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Objectives: The diagnosis of intracranial atherosclerotic stenosis (ICAS) is 
of great significance for the prevention of stroke. Deep learning (DL)-based 
artificial intelligence techniques may aid in the diagnosis. The study aimed to 
identify ICAS in the middle cerebral artery (MCA) based on a modified DL model.

Methods: This retrospective study included two datasets. Dataset1 consisted of 
3,068 transcranial Doppler (TCD) images of the MCA from 1,729 patients, which 
were assessed as normal or stenosis by three physicians with varying levels of 
experience, in conjunction with other medical imaging data. The data were used 
to improve and train the VGG16 models. Dataset2 consisted of TCD images of 
90 people who underwent physical examination, which were used to verify the 
robustness of the model and compare the consistency between the model and 
human physicians.

Results: The accuracy, precision, specificity, sensitivity, and area under curve (AUC) 
of the best model VGG16  +  Squeeze-and-Excitation (SE)  +  skip connection (SC) on 
dataset1 reached 85.67  ±  0.43(%),87.23  ±  1.17(%),87.73  ±  1.47(%),83.60  ±  1.60(%), 
and 0.857  ±  0.004, while those of dataset2 were 93.70  ±  2.80(%),62.65  ± 
11.27(%),93.00  ±  3.11(%),100.00  ±  0.00(%), and 0.965  ±  0.016. The kappa 
coefficient showed that it reached the recognition level of senior doctors.

Conclusion: The improved DL model has a good diagnostic effect for MCV 
stenosis in TCD images and is expected to help in ICAS screening.
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1 Introduction

Intracranial atherosclerotic stenosis (ICAS) is one of the important risk factors for stroke. 
In recent years, a growing number of studies have shown that the middle cerebral artery 
(MCA) is the most susceptible intracranial artery to stenosis, which significantly increases the 
risk of transient ischemic attacks (TIAs) and stroke recurrence (1). Asymptomatic ICAS is 
increasingly recognized as a risk factor for silent cerebral infarction and dementia, and ICAS 
leads to a greater risk with age, thus greatly increasing the medical burden of cerebral infarction 
caused by ICAS (2).

Therefore, it is very important to identify ICAS. Clinically, doctors use different detection 
methods to determine whether a patient has MCA stenosis, including transcranial Doppler 
(TCD), magnetic resonance imaging (MRI), computed tomography (CT), and digital 
subtraction angiography (DSA). TCD is a relatively simple, non-invasive, and cost-effective 
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method for the detection of ICAS. Compared with DSA, CTA, and 
MRA, TCD can provide examination results quickly within minutes, 
providing point-of-care examination for people who cannot tolerate 
traditional neuroimaging due to its portability (3). In addition, MRA 
remains expensive and impractical as a cerebrovascular screening 
method in primary hospitals and some rural areas of certain 
developing countries. Therefore, TCD is extremely appropriate and 
efficient as a screening tool for intracranial vascular lesions (4). 
However, despite the advantages of TCD, the accuracy of TCD 
interpretation is highly dependent on the experience of the examining 
physician, and the accurate identification of lesion images requires a 
lot of time and training. According to findings of the World Health 
Organization, with the increasing shortage of doctors, there may be a 
shortage of nearly 13 million health workers worldwide by 2035 (5). 
This also means that there will be a serious shortage of health workers 
with relevant TCD image diagnosis experience in the future. In recent 
years, the emergence of sophisticated computer-aided diagnosis tools, 
represented by Deep Learning (DL), may alleviate this problem.

DL is an artificial intelligence algorithm that has emerged in 
recent years and has been proven to have high accuracy in many 
medical image recognition and diagnosis tasks (6). DL extracts 
features from different medical images through a neural network 
structure to train itself and make diagnoses, such as distinguishing 
between benign and malignant tumors (7), identifying abnormal ECG 
(8), assisting in pathological diagnosis (9), and classification (10). 
Currently, there are few studies on the application of artificial 
intelligence, especially the DL algorithm, in diagnosing TCD images. 
The evaluation of the effectiveness of the improved model structure 
and the comparison with human doctors have not been studied in 
depth. Therefore, this study aimed to explore the feasibility of DL in 
TCD image recognition and diagnosis. The model was tested using 
TCD images of the MCA and improved based on the common DL 
model previously used for TCD images. Finally, the trained model was 
compared with doctors who have rich diagnostic experience.

Organization: This article is divided into four parts. The first part 
is the introduction. The second part covers the methods and materials 
of the research, with a focus on the construction of the deep learning 
model. The third part presents the experimental results and data. The 
fourth part encompasses the discussion and summary.

2 Methods

This retrospective cross-sectional study was approved by the 
Ethics Committee of Anyang People’s Hospital (KS-2023-04-10), and 
the consent forms were waived.

2.1 Deep learning background

Deep learning is an algorithm that has gradually gained attention 
from researchers in various fields in recent years. The primary 
approach involves identifying the type of task and then collecting a 
large amount of relevant data. Through feature learning from a large 
number of samples, a powerful feature extraction model can 
be developed. Then, subsequently tailored to the specific demands of 
tasks, such as image object segmentation, object detection, and object 
classification, specific functions can be completed. In recent years, it 

has been applied as a powerful auxiliary tool in various medical and 
clinical processes (11, 12).

VGG16 is a classic deep learning feature extraction network that 
consists of 13 convolutional layers and three fully connected layers, 
which is why it is named VGG16. Specifically, all the convolutional 
layers of the VGG network use 3 × 3 convolution kernels, followed by 
a rectified linear unit (ReLU) activation function for non-linear 
mapping. Its MaxPooling layer uses a 2 × 2 convolution kernel with a 
stride of 2, which can reduce the width and height of the feature map 
by half while maintaining the same number of channels. After five 
feature extraction blocks, there are three fully connected layers, with 
the feature channel output of the first two layers being 4,096 and the 
output of the last layer being 1,000. Finally, a softmax layer is used to 
output the final predicted probability values, with the class 
corresponding to the highest value being the predicted class of 
the model.

2.2 Data acquisition

This study included 1,729 patients who visited our hospital from 
July 2021 to September 2022. All patients underwent TCD and other 
cerebrovascular imaging examinations (CTA, DSA, or MRA), and the 
diagnosis of either stenosis or normal conditions in the middle 
cerebral arteries was confirmed through comprehensive imaging 
results. The TCD examinations were conducted by three physicians 
with 1–12 years of experience in TCD procedures and interpretation. 
The machines used for the examinations were the MVU-6300 and 
EMS-9A. The TCD spectral images of the bilateral middle cerebral 
arteries, recorded using a 2 MHz pulse probe, were collected from the 
examination results. All low-quality images or those mistakenly stored 
due to improper handling were removed, and the remaining clear and 
readable images were compiled into a dataset. As we  intended to 
utilize the constructed DL model for ICAS screening in the future, it 
would have been more aligned with real-world scenarios to use data 
from a population undergoing routine medical check-ups. However, 
it is worth noting that the dataset from the population undergoing 
routine medical check-ups is characterized by fewer cases of severe 
ICAS and some complex situations. Therefore, we decided to train the 
model using data from hospitalized patients and collected a portion 
of TCD data from a population undergoing routine medical check-ups 
for validation purposes.

Among them, the TCD data from hospitalized patients examined 
using the MVU-6300 were categorized as dataset1, while the TCD 
data from the population undergoing routine medical check-ups 
examined using the EMS-9A were categorized as dataset2. All 
samples in dataset1 were labeled by two TCD-experienced physicians 
as either stenosis or non-stenosis. In case of disagreement, a third 
physician with more extensive TCD experience, along with 
information from CTA, DSA, or MRA, made the final judgment and 
labeled the samples. Dataset1 was divided into a 70% training set 
(2,146 images), a 10% validation set (308 images), and a 20% test set 
(614 images). Dataset2, a small dataset derived from the population 
undergoing routine medical check-ups, consisted of 90 images and 
was solely used for validating the performance of the model on an 
external dataset. In addition, dataset2 was annotated by another TCD 
physician, who was independent of the previous three physicians, to 
ensure blinding of the data. This was done for the subsequent 
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assessment of the consistency between the physicians and the DL 
model, thereby evaluating their performance. Finally, two physicians 
with varying years of TCD experience used dataset2 for judgment, 
and the results were compared with those of the DL models. To the 
best of our knowledge, no such comparison has been conducted. This 
represents another novel aspect of this study, which may help the DL 
model to be  used for large-scale screening of cerebral vascular 
stenosis in the future.

2.3 Experimental environment

The experiments in this study were performed on Ubuntu20.04, 
using the Pytorch deep learning framework. Furthermore, the 
hardware configuration used was an Intel Core i7 12,700 CPU with a 
2.1G main frequency, 64G memory, an NVIDIA GeForce RTX 3070Ti 
GPU, and a 1 T mechanical hard disk. The algorithm was written in 
Python programming language, and the required configuration 
environment for the algorithm was conda22.9.0, python3.6.13, 
opencv3.4.3, pytorch1.10.2, torchvision0.11.3, cuda11.3.0, cudnn8.6.0, 
matplotlib3.3.4, pandas1.1.5, and numpy1.19.5.

2.4 Deep learning model and training

The loss function used in this study was 
LabelSmoothingCrossEntropy, a regularization method that can 
prevent overconfident predictions of the model during the training 
process in classification tasks and improve the generalization ability. 
Its formula is expressed as follows Equations 1, 2:
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Where i denotes the sample number, target refers to the current 
category, iy



 denotes the updated label vector, and hoty  denotes the 
one-hot encoded label vector. α is a small hyperparameter (generally 
0.1), and K is the total number of categories. The loss function formula 
(Equation 3) used in this paper is as follows:
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VGG16 is composed of five convolutional blocks followed by 
three fully connected layers. We denote the five convolutional blocks 
as the Feature Extraction Layer. Firstly, a single image is passed 
through the Feature Extraction Layer. We denote the input image as 

ix  and the output of the Feature Extraction Layer as out_f. Then, a 7 × 7 
convolution is used for max pooling, followed by a fully connected 
layer and rectified linear units (ReLU) as transition layers, which are 

repeated three times. In the end, a softmax layer is performed to 
obtain the prediction result.

out_f = Feature Extraction Layer( ix )
out_1 = MaxPooling(out_f)
out_2 = ReLU(FC(out_1))
out_3 = ReLU(FC(out_2))
out_4 = ReLU(FC(out_3))
final_output = Softmax(out_4)
To achieve higher classification accuracy, we made improvements 

to the VGG16 model. This article includes the two main improvements.
Firstly, the VGG16 model does not consider the importance of 

different feature channels when learning input image features. To address 
this issue, we added a Squeeze-and-Excitation (SE) module based on 
attention mechanism (13). During the network training phase, the SE 
module can focus on useful features and suppress useless features, 
allowing the model to learn the importance of each feature channel.

In the Squeeze stage, the formal expression is (Equation 4) 
as follows:
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This obtains channel-wise statistical information by using global 
average pooling.

( )squeezeF ⋅ denotes the squeeze operation, m represents the 
feature map, cm denotes the c-th channel of the feature map, and ck  is 
the average value of the feature map in the c-th channel.

In the Excitation stage, the formal expression (Equations 5, 6) is 
as follows:

 ( ) ( )( ) ( )( )2 1, , ReLUexcitatione F k W sigmoid g k W sigmoid W W k= = =
 (5)
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Where ( )·excitationF represents the excitation operation, 
C

1
C

rW R
×

∈  and 2

CC
rW R

×
∈  represent the weight matrices of two fully 

connected layers, and r represents the number of hidden nodes in the 
intermediate layer. ( )Re ·weightF − represents the operation of adjusting 

channel weights,   1 2 C, , ,X x x x = … 
 , where cx  is a feature map of a 

feature channel of , cX and e is a scalar value in the gating unit e.
Secondly, the VGG16 model uses linear feature extraction, where each 

convolutional layer uses the features extracted from the previous layer as 
input. It does not incorporate the element of multi-scale feature fusion, 
which can lead to incomplete feature extraction of the input image. To 
address this issue, we added two skip connections (SCs) to implement 
multi-scale feature fusion. These skip connections can effectively transmit 
features of different scales to multiple layers after convolution and rescaling, 
enabling the complete fusion of different feature scales.

In deep learning, SCs are techniques that directly connect 
non-adjacent layers by skipping one or more layers. These skip 
connections can effectively alleviate the vanishing and exploding 
gradients in deep neural networks and facilitate the propagation of 
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information throughout the network. Common SC methods include 
residual connections and dense connections. In our study, we adopted 
an approach similar to residual connections, establishing an SC 
between the input and the first max-pooling layer. This allowed the 
input to be fed into the next layer along with the results that were 
processed by Conv+SE + BN + ReLU and max pooling. Similarly, 
another SC was established between the second and third max-pooling 
layers, adding more pathways for information propagation.

Overall, SCs increase the direct propagation paths for gradients, 
ensuring that gradients can be  smoothly propagated to shallower 
layers, which helps accelerate the training process of the network. In 
addition, adding skip connections can capture more diverse features 

of the target objects, enhancing the network’s representation ability 
and thus improving model performance. See Figure 1B for the details 
of the skip connection, which was another important improvement to 
the VGG network structure.

The improved VGG16 consists of five convolutional blocks and 
two skip connection layers, followed by three fully connected layers. 
In this model, the original Conv+Relu block has been replaced by 
Conv+SE + BN + Relu. Each convolution block containing the SE 
block is marked as block i_with_SE (where i denotes the index of the 
block). The feature fusion from the input image(marked as ix ) to the 
first max pooling, which uses 1 × 1 convolution(conv1d), is marked as 
ff1. The feature fusion between the second max pooling and the third 

FIGURE 1

(A) VGG16 network structure. (B) Modified VGG16 network structure.
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max pooling is marked as ff 2. After that, similar operations are 
performed. Once the 5-layer convolution block is completed, 
we obtain the feature map. After one max pooling and three fully 
connected layers +ReLU, finally, the final prediction result is obtained 
through a softmax layer.

out1 = block1_with_SE( ix )
fusion1 = ff1(conv1d( ix ),out1)
out2 = block2_with_SE(fusion1)
out3 = block3_with_SE(out2)
fusion2 = ff2(conv1d(out2),out3)
out4 = block4_with_SE(fusion2)
out5 = block5_with_SE(out4)
out_max = MaxPooling(out5)
out_relu1 = ReLU(FC(out_max))
out_relu2 = ReLU(FC(out_relu1))
out_relu3 = ReLU(FC(out_relu2))
final_output = Softmax(out_relu3)
The schematic diagram of the VGG16 model before and after the 

improvement is shown in Figure 1.

2.5 Statistical analysis

We used accuracy, precision, specificity, sensitivity, and area under 
curve (AUC) to evaluate model performance. Inter-observer 
variability among the different models and between the models and 
the TCD physicians was calculated using kappa coefficients.

3 Results

We used the confusion matrix, a commonly used concept in 
machine learning and statistics, to evaluate the performance of the 
classification model. The confusion matrix is composed of true 
positive (TP), false positive (FP), false negative (FN), and true 
negative (TN).

Based on the confusion matrix, we  calculated the following 
metrics to compare our model’s performance across different aspects.
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We have displayed the performance of the different structural DL 
models on dataset1 in Table 1 and visually presented the strengths and 
weaknesses of model performance across the various metrics in 

Figure  2A. On the test of dataset1, the VGG16 + SE + SC model 
achieved the best performance with an AUC of 0.857 ± 0.004. Its 
accuracy (%) and sensitivity (%) also exhibited the best scores of 
85.67 ± 0.43 and 83.60 ± 1.60, respectively. In addition, we  can 
intuitively see from Figure  2 that the VGG16 + SE + SC model 
exhibited a smaller range of standard deviation across all evaluation 
standards, indicating its robustness.

Next, we  utilized dataset2 to evaluate the effectiveness of our 
model in screening for cerebral vascular stenosis in the physical 
examination population, employing the same indicators as in dataset1 
to evaluate model performance. The results are shown in Figure 2B. It 
is evident that the improved model still demonstrated strong 
performance on the new dataset, with an AUC of 0.965 ± 0.016, 
indicating an extremely high diagnostic standard.

Figure  3 shows the kappa coefficient to assess the agreement 
among the various models, between the models and the ground truth 
(GT), and between the models and the physicians. The classification 
of the kappa coefficient is as follows: if k ≤ 0.2, it is considered slight; 
if 0.2 < k ≤ 0.4, it is considered fair; if 0.4 < k ≤ 0.6, it is considered 
moderate; if 0.6 ≤ k < 0.8, it is considered substantial; and if k ≥ 0.8, it 
is considered almost perfect (14). We  have visually presented the 
results of the consistency analysis in Figure 3. The results revealed that 
the improved model had strong consistency with both the highly 
experienced physician (reader2) and the GT. The high consistency 
between reader2 and the GT indirectly suggests that our improved 
model approaches the TCD imaging diagnostic level of a highly 
experienced physician. It is worth noting that the machine used in 
dataset2 was different from the one used in dataset1, and the model 
training was entirely based on dataset1. Therefore, dataset2 contained 
more noise that could have interfered with the reasoning of the model. 
However, the final results showed that the model successfully 
mitigated the interference and maintained diagnostic stability.

Finally, we have drawn a heatmap in Figure 4 to visualize the focus 
of feature extraction among the different models. From this, we can 
see that the different DL models do not consistently focus on the same 
areas of the TCD images. The VGG16 algorithm’s feature extraction 
centers deviate from the central region of the image, paying more 
attention to the upper region and other background areas. Due to the 
lack of an attention mechanism and adequate target feature learning 
capabilities, the algorithm’s focus deviates somewhat. The VGG16 + SE 
algorithm demonstrates slightly improved feature extraction 
capabilities compared to VGG16. It not only focuses on background 
information but also pays more attention to the information of blood 
flow pulses themselves, such as the intervals and the heights of blood 
flow pulses. The squeeze-and-excitation module effectively enhances 
sensitivity, which enables the algorithm to recognize more objects that 
belong to the class, paying attention to both background information 
and the information of blood flow pulses. The example image shows 
that the most concentrated areas on the heat map are around the apex 
of the pulse and its surrounding area. This might suggest that using 
network modules based on skip connections can integrate image 
features from different scales, enabling the model to pay closer 
attention to the pulse information in the images, which is a distinct 
feature area. This leads to more accurate recognition of target objects, 
while non-target objects are not as easily recognized. Overall, the 
VGG16 + SE + SC algorithm performs the best. It not only pays 
attention to the background information of the image but also focuses 
more on the key pulse areas in the image. As it integrates an attention 
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mechanism and multi-scale fusion technology, it can more accurately 
characterize such target objects. Therefore, it can provide more 
accurate and reliable identification results in clinical medicine.

4 Discussion

In this study, we utilized and improved the VGG16 model to 
achieve the automatic recognition of MCA stenosis in TCD images. 

Subsequently, we  trained this model on a dataset of TCD 
examination images from hospitalized patients at our hospital. 
Furthermore, we validated the model using a combined dataset 
consisting of TCD examination images from hospitalized patients 
(dataset1) and a population undergoing routine medical check-ups 
(dataset2). The results demonstrated that the enhanced VGG16 
algorithm performed well on both dataset1 and dataset2. In 
addition, the model exhibited a high level of agreement with human 
physicians for dataset2, indicating a promising achievement in 

TABLE 1 Performance of the different models on dataset1.

Dataset1

Model Accuracy (%) Precision (%) Specificity (%) Sensitivity (%) AUC

VGG16 82.24 ± 1.01 83.23 ± 1.61 83.60 ± 2.80 80.89 ± 4.84 0.822 ± 0.010

VGG16 + SE 83.82 ± 0.25 86.40 ± 2.76 87.19 ± 3.59 80.46 ± 3.11 0.838 ± 0.002

VGG16 + SC 83.49 ± 0.77 89.19 ± 3.58 90.55 ± 3.97 76.44 ± 3.26 0.841 ± 0.008

VGG16 + SE + SC 85.67 ± 0.43 87.23 ± 1.17 87.73 ± 1.47 83.60 ± 1.60 0.857 ± 0.004

FIGURE 2

The performance of the algorithmic models. (A) Each algorithmic model on dataset1. (B) Each algorithmic model on dataset2. It can be observed that 
VGG16  +  SE  +  SC achieved a higher mean and a smaller standard deviation.
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attaining the performance level of experienced TCD physicians (see 
Table 2).

TCD is one of the widely used methods in clinical medicine to 
detect blood flow in the cerebral arteries. It non-invasively and 
continuously evaluates the degree of stenosis or occlusion in the MCA, 
anterior cerebral artery (ACA), posterior cerebral artery (PCA), 
basilar artery (BA), and vertebral artery (VA). This technique can 
provide doctors with important information about the state of blood 
circulation in patients to help them make accurate diagnosis and 
treatment decisions (15). As posterior circulation is more tortuous and 
variable than anterior circulation, TCD has higher accuracy and 
specificity in identifying stenosis in the anterior circulation, especially 
MCA (16). Previous studies related to TCD and MCA stenosis often 

utilized features observed from prior medical experience, such as 
mean blood flow velocities in the MCA, pulsatility index, and 
resistance index (17–19). Recent studies have proposed classifying 
TCD image waveforms into several categories using cluster analysis, 
thereby investigating the diagnostic significance of different waveform 
types for stenosis (20). However, overall, due to the limitations of 
traditional analysis methods, it is often impossible to effectively 
integrate all features to construct a diagnostic model for TCD 
image abnormalities.

In recent years, the continuous development and maturation of 
DL technology have led to an increasing number of research reports 
on the significant role of DL in the diagnosis of various forms of 
medical imaging. For instance, Sakli et al. (21) utilized ResNet-50 for 

FIGURE 3

Comparison of the consistency between the 3 DL models, GT, and human physicians. GT, ground truth.

FIGURE 4

Visual thermodynamic diagram. Normal represents the normal control, while narrow represents the spectrum with stenosis in the TCD image. The 
color of the heat map from red to blue represents the focus of the model to identify features from strong to weak.
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the automatic recognition and diagnosis of 12-lead electrocardiograms, 
achieving impressive results across multiple datasets after validation. 
This highlights the potential of DL in medical image diagnostics and 
demonstrates the feasibility of using DL models for automated medical 
image diagnostics. Exploring the feasibility of DL for TCD imaging 
then becomes particularly important.

In the field of cerebrovascular studies, DL is predominantly 
utilized for classifying and segmenting pathological images from MRI 
and CT scans. However, there is still comparatively little research on 
the use of DL for the recognition of TCD images. Mei YJ et al. trained 
an automatic TCD image classification model on a dataset consisting 
of 278 patients (22). The results suggested that deep learning can 
be employed for the identification of MCA stenosis in TCD imaging. 
However, due to potential limitations in the dataset size, there is room 
for improvement in the accuracy of these results. Nisha et al. (23) 
proposed a deep learning model called Self-ResAttentioNet18, which 
can distinguish healthy individuals from critically ill individuals. 
However, the TCD database that they used only contained six healthy 
subjects and 12 patients with known neurological critical conditions, 
which is relatively smaller compared to the sample size in this study. 
In our study, we  increased the number of samples in the training 
dataset, which further improved the diagnostic performance of the 
trained model. We quantitatively compared it to the diagnostic skills 
of neurologists with varying levels of experience in TCD. The results 
showed that after the improvements were made to the VGG-16 
network model, the level of diagnosis (as measured by AUC) 
significantly enhanced and it showed promise for future applications 
in TCD cerebrovascular stenosis screening. Simultaneously, 
we compared our results with similar studies in the same field. For 
instance, Mei and colleagues reported an AUC of 0.80 for their CNN 
model in diagnosing middle cerebral artery stenosis on the test set 
(22). In another similar study, researchers utilized an ensemble RNN 
to diagnose stenosis in 35 patients with ischemic stroke, achieving a 
maximum accuracy of up to 85% (24). These findings indicate that 
some metrics, such as AUC, of our improved model outperformed 
those of some existing relevant research. Moreover, no studies have 
been found so far that utilized DL in TCD imaging for routine physical 
examination populations, nor have there been comparisons of 
diagnostic skills between neurologists with varying years of 
experience. This suggests that our study fills a gap in the existing 
literature and may provide a valuable reference for future research in 
the direction of stroke screening using TCD. In addition, we believe 
that the agreement detected between the physician and model, tested 
using the kappa coefficient, will be an important preliminary step to 
help with TCD image classification using DL.

Regarding dataset2, although it did not directly participate in the 
model training, the models still maintained high accuracy in 
recognizing this new dataset, which demonstrates the strong 

generalization capability of the deep learning models. We believe there 
are two main reasons for this generalization ability: First, the “hospital 
patient dataset” was used for training and the “routine check-up 
population dataset” was used for testing. Although these two datasets 
come from different sources, their underlying data distribution 
patterns are fundamentally consistent. Therefore, the AI model can 
make a good response to the same data distribution. Second, in this 
study, we  used domain generalization techniques based on data 
augmentation (25). Typical augmentation operations include scaling, 
cropping, color transformation, etc. They are widely used in 
supervised learning to improve the generalization performance of the 
model and reduce the occurrence of overfitting. In addition, noise 
addition (such as Gaussian noise) was applied on the dataset, which is 
an effective domain randomization method that perturbs the features, 
ultimately achieving good results in validation across different datasets 
(26). For instance, considering the transformation of the image color 
space from RGB to HSV, the conversion formula is as follows:
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After computing the value of H, another check should 
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Although dataset 2 used in this study had limited positive cases, 
suggesting a potential data deviation, it reflects the realistic scenario, as 
we aimed to simulate the effectiveness of DL in screening for cerebral 
artery stenosis in real-world TCD examinations. The experimental 

TABLE 2 Performance of the different models on dataset2.

Dataset2

Model Accuracy (%) Precision (%) Specificity (%) Sensitivity (%) AUC

VGG16 91.48 ± 3.39 59.26 ± 15.30 93.00 ± 4.99 77.78 ± 11.11 0.8539 ± 0.031

VGG16 + SE 94.07 ± 1.70 69.97 ± 11.20 95.88 ± 2.85 77.78 ± 11.11 0.8683 ± 0.044

VGG16 + SC 87.04 ± 7.57 48.83 ± 20.82 83.54 ± 4.99 98.77 ± 2.14 0.9115 ± 0.016

VGG16 + SE + SC 93.70 ± 2.80 62.65 ± 11.27 93.00 ± 3.11 100.00 ± 0.00 0.9650 ± 0.016
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results indicate that our improved DL model achieved extremely high 
sensitivity in identifying typical cerebral artery stenosis in the population 
undergoing routine medical check-ups. In the current medical landscape, 
TCD reports are routinely assessed by senior physicians, which increases 
the demand for medical education costs and corresponding resources. 
We propose that our model can be progressively integrated into the 
report review system as an auxiliary evaluation metric, thereby alleviating 
these burdens. Furthermore, we will consider exploring the possibility of 
combining it with medical multimodal large language models to enhance 
its role in future medical scenarios (27). These integrations would not 
only optimize reporting efficiency but also potentially enhance the 
accuracy of the reports, ultimately benefiting a larger number of patients. 
It is believed that in the future, this model has the potential to significantly 
enhance the detection rate and accuracy of ICAS in primary healthcare 
facilities. Furthermore, considering the urgent need for ICAS screening 
in rural or underdeveloped areas, and comparing it with the high costs 
and maintenance expenses of MRI equipment, utilizing AI-assisted TCD 
examinations undoubtedly presents an optimal solution. On the other 
hand, before promoting this method for clinical application, we still need 
to carefully evaluate the demand for AI for computing resources and its 
potential impact on patient privacy and data security. In the current 
research field strategies involving federated learning and edge computing 
are widely adopted to address these issues. These methods not only 
significantly reduce the reliance on centralized computing resources but 
also ensure the security and effective utilization of data while fully 
protecting privacy (28, 29). Given these advantages, we plan to further 
explore and apply these advanced technological strategies in our 
future research.

In addition, in this study, we observed that the number of features 
used by the AI for diagnosing MCA stenosis from TCD exceeded one 
hundred. In contrast, neurologists typically utilize only a few to about 
a dozen diagnostic features. Due to the inherent “black box” 
phenomenon of deep learning (30), we are currently unable to fully 
interpret which features of the TCD the AI employs. Further research 
is needed to clarify the logic behind AI diagnoses, and we hope that 
this will not only enhance the diagnostic performance of AI but also 
provide new insights and inspiration for clinical medical practitioners 
regarding diagnostic approaches.

This study has certain limitations. For instance, the number of 
physical examination populations, also known as dataset 2, was 
relatively small. Due to the nature of the physical examination 
population, the proportion of ICAS cases in this dataset was 
significantly lower than that in dataset 1. Moreover, the physical 
examination population had fewer complex hemodynamic conditions 
compared to the hospitalized patients, which might have resulted in a 
relatively simpler distribution of the TCD images. This might have 
introduced biases in assessing the generalization ability of the model. 
These biases could have led to unexpectedly better performance of the 
model in dataset 2 than in dataset 1. In addition, dataset2 contained 
very few extreme cases, such as severe stenosis and occlusion, which 
is not conducive to a comprehensive evaluation of the model. 
Therefore, we  plan to collect data from a larger-scale physical 
examination population in future studies to ensure a more objective 
evaluation of our model. We look forward to further improving the 
reliability of our model in future multi-center data studies so that it 
can play a significant role in screening for ICAS.
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