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Background: Long COVID, also known as Post-COVID-19 syndrome, is 
characterized by multisystemic symptoms that persists for weeks to years 
beyond acute infection. It disproportionately affects women and those with pre-
existing anxiety/depression, conditions more prevalent in females. The vagus 
nerve, with its extensive innervation and regulation of critical bodily functions, 
has become a focal point for therapeutic interventions. Transcutaneous vagus 
nerve stimulation (t-VNS) has emerged as a promising non-invasive treatment 
for COVID-19 conditions.

Methods: This pilot study assessed the efficacy of t-VNS in 24 female Long 
COVID patients (45.8  ±  11.7  years old; 20.2  ±  7.1  months since infection), who 
underwent a 10-day  t-VNS intervention at home (30  min/session, twice a day). 
Cognition was considered the primary outcome, with anxiety, depression, 
sleep, fatigue, and smell as secondary outcomes. Outcomes were measured at 
baseline, post-intervention, and 1-month follow-up.

Results: Significant improvements were observed in various cognitive functions, 
anxiety, depression, and sleep at post-intervention, with benefits remaining or 
progressing at 1-month follow-up. Improvements in fatigue were delayed, 
reaching statistical significance at 1-month follow-up compared to baseline. 
No significant changes were noted in olfactory performance.

Conclusion: This pilot study provides preliminary evidence supporting the 
potential of t-VNS as a therapeutic intervention for female Long COVID 
patients. The encouraging results justify further rigorous investigation through 
larger, randomized controlled trials to confirm the efficacy of t-VNS, assess 
its generalizability to male cohorts, and explore biological markers to inform 
personalized treatment approaches. Our findings support the allocation of 
resources to conduct such trials and advance the understanding of t-VNS as a 
potential treatment for Long COVID.
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1 Introduction

Post-COVID-19 syndrome, commonly known as Long COVID, 
is characterized by a constellation of symptoms that persist for weeks 
to years after initial COVID-19 infection. According to the World 
Health Organization, Long COVID is defined by the presence of new 
or continuing symptoms, usually 3 months from acute infection, 
lasting at least 2 months without an alternative diagnosis (1). Estimates 
of Long COVID prevalence vary widely, partly due to the variability 
in definition and samples studied. Prevalence estimates range from 
7.5% to 41% in non-hospitalized adults and 37.6% in hospitalized 
adults (2). With its recent emergence, insights into Long COVID’s 
underlying mechanisms are limited, hindering the advancement of 
targeted treatments.

While the prevalence of COVID infection is similar for both 
sexes, accumulating evidence suggests that females are 
disproportionately affected by Long COVID (3) and are more likely 
than males to suffer from hyposmia/anosmia and neurological 
symptoms (4–7). Pre-existing conditions such as anxiety or 
depression, which are more prevalent in women, further heighten the 
risk of developing Long COVID (7). Although the exact mechanisms 
of Long COVID remain unclear, these observations have led to the 
hypothesis that Long COVID could be, in part, related to 
autoimmunity and persistent inflammation (8), which might explain 
the higher incidence of this syndrome in women, as immune response 
for both genetic and hormonal factors is stronger in women (9, 10).

Cognitive impairment (e.g., attention or memory issues), 
commonly reported as “brain fog,” is highly prevalent in Long 
COVID, affecting approximately 80% of long haulers (11). 
Neuroimaging studies have detected damages in various limbic and 
associative brain regions following COVID-19 infection, likely 
indicative of neuroinflammation and possible neurodegeneration (12, 
13). Notably, chronic loss of smell correlates with cognitive decline 
and is an early predictor of Alzheimer’s disease (14). Female sex, as 
well as early presence of olfactory and neurological symptoms, are 
well-known risk factors for dementia and Alzheimer’s disease (15, 
16). Thus, the intersection of female sex and post-COVID-19 could 
potentially exacerbate this vulnerability. Prompt and effective 
management of Long COVID symptoms, with an emphasis on 
cognitive deficits, is essential to potentially reduce the risk of long-
term neurological sequelae.

The vagus nerve, a key component of the parasympathetic nervous 
system, plays a vital role in regulating various bodily functions, 
including heart rate, respiration, digestion, mood, immune response, 
and more (17). Vagus nerve stimulation (VNS), or vagal 
neuromodulation, has been utilized as a therapeutic intervention for 
a wide range of neurological and psychiatric disorders, expanding the 
scope of VNS beyond its initial indications for epilepsy and treatment-
resistant depression (18–22). In the context of COVID-19, 
non-invasive VNS, such as transcutaneous auricular vagus nerve 
stimulation (t-VNS), has emerged as a potential adjunct therapy, with 
studies exploring its anti-inflammatory effects and its ability to reduce 
the burden of COVID-19 (23, 24). Considering the immense overlap 
between vagal functions and post-COVID-19 symptoms, the use of 
t-VNS could potentially mitigate the multi-organ dysfunction seen in 
long haulers. Indeed, a recent pilot study demonstrated that t-VNS 
could reverse many of the symptoms of Long COVID (25); however, 
the cognitive impacts were not thoroughly evaluated. Moreover, 

emerging research has illuminated sex-dependent autonomic 
responses to t-VNS (26), suggesting that females may experience 
different therapeutic effects compared to their male counterparts. This 
differential response is critical to consider, particularly in the context 
of Long COVID, where women are disproportionately affected. Such 
insights underscore the necessity of tailoring t-VNS protocols to 
optimize therapeutic outcomes across sexes. Due to limited resources 
and the pilot nature of this study, we focused on an exclusively female 
cohort to control for heterogeneity and maintain statistical power.

Therefore, the current prospective pilot study aims to investigate 
the efficacy of t-VNS in treating female patients with Long COVID, 
with an emphasis on cognitive impairments—a significant and 
debilitating aspect of post-COVID-19 symptomology. Secondary 
outcomes, including anxiety, depression, sleep, fatigue, and olfactory 
function, will also be  assessed. By focusing on this particularly 
vulnerable group, our research seeks to not only alleviate the 
immediate burden of Long COVID but also to preemptively address 
the risk of subsequent neurodegenerative sequelae. Given the pressing 
need for effective interventions amidst Long COVID’s mounting 
public health burden, research focused on vulnerable patients who 
stand to benefit most is of critical importance.

2 Materials and methods

2.1 Participants

This study included 24 female patients (45.8 ± 11.7 years of age) 
with persistent Long COVID symptoms, with an average length of 
20.2 ± 7.1 months since COVID-19 infection. The inclusion criteria 
for participants were: female sex, 18 years or older, and experiencing 
persistent (more than 3 months after infection) cognitive impairment 
(“brain fog”), such as attention or memory deficits. Exclusion criteria 
included contraindications for vagal neuromodulation or magnetic 
resonance imaging, pregnancy, Long COVID without cognitive 
impairment, and a history of neurological conditions. Among the 
participants, 16.7% had pre-existing asthma, and 37.5% had 
pre-existing anxiety or depression. These conditions have been 
identified as risk factors for developing Long COVID (3, 27). 
Medication information is included in Supplementary Figure S1 and 
Supplementary Table S1. Data were collected between March 2022 
and January 2023. The patient enrollment process is delineated in the 
CONSORT flow chart provided as Figure 1. This study was approved 
by the Institutional Review Board at Casa Colina Hospital and Centers 
for Healthcare. All participants provided written informed consent 
prior to participation (Registered on clinicaltrials.gov 
as NCT05225220).

2.2 Study procedure

Participants underwent 10 consecutive days of auricular vagal 
neuromodulation therapy (AVNT) at the comfort of their home, twice 
a day, once in the morning and once in the evening, for 30 min per 
session (60 min/day). Treatment was delivered with the Parasym 
AVNT system (Parasym Health, London, United Kingdom), which 
was designed specifically for use in this patient population. The 
electrode was applied to the left tragus of the ear, stimulating the 
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auricular branch of the vagus nerve, with micro-pulses of current a 
proprietary waveform with a pulse width of 250 μs and a pulse 
frequency of 25 Hz. The current intensity used was personalized by the 
participants based on their own sensitivity threshold, setting the 
correspondent level on an interval scale at each treatment session by 
slowly increasing the current intensity until a constant tingling 
sensation was felt. The mean output current intensity across treatments 
was 13.64 mA.

2.3 Outcome measures

Behavioral assessments were carried out at three timepoints: 
pre-intervention, post-intervention, and 1-month follow-up. Six 
participants were from out-of-state and had their 1-month follow-up 
assessments completed remotely.

2.3.1 Primary outcome measures
We used the NIH Cognitive toolbox to assess fluid cognition 

and included the following assessments: attention (Flanker 
Inhibitory Control and Attention Test [Flanker]), executive 
function (Dimensional Change Card Sort Test [DCCS]), episodic 
memory (Picture Sequencing Memory Test [PSM]), working 
memory (List Sorting Working Memory [LSWM]), and processing 
speed (Pattern Comparison Processing Speed [PCPS]). For the 
1-month follow-up cognitive assessments, only LSWM and PSM 
were able to be administered remotely.

2.3.2 Secondary outcome measures
We additionally explored secondary outcomes related to anxiety 

(BURNS Anxiety Inventory [range 0–56]), depression (Becks 
Depression Inventory-II [range 0–63]), fatigue (Fatigue Severity Scale 
[range 9–63]), sleep (PROMIS Sleep Disturbance—Short Form [range 
8–40]), and smell (Sniffin’ Sticks Test—12 items [range 0–12]).

2.4 Data analysis

The data were analyzed in JASP to first determine normality, 
followed by parametric or nonparametric tests as appropriate. 
Parametric repeated-measures ANOVA (3 timepoints) was carried out 
for anxiety, depression, and fatigue scores, whereas non-parametric 
Friedman’s test was used for cognition, sleep, and smell. Upon finding 
significance, we ran parametric (T-test) or nonparametric (Wilcoxon’s 
rank sum) pairwise comparisons with Bonferroni correction between 
the three timepoints on all the outcome measures. Cohen’s d was used 
to calculate the effect size for parametric tests and rank biserial 
correlation (r) for nonparametric tests. For analyzing changes in 
cognitive scores, the uncorrected standard score was used. Due to 
limitations in remote testing for six participants, only 18 participants 
completed all cognitive and smell assessments at follow-up.

In our dataset, a few participants submitted incomplete 
questionnaire responses. To address the resultant missing data, 
we employed data imputation using the k-nearest neighbors (kNN) 
function in RStudio (28). A k-value of 5 was used to conduct the 

FIGURE 1

CONSORT flow diagram for a single-group pilot study.
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imputations (29). This procedure led to the imputation of 9 values 
across various domains: anxiety (3), sleep (3), depression (2), and 
fatigue (1). To assess the k-value used for our kNN imputation, 
we evaluated the accuracy using the Normalized Root Mean Square 
Error (NRMSE) by comparing imputed values against a subset of the 
dataset where actual values were known but temporarily treated as 
missing. Additionally, we conducted an analysis excluding participants 
with missing data, and the results were consistent with the results 
obtained using imputed data.

3 Results

Participants were tested at three time points: pre-intervention 
(baseline), post-intervention, and 1-month follow-up after 10 days of 
vagal neuromodulation. The primary outcome was cognition 
(attention, executive function, working memory, episodic memory, 
and processing speed). Secondary outcomes included anxiety, 
depression, sleep disturbance, and fatigue. Bonferroni-adjusted 
p-values are reported for post hoc tests.

3.1 Baseline clinical symptoms

Prevalence of Long COVID symptoms at baseline are shown in 
Figure 2. The participants exhibited diverse symptoms across multiple 
systems. Following brain fog/cognitive impairment, which was an 
enrollment criterion, fatigue was the most common symptom, 
experienced by 79% of participants. Depression or anxiety and 
changes in smell or taste trailed behind (63%), then followed by 
headaches and sleep issues (58%). Please refer to Figure 2 for the 
extensive list of symptoms.

3.2 Primary outcome

Due to the absence of complete follow-up cognition data for six 
participants, Friedman’s test was run with n = 18 and revealed a 
main effect of time (p = 0.001) for fluid cognition (composite 
cognitive scores). Post hoc comparisons using Wilcoxon’s test with 
Bonferroni correction showed significant improvements from 
baseline to post-intervention (p = 0.003, r = 0.9) with further 
improvements at 1-month follow-up (pre vs. follow-up: p < 0.001, 
r = 0.98; post vs. follow-up: p = 0.003, r = 0.93) in composite fluid 
cognition. Given cognition was our primary outcome of interest, 
we further examined the cognitive subdomains. Significant gains 
were detected in Flanker Inhibitory Control and Attention from to 
pre to post (p = 0.009, r = 0.7) and from pre to follow-up (p < 0.001, 
r = 0.95). Moreover, there were significant increases from pre to post 
(p = 0.006, r = 0.86) and from pre to follow-up (p = 0.002, r = 0.94) in 
Pattern Comparison Processing Speed. Since Pattern Sequencing 
Memory (PSM) and List Sorting Working Memory (LSWM) 
contained the full dataset (n = 24) across all three timepoints and 
were normally distributed, they were analyzed with parametric 
tests. PSM scores significantly increased at post-intervention 
(p = 0.004, d = 0.55) and follow-up (p < 0.001, d = 0.82) when 
compared to baseline. However, LSWM only demonstrated 
improvements from baseline to follow-up (p = 0.029, d = 0.55). For 
Dimensional Change Card Sort test scores, a trending significance 
was found between pre-intervention and follow-up but did not 
survive multiple comparisons correction (p = 0.07). We additionally 
analyzed pre and post cognition scores available from all 24 patients 
and found similar results as the 18 patients but with slightly higher 
significance. For consistency and ease of visualization, the cognition 
graphs in Figure 3 reflect data from 18 patients, with the exception 
of PSM and LSWM (n = 24).

FIGURE 2

Prevalence of Long COVID symptoms at baseline. Brain fog (cognitive impairment) was an inclusion criterion; thus it is reported in all participants.
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FIGURE 3

T-VNS intervention outcomes. This figure illustrates changes in cognition, anxiety, depression, fatigue, and sleep across three timepoints: pre-
intervention, post-intervention, and 1-month follow-up. Boxplots are used for primarily nonparametric data, whereas column graphs depict parametric 
data. Error bars reflect standard error. *p  <  0.05, **p  <  0.01, ***p  <  0.001.

https://doi.org/10.3389/fneur.2024.1393371
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zheng et al. 10.3389/fneur.2024.1393371

Frontiers in Neurology 06 frontiersin.org

3.3 Secondary outcomes

Results from 24 participants revealed a main effect of time for 
anxiety [F(2, 46) = 14.46, p < 0.001], depression [F(2, 46) = 7.05, 
p = 0.002], sleep (p = 0.02), and fatigue [F(1.43, 32.86) = 4.13, p = 0.037]. 
Post hoc testing using Bonferroni correction revealed significant 
improvements from baseline to post-intervention and 1-month 
follow-up for anxiety (pre vs. post: p = 0.001, d = 0.619; pre vs. 
follow-up: p < 0.001, d = 0.803), depression (pre vs. post: p = 0.025, 
d = 0.351; pre vs. follow-up: p = 0.009, d = 0.443), and sleep (pre vs. 
post: p = 0.036, r = 0.6; pre vs. follow-up: p = 0.021, r = 0.66). Fatigue 
improved from baseline to 1 month follow-up only (p = 0.005, 
d = 0.335). No significant changes in smell were detected.

4 Discussion

This pilot study provides preliminary evidence that transcutaneous 
vagus nerve stimulation may offer a promising non-invasive approach 
to managing multiple symptoms in female patients with post-
COVID-19 condition (Long COVID). We  observed significant 
improvements across cognitive performance, mood (anxiety and 
depression), sleep, and fatigue following 10 days of t-VNS. Although 
pre-post changes in fatigue did not meet statistical significance, fatigue 
continued to decrease at 1-month follow-up, eventually reaching 
significance. Similarly, all outcomes except smell exhibited sustained 
gradual improvements even after cessation of treatment. Limited 
research has examined the retention of benefits from non-invasive 
VNS; thus, our findings provide initial evidence of potential long-term 
benefits warranting further controlled investigation. However, t-VNS 
did not lead to significant changes in olfactory performance.

The vagus nerve is a mixed nerve with approximately 80% afferent 
(sensory) and 20% efferent axonal projections. Stimulation of the 
auricular branch is thought to activate these afferent pathways, which 
then signal to the nucleus of the solitary tract in the brainstem to 
project to other central structures, leading to a cascade of 
neurophysiological changes that may potentially produce therapeutic 
effects (21). While the mechanism of action for the therapeutic 
benefits of VNS is still under investigation, transcutaneous VNS has 
been shown to affect the same neural pathway as invasive VNS (30). 
Potential mechanisms underlying VNS efficacy could include 
attenuation of systemic inflammation (17, 18, 24), an increase in 
cerebral blood flow (31, 32), normalization of autonomic function 
(33), and modulation of neurotransmitters (34, 35). Additionally, 
vagal neuromodulation also influences the hypothalamic–pituitary–
adrenal (HPA) axis, which controls the body’s response to stress and 
regulates many processes, including mood and energy levels (17). 
Notably, conditions such as depression and anxiety, which can 
exacerbate inflammatory states leading to more fatigue, may 
be ameliorated through these pathways (36).

Cognitive enhancements with moderate to large effect sizes 
spanned multiple domains including attention, processing speed, 
episodic memory, working memory, and overall fluid cognition. 
Previous research has shown improvements in various aspects of 
cognition following non-invasive VNS in healthy adults, including 
cognitive flexibility (37), action control (38), post-error slowing (39), 
and different types of memory (40, 41). Furthermore, t-VNS mediated 
cognitive enhancements have also been reported in patients with 

neurological and neuropsychiatric disorders (42–45). Additionally, 
we observed clinically meaningful reductions in symptoms of anxiety 
and depression. Prior studies corroborate the antidepressant and 
anxiolytic effects of t-VNS (22, 46–48). Furthermore, t-VNS also 
alleviated sleep disturbances and fatigue severity, consistent with 
previous reports in insomnia patients (35, 49).

The current findings extend the potential multifaceted benefits of 
VNS to individuals with Long COVID. The improvements in our 
study are also partially supported by existing COVID-19 studies. 
Non-invasive vagus nerve stimulation has demonstrated success in 
attenuating symptoms in acute and chronic COVID-19 conditions. 
Using a similar t-VNS protocol with the Parasym device, Verbanck 
et  al. (25) also reported improvements in depression, fatigue, 
cognition, and sleep from a pilot study of 20 Long COVID patients. 
However, cognition and sleep scores were not evaluated using 
validated scales and were grouped together as part of a composite 
personal score along with other symptoms, precluding the delineation 
of individual symptom attenuations. Our research builds upon these 
initial findings, offering a granular analysis with validated scales that 
distinctly evaluates cognitive and sleep scores. Moreover, Badran et al. 
(50) investigated the efficacy of t-VNS in 13 long-haulers using a 
double-blind randomized controlled trial (RCT). Though they did not 
find significant quantitative differences (underpowered), they 
reported a qualitative trend of t-VNS improving more than sham in 
mental fatigue. Qualitative differences in memory and attention have 
also been reported in acute, hospitalized COVID-19 patients (n = 21), 
when comparing t-VNS with sham (24). The lack of significant 
quantitative differences observed in these RCT studies may 
be attributable to several factors, including the heterogeneous nature 
of the patient population, the limited statistical power arising from 
small sample sizes, and the potential sex differences in treatment 
response. By focusing on an exclusively female cohort, our study aims 
to control for heterogeneity and provide detailed insights into the 
therapeutic responses of female long haulers to t-VNS. While our 
research cannot directly compare sex-dependent responses due to the 
absence of a male cohort, the therapeutic effects of t-VNS observed in 
women—who are disproportionately affected by Long COVID—may 
also extend to male patients. This targeted approach lays the 
groundwork for future comparative studies to explore potential sex 
differences in treatment responses.

As an initial pilot investigation, the lack of a control group limits 
definitive conclusions regarding the efficacy of t-VNS for Long 
COVID symptom management. However, the moderate to large effect 
sizes observed make significant placebo effects less likely. Additionally, 
robust randomized controlled trials of VNS have demonstrated 
significant benefits in various neurological and psychiatric conditions 
(51–53), which implies that the observed benefits in our study are less 
likely to be solely attributed to placebo effects. Though spontaneous 
recovery cannot be excluded given the lack of a control group, the 
chronicity of symptoms at enrollment (average 20.2 months post-
infection) renders spontaneous recovery in a short 3-week period less 
likely. Moving forward, large, double blind, randomized, sham-
controlled trials with extended follow-up should further evaluate 
t-VNS efficacy. Our promising pilot results provide preliminary 
evidence to justify additional rigorous evaluation and larger 
investments for such trials.

In conclusion, this pilot study suggests that transcutaneous vagal 
nerve stimulation may be  a potential therapeutic approach for 

https://doi.org/10.3389/fneur.2024.1393371
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zheng et al. 10.3389/fneur.2024.1393371

Frontiers in Neurology 07 frontiersin.org

ameliorating a spectrum of persistent symptoms in females with Long 
COVID. Notably, we observed significant changes in cognition, mood, 
sleep, and fatigue, with potential long-term retention of benefits. 
However, due to the lack of a control group, we cannot exclude the 
possibility of other factors contributing to the observed improvements. 
To substantiate the efficacy of t-VNS and to address the limitations of 
our pilot study, subsequent research should include larger, double-
blind, randomized, sham-controlled trials with extended follow-up 
periods. While our study did not encompass male participants, the 
robust responses in our female cohort hint at the potential universality 
of t-VNS benefits, laying the groundwork for future research to 
explore and validate these effects across sexes. Future investigations 
delving into the biological underpinnings of t-VNS’s therapeutic 
action can help pave the way for precision medicine approaches in 
Long COVID management.
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