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Patients with epilepsy are prone to cognitive decline, depression, anxiety and other 
behavioral disorders. Cognitive comorbidities are particularly common and well-
characterized in people with temporal lobe epilepsy, while inconsistently addressed 
in epileptic animals. Therefore, the aim of this study was to ascertain whether there is 
good evidence of cognitive comorbidities in animal models of epilepsy, in particular 
in the rat pilocarpine model of temporal lobe epilepsy. We searched the literature 
published between 1990 and 2023. The association of spontaneous recurrent 
seizures induced by pilocarpine with cognitive alterations has been evaluated by 
using various tests: contextual fear conditioning (CFC), novel object recognition 
(NOR), radial and T-maze, Morris water maze (MWM) and their variants. Combination 
of results was difficult because of differences in methodological standards, in 
number of animals employed, and in outcome measures. Taken together, however, 
the analysis confirmed that pilocarpine-induced epilepsy has an effect on cognition 
in rats, and supports the notion that this is a valid model for assessment of cognitive 
temporal lobe epilepsy comorbidities in preclinical research.
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1 Introduction

For many patients with epilepsy, a good quality of life and mental condition are as 
important as seizure control. In clinical practice, this interdisciplinary issue is often 
underappreciated and in epilepsy preclinical research the situation is not better. However, 
there is a notable rise of the awareness for neuropsychiatric comorbidities of epilepsy and the 
number of clinical (1, 2) and preclinical studies (3, 4) of comorbidities in epilepsy seems to 
grow over the years. Many clinical reports indicate that mental disorders are more common 
in patients with epilepsy than in the general population (5–8). In this regard, mood disorders 
are the most common, anxiety disorders the second most frequent and psychotic disorders 
the least frequent in people with temporal lobe epilepsy (5), psychoses being a little more 
widespread than personality disorders (6). Such high prevalence of psychiatric disorders is 
frequently demonstrated among patients with epilepsy when compared them with the general 
population or with individuals presenting non-epileptic neurological conditions (7), even if 
it may vary a lot due to differences in study methods and heterogeneity of epilepsy syndromes 
(8). More in detail, the estimated prevalence of depressive disorders in patients with epilepsy 
ranges from 13% to 35%, compared to less that 4% in the general population (9); the 
prevalence of anxiety disorders in people with epilepsy may reach 40%, compared to 3% in 
the general population (10); the prevalence of psychotic disorders is 5.6%–5.9% in people with 
epilepsy vs. 0.3% in people without it (6, 11). Besides mood and psychotic disorders, people 
with epilepsy suffer from cognitive decline and related attention deficit or learning and 
memory disabilities (12). The percentages are higher in older adults, in which the prevalence 
of cognitive disorders may reach 60% (12, 13). However, such studies typically include 
individuals with chronic epilepsy unresponsive to drug treatment (14, 15), which can make 
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difficult the interpretation of the results. Attention deficit–
hyperactivity disorders are observed in 28%–70% of people with 
epilepsy and are more common among children with epilepsy (16). 
The same problems, which worsen the quality of life of people with 
epilepsy, may be  seen in the animals and appear in various 
preclinical reports.

Many scientific publications support the notion that an inadequate 
control of seizures may lead to changes in mood and cognition both 
in people with epilepsy and in laboratory animals (3, 17–19). In 
general, animal models allow the study of comorbidities without the 
bias of drug treatments (20–27). Between animal models useful for the 
study of epilepsy comorbidities, the pilocarpine model in rats is one 
of the most employed. This model mimics well the natural course of 
the temporal lobe epilepsy (28), which permits to monitor the 
development of psychiatric comorbidities in the different phases of the 
disease (i.e., the latency and chronic phase). Pilocarpine is a 
cholinergic agonist injected systemically or locally to induce status 
epilepticus (SE), which is followed by a latent period and the 
subsequently appearance of spontaneous recurrent seizures that 
mimics a focal epileptic condition similar to the human temporal lobe 
epilepsy (28). Besides the pilocarpine model, other animal models of 
acquired epilepsy like kainate, kindling, or traumatic brain injury are 
used to study comorbidities of epilepsy (3, 29). Absence models, like 
genetic generalized epilepsy with absence seizures like Genetic 
Absence Epilepsy Rats from Strasbourg (GAERS) or WAG/Rij rats 
have been employed for the same reason (29).

The term “cognition” can be  defined as the mental action or 
process of acquiring knowledge and understanding through thought, 
experience, and the senses (30). To examine it in epilepsy, researchers 
use various behavioral tests assessing the starting point and evolving 
state of cognitive functions (e.g., learning, memory, and attention) in 
association with frequency of seizures or epileptic-like events. 
Different behavioral tests may provide different types of information. 
When employing contextual fear conditioning, for example, not only 
the memory of fear but also the context of experience is tested, so the 
results may be interpreted in terms of episodic memory on one hand 
and in terms of spatial memory on the other. Such multi-response 
testing can be  useful in some cases but may also complicate the 
interpretation of the results. In addition, the outcome of learning/
memory behavioral tests in animals will depend not only on the type 
of memory solicited, but also on the duration of the task, on the 
continuity or discontinuity of the procedures, on the duration of 
habituation and on many further factors (31). Behavioral tests of 
learning and memory are nearly always performed when studying 
epilepsy related cognitive dysfunction. Social behavior and social 
interaction tests are used less frequently (3, 29). Different learning and 
memory behavioral tasks may be applied separately or as a battery. 
When used in sequence, a logic order of tests (usually used from the 
least to the most stressful, in order to decrease the chance that 
behavioral responses are altered by prior test history) helps the 
researchers to better interpret their results in epileptic animals (32). A 
cognitive evaluation is typically run after testing locomotor activity 
and anxiety and before testing depression, which closes most of 
behavioral testing series. Concerning the cognitive ability tests only, 
their precise order in batteries may not be crucial, as the performance 
of animals in the different cognitive models seems to be independent 
of each other (33, 34). More important will be to compare the results 
obtained at the same disease stage.

Currently available tasks for studying learning and memory 
impairment in any neurobiological disease, epilepsy included, may 
be classified in different ways. One option is considering the prevailing 
type of memory engaged by the task (Figure 1; Table 1). In this respect 
(i) tests primarily measuring contextual memory include contextual 
and fear conditioning (CFC) and its variations, like contextual 
discrimination or delayed nonmatching to sample, conditioned taste 
aversion and social transmission of food preference test; (ii) tasks 
soliciting the recognition memory tests include the novel object 
recognition (NOR) test, the novel object preference (NOP) test and 
their variations; (iii) tests engaging mostly the working memory 
include the different mazes (T-maze, Y-maze, eight-arm radial maze); 
(iv) finally, tests analyzing principally the spatial memory include the 
Morris water maze (MWM) and the Barnes maze tests and, to some 
extent, the object location test (OLT) and the place preference test 
(PPT), in which the engagement of spatial memory is combined with 
contextual and working memory. It should be emphasized that this 
classification is not rigid. Most frequently, more than one type of 
memory is solicited in each cognitive task. Moreover, it is possible in 
many tasks to investigate only the recent, recall or remote memory. All 
in all, the complete spectrum of information provided by each test 
should be taken into account when choosing them and interpreting 
their results in epilepsy models. It should be also considered that, 
when working with epileptic animals, the situation is even more 
complex due to the natural progression of the disease and 
unpredictability of seizure occurrence.

The aim of the present study was to overview the currently 
available and most utilized behavioral tests employed to study 
cognitive impairment in temporal lobe epilepsy, and to evaluate if 
there is good enough evidence for cognitive/mental comorbidities in 
the rat pilocarpine model. Although some of these tests may have sex 
specific outcomes or require sex specific settings, the large majority of 
the papers identified by our search employed only male rats, 
preventing a proper evaluation of sex-dependency.

2 Literature search criteria

For this review, we searched PubMed and Web of Science for any 
pilocarpine or lithium-pilocarpine model in rats; we selected records 
or original articles (reviews were excluded) written in English and 
published in the years 1990–2023. We used the following keywords: 
pilocarpine, model, rats, epilepsy, memory, fear conditioning, cued 
conditioning, conditional fear, contextual fear, conditioned taste 
aversion, Morris water maze, radial arm maze, Y-maze, T-maze, 
double H-maze, Barnes maze, novel object test, novel object 
exploration, novel object discrimination, novel placement recognition, 
object recognition test, spontaneous object recognition test, object 
recognition task, object location test, olfactory discrimination test, 
social recognition, hole-board task, step-down passive avoidance test, 
passive shock avoidance test. Studies on pups were not included. Both 
animals with and without electrodes implanted were considered. 
We  included all the articles on the pilocarpine or the lithium-
pilocarpine model independent of sex, pre-treatments (i.e., methyl-
scopolamine), duration of SE, and of drugs used to stop SE-induced 
seizures (i.e., diazepam, anesthetics, anesthetics and/or analgesics). 
The most important inclusion criteria were the development of 
spontaneous recurrent seizures and their characterization (at least in 
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terms of seizure frequency) and the specification of the time-points of 
behavioral testing with reference to epilepsy development and 
progression. All reviewed studies included non-epileptic control 
animals, which were compared with epileptic ones employing 
appropriate statistical tests. No other specific requirement regarding 
the study design or duration of study was set as inclusion criterion. 
The goal was to collect data correlating the development of epilepsy in 
the pilocarpine model with the assessment of memory and/or learning 
alterations. This search identified 104 original articles matching the 
inclusion criteria.

3 Contextual memory

3.1 Contextual and cued fear conditioning

Contextual and cued fear conditioning (CFC) are tests 
predominantly employed to assess associative learning in animals (35). 
The basics of CFC consist of an exposure to neutral surrounding (the 
context) and to a stimulus (the cue, that can be an auditory tone or a 
flash of light); these are then combined with an aversive unconditioned 
stimulus, typically a mild foot shock of a few seconds and intensity 

FIGURE 1

Principal behavioral tests used to evaluate cognitive abilities in epilepsy models.

TABLE 1 Behavioral tasks commonly used to assess cognitive comorbidities in epileptic animals.

Memory type engaged 
during the task

Behavioral task Task variants Comments

Contextual memory  - Contextual and fear conditioning (CFC)  - Contextual discrimination

 - Delayed nonmatching to sample

 - Conditioned taste aversion (CTA)

 - Social transmission of food preference test in 

the group

Overlapping tests: OLT or PPT

Recognition memory  - Novel object recognition (NOR)

 - Novel object exploration (NOE)

 - Object recognition (ORT)

 - Spontaneous object recognition (SORT)

 - Novel object preference (NOP)

 - Object location test (OLT)

 - Place preference test (PPT)

Working memory  - Maze test  - T-maze, Y-maze, eight-arm radial 

maze, H-maze

Overlapping tests: OLT or PPT

Spatial memory  - Morris water maze (MWM)

 - Barnes maze tests

The details and references related to each behavioral task are provided in the text.
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around 0.6–0.75 mA (max 1 mA in rodents). An aversive unconditioned 
stimulus leads to fear in animals when they are exposed to the context 
and cue. The outcome is a freezing behavior (a complete lack of 
movement except for that related to respiration); researchers mostly 
analyze the numbers of freezing in a defined period and/or their 
duration. The CFC test examines the ability of animals to anticipate 
unconditioned stimulus which will follow the conditioned stimulus (i.e., 
to learn from unpleasant experiences). The freezing behavior is generally 
analyzed automatically (35, 36). According to neurobehavioral findings, 
specific neocortical brain structures are primarily involved in fear 
memory, the prefrontal and the anterior cingulate cortex (36–38). 
Beside these, a well-established contribution of the hippocampal 
formation and entorhinal cortex (EC), together with inputs from 
basolateral amygdala (BLA), have been implicated in learning and recall 
of fear memory. Interestingly, the same brain structures take part in 
temporal lobe epilepsy circuits (39–41). Any epileptic interference with 
the EC-hippocampal complex, BLA or cortical memory circuits is 
therefore expected to influence contextual memory.

In CFC protocols, the conditioned and unconditioned stimuli are 
usually presented concomitantly or the unconditioned one is applied 
immediately after the conditioned stimulus. Such experimental flow is 
called “delayed conditioning.” In another type of testing, the two types of 
stimuli are separated by a defined time interval; such a procedure is 
called “trace conditioning.” Therefore, the trace conditioning differs from 
delay conditioning by the addition of a stimulus-free “trace” interval of 
seconds or minutes, separating the conditioned and unconditioned 
stimuli. It is believed that the longer the temporal gap in the trace 
protocol, the lesser the involvement of the hippocampus and the greater 
that of the prefrontal cortex (42). One of the most frequently employed 
protocols of CFC is the 2-days trial conditioning. It consists of day-1 
training in a cage equipped with a sound source and with a metal grid 
floor. Animals are put into the cage and, after a few minutes of 
habituation, are exposed to an auditory stimulus of about 70–80 dB for a 
few tens of seconds (typically 15–30 s), before delivering a foot shock 
(generally 2 s of 0.6–0.75 mA) at the end of the auditory stimulus or 
immediately after its cessation. Such trial is then repeated for 3–5 times. 
After the training, the animals remain in the cage for another 1–2 min 
and then are put back to their home cage. In the following days, the 
animals are put into the same cage, and the contextual fear is evaluated 
by measuring the freezing response to the unpleasant context in which 
the animals were exposed during the training. The animals may be also 
put into a different context (e.g., cage with identical dimensions, but 
endowed with plastic floor and/or scented with an aroma) and the cue, 
the auditory stimulus, is then applied. Again, the freezing response is 
evaluated. As an alternative (similar to only context induced fear 
response measurement), only the cued fear may be  evaluated by 
measuring the freezing response in the training context. Animals need 
more trials of training to learn the trace conditioning task. After day-1 of 
training, researchers may test the animals (i) the day after, in order to 
assess the recent memory, (ii) after 2–12 days, to test the memory 
consolidation process and (iii) after about 2 weeks or more, to investigate 
remote memory recall (memory retention). In any analyzed time point, 
the reduced freezing behavior indicates the impaired associative 
(episodic) memory, whereas an increased amount of freezing response 
may be associated with anxiety-like behavior (43, 44).

If used in epileptic rodents, the CFC protocol may be biased by 
acute seizure activity, which can resemble freezing. The spindles of 
spike-and-wave seizure activity may occur in parallel with freezing 

behavior in rodents (44, 45). Behavior arrest seizures are typical of 
absence epilepsy and are observed in rodent models (45, 46). In 
addition, the behavioral arrest associated with epileptiform spike–
wave discharges has been described also in rats (47) and mice (48) 
exposed to pilocarpine. Considering that the CFC experiments with 
epileptic animals may be influenced by the occurrence of spontaneous 
seizures of any type (which may occur during the training, as well as 
at the phase of freezing response assessment), the trials should always 
include non-epileptic controls, and animals who experienced seizures 
1–2 h prior or during the test should be excluded.

Another peculiarity of the contextual memory testing in epileptic 
animals relates to the learning phase. In the pilocarpine model of 
temporal lobe epilepsy in rats gives origin to an important 
hippocampal sclerosis at late phases of the disease development (28), 
which can lead to impairment of learning of cued fear in CFC. This 
does not necessarily imply that the CFC paradigm cannot be applied 
to epileptic animals. The different studies in adult rats treated with 
lithium-pilocarpine have shown similar results, i.e., an impaired 
contextual and cued fear memory. A small number of studies 
investigated fear learning or conditioning during the latency phase of 
the rat pilocarpine model (26, 49), without revealing any significant 
result. Most of the studies identified in our search, instead, evaluated 
fear conditioning and learning abilities in rats in the chronic phase of 
the disease; in particular, at about 2–3 months after SE. These studies 
reported a decreased contextual and/or cued fear associated with 
performance in pilocarpine rats, especially in advanced stages of the 
disease. The decrease was mainly reported in terms of lower 
spontaneous freezing duration in given context and/or diminished 
freezing time due to the tone fear conditioning cue (50, 51). Smolensky 
et  al. (49) reported fear impairment in short term and long term 
memory cues only in the chronic phase (i.e., days 41–53 post SE), 
while such impairment was absent during latency (i.e., days 8–15 post 
SE). Focusing on the advanced stages of epilepsy, particular differences 
were consistently reported in epileptic rats that showed a significantly 
diminished freezing time in contextual and tone fear conditioning in 
comparison to controls at 2 months after pilocarpine (52) or shortly 
after 2 months (53). Similarly, Zubareva et al. (54) showed a contextual 
memory decline (decreased freezing time in the familiar cage 
compared to the controls) in pilocarpine rats 60–70 and 70–90 days 
after SE (55). Interestingly, Qiu et al. (56) found that pilocarpine rats 
had most severely impaired fear declarative memory at 2 months after 
SE, but then improved at 4 months while still performing worse than 
controls in CFC cues. However, one study reported an opposite result, 
i.e., an increased level of freezing response due to the auditory cue in 
delay protocol. Such a finding was observed for 4 consecutive days of 
training in comparison with controls at 1 month after SE (57). 
However, the CFC test was applied in this study to assess a single fear 
learning in epileptic rats at about 1 month post SE, thus differing from 
the others that refer to the late chronic epileptic animals at about 
2–3 months post-SE. All in all, the outcome was similar: impairment 
of contextual memory in the chronic phase of temporal lobe epilepsy.

3.2 Conditioned taste aversion

Conditioned taste aversion (CTA) is another form of associative 
learning and may be seen as a special type of classical conditioning; 
the animal typically learns to associate the novel taste of a new food 
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with subsequent illness resulting from ingestion of some nausea-
inducing agent. Most animals learn the task after a single pairing of a 
novel taste with a nausea-inducing agent (24). Even if interesting, this 
test is not frequently used in animals, especially in models of temporal 
lobe epilepsy. Nonetheless, a few studies in the pilocarpine or 
Li-pilocarpine models indicate that epileptic rats acquire a weak CTA 
when compared to their controls, which on the other hand learn to 
avoid conditioned intake very early. In particular, at about 1 month 
after SE, pilocarpine and Li-pilocarpine treated rats displayed learning 
deficits and poorer performance in CTA tasks with respect to controls 
(58). A deterioration of CTA memory has been also observed in 
pilocarpine treated rats tested during the latency period, i.e., 8–9 days 
post SE (59).

3.3 Social transmission of food preference

Another test capable of measuring context memory is social 
transmission of food preference, which is used to assess social 
communication ability. It is often performed to evaluate autism-like 
characteristics, more rarely to assess memory in rodents. However, 
studies of social transmission of food preferences in rats have shown 
that animals are more likely to eat novel food if they smell the food on 
another rat’s breath and after observing another rat eating that food 
(60). To our best knowledge, this test was not yet used to assess the 
associative memory in the pilocarpine model of epilepsy. Thus, this 
may be an option for epilepsy investigators.

4 Recognition memory

4.1 Novel object recognition test and its 
variants

The novel object recognition (or exploration) task and its variants 
permit recognition of the objects in relation to a defined context. The 
recognition is possible after adequate training, and it is often launched 
by a combination of spatial, temporal or emotional inputs (61). Like 
CFC, memory recognition processes primarily solicit hippocampal, 
neocortical and BLA circuits (37, 38). Today, the most frequently used 
test of recognition memory in rodents is the novel object recognition 
(NOR), sometimes denominated novel object exploration (NOE), 
object recognition task (ORT) or spontaneous object recognition test 
(SORT). Its less frequently employed variants are novel object 
placement, novel object preference and novel context preference tests. 
A distinct NOR variant is an olfactory discrimination test, which is 
based on the animals’ ability to detect differences between odors (2 or 
more in a multiple-choice test). An olfactory discrimination task is 
based on the association between a sensory stimulus and a food or 
water reward, and the frequency of correct choice for the stimulus 
associated with the reward is measured. Olfactory discrimination has 
an important impact also in NOR and its variants; investigators are 
used to thoroughly clean with ethanol the apparatus and the objects 
to remove odor cues before and between their use (62). All the above-
mentioned tests have the recognition request in common; 
experimental animals must recognize the size or the shape of an 
object; they have to recognize the distance between the objects and 
walls; they do so in a given context. NOR and its variants overlap with 

object location test, which is more often used in spatial memory 
testing (OLT; see below). All object recognition tests are based on the 
spontaneous behavior of rodents.

The basic NOR task is conducted in an open field arena after 
habituation (regularly 20–30 min) of animals in the arena the day 
before. The day of trial, animals are allowed to explore in a first session 
two identical objects; in a subsequent session, one object is replaced 
by a different one. The new object should be similar to the original in 
height and volume, but different in shape and appearance. In NOR 
test, the objects are placed at an equal distance from the walls of the 
arena. The outcome measure is the time which the animals spend to 
explore the familiar and the novel object in the second session. As an 
alternative, researchers use a discrimination index, that is, the ratio of 
time spent exploring novel/familiar objects. The most employed time-
lapse posed between the two sessions is between 5 min to 2 h. 
Occasionally, a 24 or 48 h delay can be  used to explore the shift 
between recent and remote recognition memory. Measures are highly 
influenced by this time interval (63), and, on that base, NOR may 
be used to discriminate short-term, medium-term and long-term 
memory by evaluation of the retention interval (i.e., the time the 
animals maintain memory of sample objects presented during the 
familiarization phase before the test phase, when one of the familiar 
objects is replaced by a new one) (64).

The NOR test is relatively easy to perform and is therefore often 
employed when studying epilepsy comorbidities. An important 
procedural detail that has been employed in nearly all studies in 
epilepsy models is to exclude animals that experience a spontaneous 
recurrent seizure (SRS) during the testing or in the hour preceding it. 
What is emerging is that pilocarpine or Li-pilocarpine treated rats 
have a poor performance in NOR and its variants. Researchers report 
that they spend a similar amount of time exploring both the novel and 
the familiar object, or even more time with the familiar object, which 
clearly indicates that epileptic rats are unable to recall a recent 
recognition memory. Interestingly, similar results are found in the 
early (at about 2 weeks) post SE phase (65–71), and in the late chronic 
(1–2 months after SE) phase of the pilocarpine model (66, 67, 72–79). 
The results obtained during the latency phase are in their greater 
number parallel to chronic results (80–82), and report similarly less 
time of novel object exploration and a decreased discrimination index. 
The above mentioned result are validated in age matched controls. The 
majority of these studies use a 2 h delay between the training and the 
assessment phase of the test (65, 66, 68, 71). A few studies apply a 24 h 
gap between the sessions, but results are similar to those obtained with 
2 h delay (67, 72, 81). Only the study of Detour and colleagues, which 
used the 24 h delay protocol, did not reveal any difference in NOR 
performance between controls and Li-pilocarpine treated rats tested 
5 months after SE (20). In the same paper, however, the authors 
disclosed a memory decline in the same animals when employing the 
radial 8 arms maze (20). Another outlier study reported no changes 
in NOR test with respect to non-epileptic controls at 25 and 40 days 
after SE (83). Confirming the vast majority of NOR studies, impaired 
olfactory sensitivity and memory has been described 1 week and 
2 months after pilocarpine-induced SE (84).

Whereas the NOR test and its variants strongly converge in 
identifying memory impairment in chronically epileptic animals after 
pilocarpine SE, result are more variable in early stages of the disease. 
In fact, many studies did not report deficits early after SE, i.e., at 3 days 
(74), at 4 days (83), at 7 days after SE (25, 27, 81, 83). In addition, 
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Bernardi and Barros (25) reported negative results also 2 months after 
SE utilizing the SORT task. This atypical observation may be due to 
subtle differences between the NOR and the SORT test.

4.2 Novel context preference test

This is an extension of the classic NOR, able to establish if the 
novelty of objects was important to produce a conditioned increase 
in environmental preference (85). In the novel context preference 
test, the animals are given repeated access to familiar and novel 
objects in different environments and are supposed to display an 
increase in preference for the paired novelty object-novelty 
environment (86). The access time to the novel objects is usually at 
least 10 min. This test may be seen as a natural alternative to FCF, 
because it gives origin to conditioned association, but not to the fear 
associated with an environmental cue. However, even if relatively fast 
and simple, the use of this test is not frequent. Regarding the 
pilocarpine model, the authors of this review did not find any paper, 
in which the novel context preference test was used in 
epileptic animals.

4.3 Object location memory test

The object location memory task (OLM or OLT) assesses spatial 
and reference memory. As NOR and its variants, it is based on the 
spontaneous tendency of rodents to spend more time exploring a 
novel object than a familiar object and ability to recognize it even if 
the object has been relocated (87) but, at the same time, it solicits the 
working memory employed at maze tasks.

Testing occurs in an open field arena, to which the animals are 
first habituated. The next day, objects of similar material but 
different shapes are introduced to the arena. They are spaced 
roughly equidistant from each other with space in the center, 
where the animal is put at the start of acquisition (training) phase. 
In the first trial, the animal is allowed to explore the arena with the 
objects. In the second trial (often 5 min or 2 h thereafter), the 
animal again encounters the same objects, except that one or two 
of them have switched positions. The researchers score the time 
spent sniffing the objects. The most frequently used version of OLT 
uses two objects, one of which is replaced in the second trial; a 
four object variant, with replacement of two, is also often 
used (86).

OLM task is used for assessing cognitive deficits in epileptic 
animals, although it has been rarely employed in pilocarpine treated 
rats. However, pilocarpine rats typically spend less time exploring 
novel location object with respect to control animals (67, 72, 83). This 
is observed already at 4 days after SE (83), and persists in late chronic 
phase (67, 83).

5 Working memory

Working memory is a theoretical concept often used 
synonymously with short-term memory. It is believed to have a 
limited capacity that can hold information temporarily, to retain what 
can be important for reasoning and the guidance of decision-making 

(88). Working memory is sometimes perceived in close relationship 
with attention, as the attentional control has an additive impact on 
working memory resources (89). For this reason, some of the tests 
listed below may be also used for the assessment of attention deficit.

Tests employed to assess working memory include the T-maze 
and its variant Y-maze, and the 4 or 8-arm radial maze or double 
H-maze. Different tasks, such as left–right discrimination or forced 
alternation (to open arms), are used. Maze protocols require food 
deprivation and may introduce scent cue confounds. In these tests, the 
working memory is solicited along with spatial learning.

5.1 T-maze, Y-maze

T- or Y-mazes are used to assess the decision cognitive ability of 
rodents. These are T- or Y-letter shaped apparatuses placed 
horizontally; they can be  elevated or wall-enclosed. Animals 
performing the test are placed at the base of the T/Y and allowed to 
choose one of the goal arms at the other extremity. It is usually run in 
two trials of no more than 2 min duration. First, the animal enters one 
arm. On the second trial, the rodent tends to choose the arm not 
visited before, thus reflecting memory of the first choice. Such a 
tendency is called spontaneous alternation and can be reinforced by 
making the animal hungry and rewarding it with a preferred food in 
the previously unexplored arm. The number of trials that the animal 
needs to learn to successfully complete the task can be recorded in the 
data acquisition phase. Alternatively, the time needed to complete the 
task can be measured. Whereas two trials (one training and one test 
trial) may be  sufficient for rewarded alternation, spontaneous 
alternation experiments generally require several training trials. 
Learning may be made even more difficult by including avoiding 
entrance into a closed/dark arm, that rodents would instinctively 
choose. Findings from different studies performed in T- or Y-mazes 
suggest that both the spontaneous and the rewarded alternation are 
very sensitive to dysfunction of the hippocampus, although other 
brain structures may be also involved (31, 90).

T- and Y-mazes have been used to assess the cognitive abilities of 
epileptic animals using the pilocarpine model. In most studies, a 
deterioration of spatial working memory was observed. A T-maze test 
run during the latency phase evidenced a working memory deficit (74, 
82, 91, 92). Likewise, a Y-maze tests run in the late chronic phase 
(40 days post-SE) highlighted a working memory deficit in pilocarpine 
animals in comparison to controls (93). In contrast with these studies, 
no difference between pilocarpine and non-epileptic control rats was 
observed about 1.5 months post SE by Smolensky et al. (49). In these 
latter study, however, there was a trend to perform worse in pilocarpine 
rats, and it may be reasonable to expect that this difference could 
become significant by increasing the number of tested animals.

5.2 Eight-arm radial maze, four-arm radial 
maze

These tests assess the natural ability of rodents to optimize their 
exploratory strategies. As in the T- or Y-maze tests, both spontaneous 
and rewarded alternations can be measured. Radial maze can also 
be used for spatial learning and memory assessment. Besides the 
classic dry version, an eight-arm radial water maze exists that is 
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designed to evaluate reference and working memory performance 
while requiring the use extra-maze cues to locate escape platforms 
(94). Similarly, the double H water-maze is sometimes employed for 
spatial learning and memory assessment (95). The most employed of 
the above-mentioned is the 8-arm radial maze. An ordinary 8-arm 
radial maze consists in 8 equidistantly spaced arms that cross a central 
open area, which is separated from the arms by trapdoors. The 
animals are habituated to the apparatus and put off diet before the test 
to make them starving for food reward (they may lose about 10–15% 
of body weight). However, standardization of measures that increase 
motivation to search for the reward is very difficult, and this may 
increase variability of the results. They are positioned in the center 
and allowed to freely explore the apparatus, which is initially 
sprinkled with food all along the arms. In few following days, food is 
gradually restricted to the end of the arms, so that the animals become 
familiar with all arms in their whole length. At the time of testing, 
animals are placed again into the center of the apparatus with all arms 
filled with food and the doors open; once the animal enters the first 
arm, all other arms are closed. When the animal finishes all the food 
in the first arm, it returns to the center and the door of the empty arm 
behind is closed. The animal is allowed to stay for a few minutes in 
the center, then all arms open again, and the animal should enter 
another food filled arm, avoiding the one where it already ate all food. 
The test finishes when all eight arms are emptied. The test is repeated 
daily, and the researchers count predominately the number of trials/
days needed for animals to successfully complete the task; many 
evaluate also the errors made by animals during the test execution 
(e.g., re-entries in empty arms). This test can also differentiate 
between the working and reference memory in a variant in which 
only four of the eight arms offer food during the training and the 
same arms are filled with food during the test. In this variant, two 
types of errors can be evaluated. A dysfunction of working memory 
may be identified if an animal re-enters an emptied arm, in which it 
ate everything before. In analogy, an impairment of the reference 
memory may be identified if an animal makes an error entering an 
empty arm, which it should know is empty because it was empty 
during the training phase.

Radial-arms mazes were used in epileptic rats, predominately the 
8-arm radial maze in chronic phase of the disease modeled by 
pilocarpine (1–5 months’ post SE), documenting a deficit in the 
working memory. This was usually reported in terms of a significant 
increase in the number of trials needed to achieve the trial criteria, in 
terms of the time needed to obtain all pellets or in terms of elevated 
number of errors (number of wrong entries and re-entries) in epileptic 
animals as compared with non-epileptic controls (20, 77, 96–100). 
Similar results were observed with the 4-arm radial maze in 
pilocarpine and Li-pilocarpine rats 1 month after SE (58). In one of 
these studies, a positive correlation was observed between the number 
of SRS and the working memory impairment (98). Working memory 
deficits were also observed at earlier time-points (15 days’ post SE) in 
the 8-arm radial maze (93, 101).

As for CFC and recognition memory tests, the results obtained in 
radial-arms mazes are highly susceptible to interferences associated 
with epileptogenic events (i.e., behavioral and electroencephalographic 
seizures) or postictal behavior. Thus, seizure events should represent 
exclusion criteria. Another potential challenge for epilepsy researchers 
is the fact that the task requires starving animals, which increase the 
level of ketone bodies in the brain. This may represent a bias because 

the ketogenic diet, which can be mimicked by starvation, can be used 
to treat epilepsy. Indeed, acute or chronic starving of epileptic animals 
has been reported to reduce the frequency of seizures (102–104). 
However, none of the above-mentioned studies refers to starvation as 
an impediment of the experiment.

6 Spatial memory tests

Spatial learning and memory is a hippocampal-dependent 
task (105, 106). The most widely used tests to analyze it in rodents 
are the Morris water maze, the Barnes maze and the radial eight-
arms maze, which was described above; the object location test 
(OLT), also described above, also offers information on 
spatial memory.

6.1 Morris water maze

The Morris water maze (MWM) test is run in a large circular tank 
filled with water, which is divided by imaginary lines into four 
quadrants. In one of these is located a submerged platform, which the 
animal is expected to find during the trial by using various spatial 
cues, like objects positioned in fixed places of the tank wall and/or on 
the walls surrounding the tank. To solve the task, the animal engages 
in spatial learning and memory, recognizing the place where it is at 
the start of the task using the cues on the walls.

The most frequently used protocol of MWM foresees an initial 
(about 2 min) habituation period inside the water tank without 
platform. In the training phase, the animal is placed into the water at 
different points of the tank for 4–6 trials of 5–15 min each in a single 
day. Animals generally find the platform in 1–2 min after the start of 
the assay. Once the animal finds the platform, it is allowed to stay on 
it for 10–20 s, then is withdrawn. With advancement of the days of 
training, it takes progressively less to reach the platform. It may take 
about 1 week for animals to learn to complete the task under a 
pre-defined cut-off time, depending on the number of trials per day. 
Non-epileptic animals usually achieve an optimal performance within 
2 consecutive days, when 5–8 trials are applied per day. Five days of 
MWM cued learning is more than sufficient for intact rats. Latency to 
escape on platform, distance traveled, swimming speed and number 
of trials needed to learn to reach the platform within the cut-off 
conditions, are the parameters used to measure spatial memory (107, 
108). It should, however, be  considered that there are important 
sex-differences in many parameters that are routinely assessed 
through MWM (e.g., male rats are used to travel a greater distance in 
comparison with females, who in turn search faster than males during 
habituation and manifest more thigmotactic behavior when exploring 
the pool) (109).

After the acquisition phase, one may also evaluate the spatial 
memory recall in a probe test, in which the platform is removed 
from the pool and the rat is allowed to search for it in a defined 
time interval, usually 2 min. If the animal recalls correctly the 
position of the platform, it will spend most of the time swimming 
in the correct quadrant. Less time spent in the correct quadrant 
reflects an impairment in spatial memory retention or recall. Probe 
tests may be  also repeated after extra periods of training, thus 
assessing additional spatial memory characteristics (remote 
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memory recall); the animals after repeated-training are supposed 
to spend less time and/or to need less trials to learn the task in a 
supplementary probe test. There is also a variation of the test, in 
which the quadrant of the platform is changed and the animal’s 
flexibility and speed to learn the new positions is evaluated 
(cognitive flexibility testing). The most frequently reported 
outcome measure of MWM probe test is the time spent in the 
target quadrant. Other measures are proximity and chance ratio. 
A specific outcome measure is represented by thigmotactic 
swimming (i.e., the act of swimming close to the walls of the water 
maze tank lacking the focus), which may be  observed in the 
acquisition phase but also in probe testing, and which gives a 
measure of inability to learn the task and engage memory 
functions. Thigmotactic swimming may be considered an anxiety-
like behavior (110).

Given the training in the water and a relatively long time needed 
for animals to learn the task, this test may not be completely suitable 
for epileptic animals because, if it experiences a seizure while 
swimming, it may lose its balance and sink. Spontaneous seizures may 
be facilitated by the efforts required by the task, especially in chronic 
epilepsy models. These aspects of the MWM test should be taken into 
account when preparing the experiment and while interpreting the 
data. Investigators usually set as exclusion criteria the occurrence of 
SRS during and within 1 h after the MWM task.

Li-pilocarpine or pilocarpine treated rats show a spatial memory 
deficit in the MWM test in both cued learning and memory retain. 
Such findings are shared by many groups, independent of the phase 
of the disease in the pilocarpine model. The vast majority of the 
studies that we  reviewed report a failure of cued learning 
(predominately in terms of longer escape latency; 86% of reviewed 
studies) and spatial memory retrieval (in particular in terms of lower 
time in or fewer crossings of target quadrant in a probe test; 66% of 
studies) with respect to intact controls (Table  2). Concerning 
thigmotactic swimming, the data suggest that animals unable to solve 
the task have generally a stronger thigmotactic behavior (21, 148). In 
most of the studies, MWM was run after recognition and maze tests, 
at the end of the behavioral trials and eventually prior to forced 
swimming test, because MWM is considered to be more stressful for 
animals as compared with recognition or mazes but milder than 
forced swimming (164, 165).

6.2 Barnes maze test

The Barnes maze (BM) assay is one of the three mostly employed 
assays to test spatial learning and memory (with the MWM and radial 
8-arms maze). In the Barnes (dry land) maze, no strong aversive 
stimulus (like swimming in MWM) or food deprivation for 
reinforcement (like in the radial 8-arms maze) are used (166–168). 
Instead, a natural preference of rodents for the dark and closed places 
is exploited.

The apparatus of BM consists of a circular plane with 18–20 
circular holes arranged along its entire circumference; the plane 
is bright light illuminated; under one of the holes is placed a cage, 
the only shelter available; animals should find the way to this hole 
during the task using spatial cues (visual reference points placed 
around the circular plane). Usually, it takes about 4 to 7 training 
repetitions to teach the animal to proceed quickly in a straight line 

toward the hole that hides the drop box (169). BM performance is 
not associated with significant stress, that may instead compromise 
other spatial memory tests (166). However, the absence of a strong 
aversive stimulus may reduce the motivation to complete the 
operation. If it is the case, a food reinforcement may 
be considered (170).

The test is run very much like MWM. Experimenters let the 
animal explore the maze during the habituation; then allow it to learn 
the position of an escape hole during the training trials; finally, spatial 
memory retention is tested by putting the animal again into the maze 
with the escape hole blocked. One recent variant of BM was used to 
test social interaction and may be  classifies as a test assessing 
contextual memory; in such extension of BM rats (in the role of 
observers) improve their learning by observing the behavior of other 
rats (models) that had already acquired the task (171).

The parameters used to assess the classic BM include the number 
of trials needed to learn the position of the escape hole during the 
acquisition phase (i.e., the training) and the time spent in the vicinity 
of the escape hole in the probe test. The BM test has been used less 
frequently than MWM in epileptic rats, but seems to become 
progressively more popular (increasing number of studies published 
in the last decade). One of the reasons why BM is gaining popularity 
over MWM is that it is less stressful for rodents, as indicated by the 
fact that, contrary to MWM, it does not increase corticosterone levels 
(166, 172–174).

The BM test was successfully applied in the pilocarpine model. In 
all studies, the epileptic rats had significantly increased latency to find 
the hidden escape box when compared to matched controls. The 
results are consistent along the course of disease; an impairment in 
spatial navigation learning and memory was observed both in early 
chronic phase (69, 71, 80, 175) and late chronic phase (156, 176, 177) 
of the temporal lobe epilepsy.

6.3 Hole board task

The hole-board may be seen as a variant of the BM test. It consists 
of a small square arena with an extractable platform as floor, which 
has a set of equally spaced circular holes on its surface. Typically, it has 
an even number of holes (very frequent is 4-hole-board). Similarly, to 
BM, it allows the assessment of long-term spatial memory in rodents 
without the employment of water or food restriction, painful stimuli 
(electrical shocks) or any other aversive condition. In the 4-hole-board 
variant, holes are equidistant (one for each of the resulting quadrants). 
Animals put in the arena spontaneously approach the holes and 
explore them. If they are re-exposed to the hole-board, they lose 
interest in the novelty of the holes, unless researchers use a food 
reinforcement. Animals with an intact long-term memory show a 
reduction of the frequency of exploring the holes by nose-poking, or 
do not make errors when searching for the food. Usually, the total 
number of nose-pokes or the number of correct nose-pokes in food 
reward variants are counted and used as an index of long-term spatial 
memory. These numbers are stable across the days of testing in spatial 
memory of compromised animals.

We identified only one work in which hole board task was 
employed for assessment of spatial memory in pilocarpine rats. Patra 
et  al. (178) report a significant spatial memory deficit at about 
4 months after SE.
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TABLE 2 Use of the Morris water maze in pilocarpine treated rats, at different phases of temporal lobe epilepsy model.

Disease 
phase

Time post 
SE

Main finding Strain Sex SE drug dose and route of administration References

Acute 24 h ↑EL and ↑travel distance Sprague–Dawley Male Pilocarpine (350 mg/kg, i.p.) (111)

24 h ↑EL Sprague–Dawley Male LiCl (3 mEq/kg, i.p.) prior to pilocarpine (60 mg/kg s.c.) (112)

Latency 2 days ↑EL and ↓crossings of TQ Sprague–Dawley Male 1% LiCl (3 mg/kg, i.p.) and 1% pilocarpine (30 mg/kg i.p.) (113)

1–4 days ↑EL and ↓time in TQ Wistar Male LiCl (127 mg/kg, i.p.), followed 24 h later by pilocarpine (30 mg/kg i.p.) (114)

1–5 days ↑EL and ↓time in TQ over 5 days of 

testing

Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 24 h later by pilocarpine (30 mg/kg i.p.) (115)

1–7 days ↑EL and ↓time in TQ, ↓crossings of TQ 

the last day of testing

Wistar Male LiCl (3 mEq/kg, i.p.) 24.5 h prior to pilocarpine 0.9% (i.p.) (116)

3–7 days ↑EL and ↓time in TQ the last (4th) day 

of testing

Sprague–Dawley Male Pilocarpine 30 mg/kg (i.p.) than pilocarpine (10 mg/kg, i.p.) every 30 min until the rats developed 

seizures

(117)

4–8 days ↑EL and ↓time in TQ over 4 days of 

testing

Sprague–Dawley Either LiCl (3 mEq/kg, i.p.) 20 h prior to pilocarpine (20 mg/kg i.p.) (118)

1 week ↑EL and ↓time in TQ Wistar Male LiCl (3 mEq/kg, i.p.) 24 h prior to pilocarpine (30 mg/kg i.p.) (119)

1 week ↑distance traveled Wistar Male LiCl (127 mg/kg, i.p.), followed 24 h later by pilocarpine (30 mg/kg i.p.) (27)

1 week ↑EL, ↓time in TQ Sprague–Dawley Male Pilocarpine (340 mg/kg, s.c.) (81)

1 week ↓time in TQ, ↓crossings of TQ Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 18–24 h later by pilocarpine (20 mg/kg i.p.) (120)

Early 

chronic

1–2 weeks ↑distance traveled over days 2–3 of 

testing

Wistar Male LiCl (127 mg/kg, i.p.), followed 24 h later by pilocarpine (30 mg/kg i.p.) (121)

10–15 days ↑EL and ↓time in TQ over 5 days of 

testing

Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 24 h later by pilocarpine (30 mg/kg i.p.) (115)

12–15 days ↑track length Wistar Male LiCl (127 mg/kg, i.p.), followed 24 h later by pilocarpine (30 mg/kg i.p.) (49)

13 days ↑EL Sprague–Dawley Male LiCl (3 mEq/kg, i.p.) 24.5 h prior to pilocarpine (30 mg/kg, i.p.) (122)

15–19 days ↑EL, ↓time in TQ Sprague–Dawley Male Pilocarpine (280 mg/kg, i.p.) (65)

10, 20 days ↑EL and ↓time in TQ Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 18–20 h later by pilocarpine (60 mg/kg i.p.) (123)

2 weeks ↑EL, ↓time in TQ Wistar Male LiCl (127 mg/kg, i.p.), followed 20–24 h later by pilocarpine (30 mg/kg i.p.) (124)

2 weeks ↑EL, ↓time in TQ Wistar Male Pilocarpine (320 mg/kg, i.p.) (125)

2 weeks ↓time in TQ, ↓crossings of TQ Wistar Male LiCl (130 mg/kg, i.p.), followed 24 h later by pilocarpine (50 mg/kg i.p.) (126)

2 weeks ↓time in TQ, ↓crossings of TQ Sprague–Dawley Male Pilocarpine (400 mg/kg, i.p.) (127)

2 weeks ↑EL over days 2–5 of testing Sprague–Dawley Male Pilocarpine (340 mg/kg, i.p.) (128)

2 weeks ↑EL and ↓time in TQ over days 2–5 of 

testing

Sprague–Dawley Male LiCl (180 mg/kg, i.p.), followed 18–20 h later by pilocarpine (30 mg/kg i.p.) (129)

(Continued)
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Disease 
phase

Time post 
SE

Main finding Strain Sex SE drug dose and route of administration References

2 weeks ↑EL and ↓time in TQ (day 5 of testing) Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 18–20 h later by pilocarpine (30 mg/kg i.p.) (130)

2 weeks ↑EL and ↓time in TQ Sprague–Dawley Male LiCl (3 mg/kg, i.p.), 18 h after pilocarpine (10 mg/kg, i.p.) every 30 min until the rats developed seizures (131)

2 weeks ↑EL Sprague–Dawley Male LiCl (20 mg/kg, i.p.), followed 24 h later by pilocarpine (50 mg/kg i.p.) (132)

2 weeks ↑EL, ↓time in TQ, ↓crossings of TQ 

over 4 days of testing

Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 18 h later by pilocarpine (34 mg/kg, i.p.) (133)

2 weeks ↑EL, ↓time in TQ Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 18 h later by pilocarpine (34 mg/kg, i.p.) (134)

15 days ↑EL Sprague–Dawley Male LiCl (3 mEq/kg, i.p.) 18 h prior to pilocarpine (60 mg/kg, s.c.) (135)

15–20 days ↑EL over 5 days of testing Wistar Male Pilocarpine (l μL, 2.4 mg/animal, i.h.) (136)

19 days ↓time in TQ Wistar Male LiCl (127 mg/kg, i.p.), followed 20 h later by pilocarpine (60 mg/kg, i.p.) (137)

2–3 weeks ↑EL Wistar Male LiCl (127 mg/kg, i.p.), followed 20–22 h later by pilocarpine (30 mg/kg, i.p.) and an additional 10 mg/kg 

dose every 30 min afterwards until development of convulsive seizures

(138)

3 weeks ↑EL and ↓time in TQ, ↓crossings of TQ Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 18–20 h later by pilocarpine (30 mg/kg, i.p.) (139)

22 days ↑EL, ↓time in TQ Wistar Male LiCl (127 mg/kg, i.p.), followed 24 h later by pilocarpine (30 mg/kg, i.p.) (140)

2–4 weeks ↓time in TQ Sprague–Dawley Male Pilocarpine (350 mg/kg, i.p.) (141)

Late 

chronic

25–28 days ↑EL Wistar Either LiCl (127 mg/kg, i.p.), followed 24 h later by pilocarpine (40 mg/kg, i.p.) (75)

4 weeks ↑EL over days 2–5 of testing Wistar Male LiCl (127 mg/kg, i.p.), followed 18.5–20.5 h later by pilocarpine (20 mg/kg, i.p.) (142)

4 weeks ↑EL, ↑distance traveled Wistar Male Pilocarpine (340 mg/kg, i.p.) (143)

4 weeks ↑EL and ↓time in TQ Sprague–Dawley Male LiCl (125 mg/kg, i.p.), followed 18–20 h later by pilocarpine (20 mg/kg, i.p.) (144)

4 weeks ↑EL in days 2–5 of testing Wistar Male LiCl (120 mg/kg, i.p.), followed 18 h later by pilocarpine (30 mg/kg, i.p.) (145)

4 weeks ↑EL Sprague–Dawley Male LiCl (3 mEq/kg, i.p.) 24 h prior to pilocarpine (60 mg/kg, i.p.) (23)

4 weeks ↑EL and ↓time in TQ Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 18–20 h later by pilocarpine (60 mg/kg, i.p.) (123)

4 weeks ↑EL and ↓time in TQ over 6 days of 

testing

Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 18–24 h later by pilocarpine (20 mg/kg, i.p.) (120)

35–42 days ↑EL Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 17–20 h later by pilocarpine (30 mg/kg, s.c.) (146)

6 weeks ↑EL and ↓time in TQ Wistar Male LiCl (3 mEq/kg, i.p.) 24 h prior to pilocarpine (45 mg/kg, i.p.) (147)

6 weeks ↑EL and ↓time in TQ Wistar Male LiCl (127 mg/kg, i.p.), followed 19–24 h later by pilocarpine (30 mg/kg, i.p.) (148)

38–45 days ↑EL and ↓time in TQ over 5 days of 

testing

Wistar Male LiCl (127 mg/kg, i.p.) and pilocarpine (60 mg/kg, i.p.) (149)

45 days ↑EL over days 2–5 of testing Sprague–Dawley Male Pilocarpine (340 mg/kg, i.p.) (150)

7 weeks ↑EL and ↓time in TQ, ↓crossings of TQ Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 20 h later by pilocarpine (50 mg/kg, i.p.) (151)

(Continued)

TABLE 2 (Continued)

https://doi.org/10.3389/fneur.2024.1392977
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


G
u

arin
o

 et al. 
10

.3
3

8
9

/fn
eu

r.2
0

24
.13

9
2

9
77

Fro
n

tie
rs in

 N
e

u
ro

lo
g

y
11

fro
n

tie
rsin

.o
rg

Disease 
phase

Time post 
SE

Main finding Strain Sex SE drug dose and route of administration References

54 days ↑EL Wistar Male Pilocarpine (350 mg/kg, i.p.) (152)

52–59 days ↑EL, ↓time in TQ Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 18 h later by pilocarpine (50 mg/kg, i.p.) (153)

55–59 days ↑EL over 5 days of testing Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 24 h later by pilocarpine (20 mg/kg, i.p.) (154)

57–61 days ↑EL and ↓time in TQ Wistar Male LiCl (3 mEq/kg, i.p.) 20 h prior to pilocarpine (35 mg/kg, i.p.) (73)

7–8 weeks ↑EL and ↓time in TQ, ↓crossings of TQ Sprague–Dawley N/A LiCl (127 mg/kg, i.p.), followed 16–18 h later by pilocarpine (30 mg/kg, i.p.) (155)

8 weeks ↑EL and ↓time in TQ Sprague–Dawley and 

Wistar

Male LiCl (127 mg/kg, i.p.), followed 12–24 h later by pilocarpine (10 mg/kg, i.p.) four doses every 30 min (21)

60 days ↑EL and ↓time in TQ Wistar Male Pilocarpine (320 mg/kg, i.p.) (52)

2 months ↑EL at day 2 of probe trial Wistar Male LiCl (127 mg/kg, i.p.), followed 24 h later by pilocarpine (20–40 mg/kg, i.p.) (156)

61–65 days ↑EL and ↓crossings of TQ Wistar Male LiCl (3 mmol/kg, i.p.), followed 18.5 h later by pilocarpine (35 mg/kg, i.p.) (157)

65 days ↑EL Sprague–Dawley Male LiCl (3 mEq/kg, i.p.) 18 h prior to pilocarpine (60 mg/kg, s.c.) (135)

60–66 days ↑EL and ↓time in TQ over 5 days of 

testing

Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 18 h later by pilocarpine (50 mg/kg, i.p.) (78)

70–90 days ↑EL Wistar Male LiCl (127 mg/kg, i.p.), followed 25 h later by pilocarpine (10 mg/kg, i.p.) four doses every 30 min (55)

60–66 and 

90–96 days

↑EL and ↓time in TQ in 2 probe trials Wistar Male Pilocarpine (350 mg/kg, i.p.) (158)

30, 50, and 

100 days

↑distance traveled and ↓time in TQ Wistar Male Pilocarpine (340 mg/kg, i.p.) (159)

81 days ↑EL and ↓time in TQ Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 20.5 h later by pilocarpine (25 mg/kg, i.p.) (95)

3 months ↑EL and ↓time in TQ, over 4 days of 

testing

Sprague–Dawley Male LiCl (127 mg/kg, i.p.), followed 24.5 h later by pilocarpine (40 mg/kg, i.p.) (160)

3 months ↑EL, ↑distance traveled and ↓time in 

TQ

Wistar Male Pilocarpine (320 mg/kg, i.p.) (96)

3 months ↑EL and ↑number of failures Wistar Male LiCl (3 mmol/kg, i.p.), followed 24 h later by pilocarpine (40 mg/kg, i.p.) (161)

3 months ↑EL Wistar Male LiCl (3 mEq/kg, i.p.), followed 24 h later by pilocarpine (30 mg/kg, s.c.) (50)

104–110 days ↑EL and ↓crossings of TQ over 5 days 

of testing

Wistar Male Pilocarpine (280 mg/kg, i.p.) (79)

4 months ↓time in TQ Wistar Male LiCl (127 mg/kg, i.p.), followed 24 h later by pilocarpine (25 mg/kg, i.p.) (162)

4 months ↑EL, ↑distance traveled and ↓time in 

TQ

Wistar Male Pilocarpine (320 mg/kg, i.p.) (163)

The main finding refers to the principal finding regard to the control group observed in pilocarpine or Li-pilocarpine treated animals and is reported in terms of escape latency (EL) and time of crossings of target quadrant (TQ). Drug dose and route of administration 
(whenever available) refer to pilocarpine or Li-pilocarpine combination (LiCl—lithium chloride; pilocarpine—pilocarpine hydrochloride) used to induce status epilepticus (SE) in a given study. N/A—information not available.

TABLE 2 (Continued)
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7 Other memory tests

7.1 The lateralized reaction time task

The lateralized reaction time task (LRTT) is mentioned because it 
is sometimes used to evaluate attention in pilocarpine treated animals. 
LRTT measures the basic cognitive processes of perception and 
response execution. It requires that animals make one specific 
response (e.g., a spacebar press) whenever a stimulus (e.g., a shape) 
appears. A laterally driven stimulus is delivered unexpectedly which 
permits the investigator to differentiate between stimulus-driven and 
controlled attention (179). LRTT can be  digitized, such that the 
stimuli appear on the screen. Typically, there is only one type of 
stimulus, and it repeats throughout the experiment. The main utilized 
LRTT outcome measure is the speed of responding. This test was 
employed in epileptic rats by Pineda et al. (180) at about 2.5 months 
after SE, documenting a reduced attention in pilocarpine treated  
animals.

7.2 Social interaction tests

Social recognition memory tests and their variants resident 
intruder tests reflect the ability of social animals to recognize and 
remember individuals of the same species, preferring social 
interaction over no social interaction and social novelty (i.e., they 
prefer interaction with a novel animal over a familiar animal) 
(181). The most popular tests of this kind are the two-trial social 
recognition test, the habituation-dishabituation paradigm test and 
discrimination paradigm test, all evaluating the time of interaction 
(i.e., olfactory investigation) of familiar and non-familiar subject. 
Rats with unimpaired social recognition memory spend less time 
investigating familiar individuals, compared to novel individual 
(182). For example, in the two-trial social recognition test the 
tested animal at first encounters another animal, then, in the 
following trial, encounters either the same animal (familiar) or 
another unknown animal (non-familiar); the measured parameter 
is reduction in time of investigation of the familiar animal, which 
reflects the establishment of social recognition memory (183). The 
habituation-dishabituation paradigm instead consists of five trials, 
in which the familiar animal is presented to the tested one for the 
first four trials and the non-familiar animal is introduced in the 
last trial. Similar to the two-trial social recognition test, a reduction 
in investigation time with the familiar animal may be observed 
over the trials, while investigation time increases with the 
non-familiar rat (184). With the discrimination paradigm the 
interaction occurs between the tested animal and the familiar and 
non-familiar ones simultaneously; again, the interaction time with 
each reflects social memory (185).

A few studies have revealed compromised social recognition 
memory in epileptic animals. A prolonged interaction time with the 
familiar animal was observed in epileptic rats at 8 and 56 days post SE 
(84). Another study reported impaired social memory in epileptic rats 
based on reduced time spent sniffing and grooming the non-familiar 
animal in comparison with non-epileptic animal (49). Likewise, a 
reduced motivation for social contact in terms of reduced interaction 
with non-familiar rats was reported in epileptic animals at 9 weeks 
post SE (22).

7.3 The step-down avoidance task

The Step-Down Avoidance Task (also called light/dark box test) is 
used for measuring aversive learning and memory, whose presence is 
observed by behavioral responses following an experience. The test is 
usually run as a one-trial task combining fear conditioning with an 
instrumental response, e.g., the active choice of an animal to avoid 
entering the dark compartment associated with an aversive event 
(186). The aversive stimulus is most frequently a foot-shock. Like in 
social interaction tasks, the step-down avoidance has been rarely 
employed in epileptic animals. However, shorter latency to step into 
the chamber with electric shock delivery has been reported in 
pilocarpine rats in the chronic period, 1 or 2 months after SE (75, 79, 
187, 188), which indicates learning and memory impairment.

8 Limitations and recommendations

The behavioral tests conducted to access cognitive comorbidities 
in the rat pilocarpine model often face limitations inherent to the 
epileptic phenotype (3). The most important of them is the fact that, 
in chronic phase, spontaneous and recurrent seizures occur 
unpredictably, which could be a confounding factor for behavioral 
testing. Seizures occurring shortly before or during the test would 
affect the animal performance and the results. Video monitoring 
before and during testing could allow the exclusion of such cases 
(189). In addition, olfactory deficits (84) and hyperactivity (180) have 
been reported in pilocarpine rats. This could be a bias in tests requiring 
motor or odor intact functions, such as the maze-based tests and 
social interaction tests, respectively. In addition, the animals sex 
should always be reported and took in consideration when designing 
and analyzing results, because some behavioral tests, such as CFC 
(190) or MWM (109), have sex specific outcomes. The fear response 
measured in CFC tests is considerably lower during proestrus, when 
levels of the sex hormones estradiol and progesterone are high (190). 
Similarly, several variables measured routinely in MWM have been 
shown to vary between sexes (e.g., females search slightly faster than 
males during habituation, travel lower distances during learning or 
spend less time than males in the pool’s center over the test days) 
(109). Not only males may be different from females, but also distinct 
effects in the above mentioned behavioral tests may be  found in 
cycling females during different hormonal phases. This is the main 
reason why the vast majority of studies reviewed in this work used 
exclusively males.

Some of these limitations may be overcome by following published 
recommendations or guidelines. General recommendations which 
should be followed in any research work involving animal research are 
described in the ARRIVE guidelines (Animal Research: Reporting of 
In Vivo Experiments) (191). Moreover, the Task Force of the 
International League Against Epilepsy (ILAE) and the American 
Epilepsy Society (AES) recently developed a guidance that includes 
Common Data Elements (CDEs) (192), which describes the different 
types of assessments and highlights the importance of rigorous data 
collection and transparent reporting in epilepsy. Tests are divided into 
7 categories to examine syndrome-level behavioral dysfunctions, 
including learning and memory deficits. Guidelines discuss the 
complexities, limitations, and biases associated with behavioral 
testing, especially when performed on animals with epilepsy (189).
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9 Conclusion

In sum, published data provide clear evidence of memory 
impairment in the pilocarpine model. The combination of results from 
different studies is often difficult because of variability in 
methodological standards, number of animals employed, and outcome 
measures. The use of a more rigorous and reproducible methodology 
following the ILAE-AES recommendations (192) would certainly 
favor a further advancement of the field. Nonetheless, a strong 
evidence emerges that cognitive impairment begins to appear in the 
pilocarpine model during the latency phase (i.e., before occurrence of 
SRSs), becoming intense and affecting different types of memory in 
the chronic phase, thus mimicking the cognitive co-morbidity profile 
observed in human temporal lobe epilepsy (193, 194). Altogether, this 
review supports the value of the rat pilocarpine model not only for 
modeling spontaneous seizures but also temporal lobe epilepsy-
associated cognitive comorbidities.
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