from 
non-epileptiform slow waves or use a spike detector to remove all 
epileptiform activity in advance (21). If we assume that sleep, and most 
importantly non-REM sleep, is not erased but rather hijacked by 
epileptiform activity (30), important information might be lost. Studying 
slow wave characteristics and power spectral analysis throughout the 
night could be  more insightful here, given the synaptic homeostasis 
hypothesis (21). Although we agree that slow-wave sleep is an important 
target for cognitive function, we feel a 5-stage sleep scoring including 
REM sleep is not to be neglected in children with epilepsy. There is 
sufficient evidence on the suppressive role of REM sleep on epileptiform 
activity (9, 27, 31–33). Our algorithm can reliably detect REM sleep and 
thus can be used to identify drug-resistant epilepsy patients with low REM 
sleep, which in the future could become a targeted treatment (34). 
Although not directly reported by the algorithm, all standard sleep 
parameters that rely on sleep staging, such as Total Sleep Time (TST, time 
spent in any sleep stage), Sleep Efficiency (SE, TST divided by time spent 
in bed), Sleep Onset Latency (SOL, time to first N1 sleep), and the 
percentage of TST in every sleep stage, can be calculated using a five-class 
sleep staging algorithm. Arousals and apneic events, however, are 
not detected.

In order to know how accurate the algorithm should be  to 
be clinically useful, we can compare it to human inter-rater reliability. 
Lee et al. (7) performed a meta-analysis of 11 papers in which manual 
sleep staging was performed in an adult population without epilepsy. 
They reported a mean agreement of 0.83 between raters (Kappa 0.76), 
which our algorithm surpasses, at least for children with and without 

well-controlled epilepsy. The agreement of our algorithm in different 
sleep stages revealed the lowest value for N1, which is in line with inter-
rater reliability between human raters. Furthermore, a high agreement 
for REM sleep has been described for human raters (6, 7). We assume 
that human inter-rater reliability in children with epilepsy, and even 
more so in drug-resistant epilepsy, is lower.

The algorithm can help accelerate sleep research in children with 
epilepsy. Since it uses only one EEG derivation to score sleep, it could 
potentially be used on reduced channel wearable EEG data, although 
we might need additional eye movements and chin EMG information for 
adequate results. Although commercially available non-EEG wearables 
can differentiate sleep and wake quite well, sleep staging performance is 
poor and not usable for clinical or research purposes (35). A wrist-worn 
wearable, detecting photoplethysmography and accelerometry was 
compared to polysomnography in an experimental setting, with a 4-class 
sleep staging kappa of 0.62 (36). This performance could be increased by 
combining behind-the-ear EEG with accelerometry.

However, there are some limitations to our study. Manual sleep 
scoring was performed by one experienced rater, hence no manual 
inter-rater reliability could be calculated for the manual sleep scoring. 
We  acknowledge that the sleep parameters in some drug-resistant 
patients and the epileptic encephalopathies are so severely disturbed, 
that no human or algorithm could reliably say what sleep stage the 
patient is in. Before implementation, the algorithm should be validated 
in another scored dataset of children with DRE.

We conclude that the tested algorithm has a high sleep staging 
accuracy in children without epilepsy and with well-controlled epilepsy 
and can be used on hospital video-EEG data to estimate the hypnogram. 
Furthermore, when available in the future, it could be  tested on a 
limited-channel wearable device. In our opinion, implementing such an 
algorithm in daily practice could detect children who suffer from sleep 
architecture changes more rapidly, and doing so could help in making 
treatment decisions. For drug-resistant patients with abundant nightly 
IEDs and intellectual disability, we  feel the results should always 
be  interpreted critically. Consequently, when sleep architecture 
disturbance is suspected from the clinical picture and the automated 
hypnogram used as a screening tool is indicative of this, a full 
polysomnography can be planned.
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