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Focal slowing on the EEG is often associated with structural pathology of the 
brain. Despite the clinical significance of focal slowing, the actual electrochemical 
mechanisms underlying this EEG phenomenon are still poorly understood. This 
paper briefly reviews the role of lactate in the pathogenesis of brain disorders 
that are primarily related to focal EEG slowing. An attempt is made to trace the 
hypothetical link between this EEG pattern and focal cerebral tissue lactacidosis.

KEYWORDS

lactate, acidosis, focal slowing, electroencephalogram, structural lesions, epilepsy

Introduction

Focal slowing (0.5–7.9 Hz) is the electroencephalographic (EEG) pattern associated with 
focal structural or, to a lesser extent, with functional brain abnormalities. There is no specific 
etiology for this pattern. The most frequent etiological factors include: cerebral ischemia, 
cortical malformation, nonspecific gliosis (including reactive gliosis after stroke, and 
traumatic brain injury), tumors, hippocampal sclerosis, migraine, hypoglicemia, postictal 
state, and cortical malformations (1, 2). Focal slowing is one of the most common clinically 
significant EEG abnormalities. In particular, focal EEG slowing could roughly reflect the 
tumor aggressiveness (malignancy). For instance, glioblastoma, or metastatic brain tumors, 
are associated with focal slowing occurring in the delta (1–4 Hz) frequency band. In contrast, 
benign and slow-growing neoplasms such as meningiomas typically exhibit focal slowing in 
the theta (4–7 Hz) band (1). In spite of the obvious significance of this pattern, to the best of 
our knowledge, no studies or reviews have been conducted and published on the 
electrochemical aspects of focal EEG slowing.

The wide diversity of etiologies of this EEG pattern suggests that there should be  a 
mechanism that is common across all brain disorders. One of the best candidates for this role 
is lactic acidosis, as it is a universal pathophysiological phenomenon.

This paper represents a set of biological evidence in favor of the speculative view that 
focal slowing in the EEG reflects local cerebral tissue lactic acidosis. The following discussion 
will concentrate on the most frequent pathological conditions associated with focal 
EEG slowing.
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Lactic acidosis in epileptic brain

Focal and diffuse slowing is the most typical and common postictal 
visual EEG abnormalities. EEG slowing is usually observed immediately 
after seizures and/or epileptiform discharges. Meanwhile, the most 
prominent feature of postictal brain metabolism is the elevated brain 
lactate. Strictly speaking, increased slow-wave activity as well as focal 
accumulation of lactate can be registered during both ictal and especially 
postictal periods (3), as confirmed by the use of intracranial EEG. Lactate 
accumulation in the epileptic brain exhibits a clear and consistent 
association with extracellular glutamate, which significantly elevates 
during the ictal and interictal periods (4). At least some of this glutamate 
is captured by astrocytes via transporters (GLT-1); this in turn triggers 
glycolysis and increased production of lactate (5).

In this regard, it is important to mention that lactate tissue 
acidosis is widely recognized as a factor in terminating seizures and 
epileptic activity. Thus, it can be  assumed that lactate begins to 
accumulate during the seizure, and subsequent elevation of the lactate 
level contributes to the seizure termination.

Increased levels of lactate together with ammonia and creatine kinase 
are also revealed in the serum after seizures (6). And this has provided 
some grounds to suggest that an increased lactate level is a consequence 
of excessive muscle activity during a seizure. But a strong counterargument 
is a demonstration of increased brain lactate in paralyzed animals (3). 
Furthermore, one can assume that increased ammonia is lactacidosis-
promoting factor, since fast ammonia accumulation in neural tissue may 
induce glycolysis and thus additional excessive lactate formation.

Lactic acidosis in structural brain 
abnormalities

Among the major categories of diseases characterized by focal 
structural changes in the brain are cerebral ischemia (including stroke), 
cortical malformations, and disorders typically associated with gliosis.

During focal cerebral ischemia, brain lactate concentration 
increases. And this is explained by the fact that ischemia activates 
anaerobic glycolysis, the end product of which is lactic acid. Lactic acid 
[CH3CH(OH)COOH] at physiological pH, is almost completely 
dissociated to lactate [CH3CH(OH)COO−] and H+. Accumulation of 
lactate causes alterations in the dissociation of water and weak acids and 
leads to metabolic (lactic) acidosis (7). Apparently, the elevation of 
tissue lactate concentration depends on the severity and time from the 
onset of the brain hypoxia and energy depletion (8). It is known that the 
early effect of hypoxia is an initial hyperpolarization, which is provided 
by potassium (K+) channels: ATP-sensitive channels (KATP) and, to a 
less extent, calcium-activated K+ channels. Activation of KATP channels 
in the brain during hypoxia and ischemia by lactate and as a result of an 
alteration of the submembrane ATP/ADP ratio leads to an increase in 
K+ efflux. At an acidic pH, an additional factor influencing KATP could 
be the protonation of the C-terminal histidine residue (H216), which 
affects the polyamine-binding site. These conformational changes of 
KATP-channels prevent their polyamine block, promoting thus K+ 
efflux (9). On the one hand, hypoxic lactacidosic can lead to the 
activation of Na+/H+ exchanger 1 (NHE1) due to a reduction in 
intracellular pH, which results in sodium (Na+) influx (10). On another 
hand, there is evidence to suggest that the activity of NHE1 in excitable 
tissues highly depends on the metabolic status of the cells. It has been 
demonstrated that even mild hypoxia inhibits NHE1 activity (11). 

Moreover, after an initial period of metabolic inhibition, NHE1 can 
undergo post-translational modifications, which provide long-lasting 
reduction in NHE1 activity that has persisted after re-oxygenation (11). 
Thus, acute severe or prolonged depletion of cellular ATP can restrict 
Na+ influx for a long period. Additionally, ATP depletion due to oxygen 
glucose deprivation as well as local tissue acidosis have been recognized 
to increase chloride (Cl−) concentration in neurons (12, 13). Taking all 
mentioned above into account and bearing in mind the classical 
Goldman–Hodgkin–Katz voltage equation, it could be concluded that 
the value of neuronal membrane potential (Em) during lactacidosis 
becomes more negative, which corresponds to an increase in the 
hyperpolarization phase of the wave and the promotion of slow-wave 
activity as a whole. In the case of reduced volume of hypoxic tissue and 
related lactacidosic these processes manifest as focal slowing in the EEG.

Accumulation of lactic acid and extracellular lactacidosic is a 
hallmark of solid tumor microenvironment that promotes tumor 
growth, invasion, and metastasis. It is known that extracellular lactate in 
cancer directly correlates with tumor malignancy, as mentioned above. 
Increased aerobic glycolysis in tumor cells and augmented lactate 
production as a result, even in the presence of oxygen, is known as the 
Warburg effect. This effect is the main factor that supports tumor 
malignancy and aggressiveness (14). In the light of the above, it is 
tempting to conclude that the level of lactate accumulation and 
acidification in brain tumors influences the frequency of EEG focal 
slowing. One of the mechanisms by which the Warburg effect is realized 
is hydroxycarboxylic acid receptor 1 (HCA1R)-mediated signal 
transduction pathway. Lactate produced by cancer cells can act as a 
signal molecule, activating HCA1R. Receptor activation stimulates 
intracellular signaling pathways that facilitate tumor growth, immune 
evasion, and metastasis (15, 16). It is remarkable that HCA1R is tightly 
involved in the regulation of neuronal activity. It has been proven that 
activation of HCA1R in cortical neurons from human epileptic tissue 
causes a significant reduction in calcium spiking activity in these 
neurons (17). This finding is well complemented by the fact that a 
decrease in calcium spiking activity of pyramidal cortical cells correlates 
with EEG slow-wave activity (18). Downmodulation of neuronal activity 
by HCAR1 appears to be provided by the Gi-dependent intracellular 
adenylyl cyclase—cAMP—protein kinase signaling pathway. Moreover, 
HCAR1 interacts with GABAB receptors, which could supply additive 
neuronal inhibition (19). It is worth noting that this mechanism appears 
to be independent of the levels of ATP produced (20). This can serve as 
an argument that lactic acidosis, rather than hypoxia, is the primary 
factor determining the generation of regional EEG slowing. Finally, one 
study reported that intracellular lactate signaling promotes glutamine 
uptake and metabolism in cancer cells, leading to increased glutamate 
concentrations (21). This could also be one additional mechanism that 
results in hyperpolarization. One can speculate that in the case of neural 
tissue, glutamate released during excessive neuronal activity could act 
with non-NMDA receptors (possible Gluk2) on astrocytes, which 
triggers the release of ATP predominantly via connexin 43 hemichannels 
(Cx43) and activates a P2Y2/KATP cascade in neurons (22, 23).

The role of brain lactate in reactive gliosis (RG) is undisputable. It is 
widely recognized that increasing brain lactate concentration is 
considered a trigger factor for astrogliosis. However, it is not sufficiently 
clear how lactic acidosis is involved in the pathogenesis of chronic gliosis. 
In our view, this issue could be  explained by the impairment of the 
astrocyte-neuronal lactate shuttle (ANLS). According to the ANLS 
hypothesis, glutamate, released from neurons, is taken up by astrocytes 
together with Na+. This in turn leads to the activation of Na+/K+-ATPase 
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ATPase, which initiates glucose uptake in astrocytes. And the consequence 
is that glycolysis is stimulated in astrocytes, leading to an increase in 
lactate concentration. Lactate is released from astrocytes through the 
monocarboxylate transporter MCT4 into the extracellular space and is 
taken up by neurons through MCT2 and converted into pyruvate for ATP 
generation (24). It is known that RG is a prolonged process that includes 
neural tissue remodeling in peri-lesion perimeters. Tissue remodeling is 
known to involve several mechanisms, among them: (1) down-regulation 
of glutamine synthetase, which results in reducing the conversion of 
glutamate to glutamine in astrocytes; (2) increased expression of xCT 
(cystine/glutamate antiporter) (25). This may lead to an increase in 
extracellular glutamate and increase its utilization as a substrate in ANLS, 
which results in lactic acid overproduction.

Ischemic lesions and gliosis are the most typically associated 
pathoanatomic correlates of focal EEG slowing. Surprisingly, in the one 
study devoted to examining the structural substrates of focal EEG 
slowing, cortical malformations (CMs) occupied a leading place (2). 
Since CMs are common causes of epileptic discharges and seizures, one 
can assume that focal slowing has a postictal nature. A good illustration 
of this is the study research of patients with CM using 1H-magnetic 
resonance spectroscopy (1H-MRS) for detecting biochemical 
abnormalities. A study revealed enhanced lactate signal in patients who 
had seizures near the time of 1H-MRS examination (26). Occasionally, 
the enhanced lactate signal persists for a rather long time, that allows 
connecting it with the interictal EEG abnormalities. It has been 
speculated that the elevation of lactate in the brain tissue in CM could 
reflect epileptiform activity even in the absence of clinical seizures (27). 
However, the paradigmatic correlate of any kind of epileptiform 
discharges is a strong depolarization. Therefore, increased brain lactate 
and tissue acidosis cannot be a biochemical correlate of epileptiform 

activity. One of the key proposed mechanisms involved in reducing 
neuronal excitability requires the activation of interneurons by lactate 
through acid-sensing ion channel-1a (ASIC1a) (28). Importantly, 
ASIC1a-mediated pathway is realized only in pathological conditions 
since the lactate concentration required for ASIC1a activation must 
be supraphysiological (29). It should be stressed that the proton sensing 
sites of ASIC1a are located in the extracellular loop; therefore, channel 
activation first of all depends on extracellular acidification. In 
conditions of acidosis, protonation initiates structural rearrangements 
(fast conformational changes) in several extracellular sites of ASIC1a, 
leading to the opening of the channel gate (30). Opening of the ASIC1a 
gate potentiates a large Na+ and Ca2+ influx and depolarization of 
primarily GABAergic neurons (31), resulting in GABA release. 
Released GABA in turn activates γ-aminobutyric acid receptors. 
Neuronal inhibition is classically thought of as increasing the influx of 
Clˉ through γ-aminobutyric acid sub-type A receptors (GABAARs), 
leading to hyperpolarization of the postsynaptic neurons. There is 
some evidence of modulation of extrasynaptic GABARs by H+, 
probably via ASIC1 (32). Synaptic GABAARs, including γ2 subunits, 
are benzodiazepine-sensitive, whereas extrasynaptic GABAARs, 
including δ subunits, which are sensitive to gaboxadol. It is known 
from pharmaco-electroencephalography studies that the activation of 
GABAARs by benzodiazepines enhances EEG beta power, and using 
gaboxadol causes elevated delta power (33). In addition, H+ from the 
extracellular space can activate a specific type of anion channel named 
PAC (proton-activated outwardly rectifying anion channel), which also 
mediates the influx of Cl− (34).

It should be highlighted that the mechanisms described above 
may act to some extent in each of the discussed disorders (summarized 
in Figure 1).

FIGURE 1

Schematic representation of possible mechanisms by which lactate can lead to hyperpolarization, decreasing neuronal activity, and the generation of 
EEG slowing as a consequence.
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For instance, HCA1R is expressed not only in neoplastic tissue 
and ASIC1a is also involved in the development of different kinds of 
brain tumors (35).

It could be concluded that the EEG slowing indeed reflects the 
termination of epileptic discharges. And the mechanisms underlying 
this phenomenon, at least partially, are lactate-dependent and 
concentrated in extracellular space. And the study was performed by 
Skwarzynska et al. (36) that showed the increased extracellular lactate 
concentration can slow neuronal firing by acting on HCA1R, thereby 
causing seizure termination, provides a forceful illustration of 
this point.

Conclusion

The data summarized in this paper suggest that regional tissue 
lactacidosis may be a critical factor involved in the pathogenesis of 
focal slowing in the EEG. The mechanisms by which high 
extracellular lactate can slow neuronal activity are not simply 
pH-dependent but suggest its role as a signal molecule. The most 
important mechanisms involved in the generation of focal slowing 
are probably the ASIC1a-and HCA1R-lactate signaling pathways. It 
is also highly possible that the emergence of focal EEG slowing 
depends on the concentration values of lactate and its persistence in 
the brain tissue. We  believe that focal EEG slowing could 
be  hypothetically considered a “universal” indirect marker of 
regional brain tissue acidosis.
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