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Introduction: As a hallmark feature of amyotrophic lateral sclerosis (ALS), 
bulbar involvement leads to progressive declines of speech and swallowing 
functions, significantly impacting social, emotional, and physical health, and 
quality of life. Standard clinical tools for bulbar assessment focus primarily on 
clinical symptoms and functional outcomes. However, ALS is known to have 
a long, clinically silent prodromal stage characterized by complex subclinical 
changes at various levels of the bulbar motor system. These changes 
accumulate over time and eventually culminate in clinical symptoms and 
functional declines. Detection of these subclinical changes is critical, both for 
mechanistic understanding of bulbar neuromuscular pathology and for optimal 
clinical management of bulbar dysfunction in ALS. To this end, we developed a 
novel multimodal measurement tool based on two clinically readily available, 
noninvasive instruments—facial surface electromyography (sEMG) and acoustic 
techniques—to hierarchically assess seven constructs of bulbar/speech motor 
control at the neuromuscular and acoustic levels. These constructs, including 
prosody, pause, functional connectivity, amplitude, rhythm, complexity, and 
regularity, are both mechanically and clinically relevant to bulbar involvement.

Methods: Using a custom-developed, fully automated data analytic algorithm, a 
variety of features were extracted from the sEMG and acoustic recordings of a 
speech task performed by 13 individuals with ALS and 10 neurologically healthy 
controls. These features were then factorized into 10 composite outcome 
measures using confirmatory factor analysis. Statistical and machine learning 
techniques were applied to these composite outcome measures to evaluate their 
reliability (internal consistency), validity (concurrent and construct), and efficacy 
for early detection and progress monitoring of bulbar involvement in ALS.

Results: The composite outcome measures were demonstrated to (1) be 
internally consistent and structurally valid in measuring the targeted constructs; 
(2) hold concurrent validity with the existing clinical and functional criteria for 
bulbar assessment; and (3) outperform the outcome measures obtained from 
each constituent modality in differentiating individuals with ALS from healthy 
controls. Moreover, the composite outcome measures combined demonstrated 
high efficacy for detecting subclinical changes in the targeted constructs, 
both during the prodromal stage and during the transition from prodromal to 
symptomatic stages.

Discussion: The findings provided compelling initial evidence for the utility of 
the multimodal measurement tool for improving early detection and progress 
monitoring of bulbar involvement in ALS, which have important implications in 
facilitating timely access to and delivery of optimal clinical care of bulbar dysfunction.
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1 Introduction

As one of the most devastating and fatal neurodegenerative 
diseases, amyotrophic lateral sclerosis (ALS) results from the 
degeneration of upper and lower motor neurons (UMN/LMN) along 
with other cells in both the central and peripheral nervous systems. 
ALS impacts normal functioning of the neuromuscular system, 
leading to weakness, atrophy, fasciculation, and loss of active control 
over skeletal muscles (1–4). These changes usually start focally in a 
specific body region and progress to other regions over time. As a 
disease of uncertain etiology, ALS is characterized by substantial 
heterogeneity. Clinically, about 25%–30% of patients are diagnosed 
with a bulbar onset, with initial symptoms manifesting as speech and/
or swallowing disorders; the rest of patients are diagnosed with a 
spinal onset, with initial symptoms most commonly starting in the 
limb region (5). Despite the variability in onset site, most patients 
develop bulbar symptoms as their disease progresses (6). Bulbar 
dysfunction has a devastating impact on social, emotional, and 
physical health, significantly reducing the quality of life (7).

As with all neurodegenerative diseases, ALS is characterized by a 
long, clinically silent prodromal phase that precedes the clinical 
symptom onset (8). During this phase, the motor systems have already 
experienced notable subclinical changes, which after years to decades of 
accumulation eventually culminate in clinical symptoms and functional 
declines. For the bulbar motor system, a mounting body of evidence has 
revealed subclinical changes at various levels (e.g., neuromuscular, 
kinematic), which occur long before the presentation of dysarthria and 
dysphagia symptoms (9–11). Accurate detection of these subclinical 
changes has important scientific and clinical implications. Scientifically, 
these changes provide a window into the underlying bulbar 
pathophysiology and thus hold mechanistic relevance. Clinically, the 
presentation of bulbar symptoms is known to associate with faster 
progression, poor prognosis, and shorter survival (12–15). Thus, early 
detection of subclinical bulbar changes before the clinical symptom 
onset can afford clinicians more time to engage patients (and their 
caregivers) into the conversation about the impending bulbar functional 
declines and the available clinical management options [e.g., voice 
banking, augmentative and alternative communication (AAC)]. Such 
conversation is essential for informed decision making on developing 
an optimal care plan to slow functional declines, preserve quality of life, 
and maximize patient benefits. In addition to early detection, 
monitoring of subclinical changes related to the progression of bulbar 
involvement also has important clinical implications, which would 
guide clinicians in selecting and basing intervention on the evolving 
needs of the patient over their disease course.

Despite the scientific and clinical significance, standard clinical 
tools in the current bulbar assessment practice, including neurological 
exams, patient- and clinician-based symptom reports, and functional 
speech and swallowing assessments, focus primarily on clinical 
symptoms and functional outcomes; these tools in general lack 
sensitivity and reliability for detecting subclinical changes in the 

bulbar motor system, especially during the prodromal stage (2, 7, 16). 
Such limitations posit a major challenge to early detection, monitoring, 
and optimal management of bulbar involvement in ALS. To address 
these limitations, a growing body of research has been directed toward 
developing objective bulbar measurement tools. These tools build 
upon different instruments ranging from lab-based equipment, such 
as electromagnetic or optical motion tracking systems for recording 
orofacial kinematics, to personal digital devices, such as smartphones 
and related apps for audiovisual recording. The wide range of 
instruments allows various modalities of data to be collected, based 
on which a variety of objective measures have been developed to 
assess and characterize subclinical changes in the bulbar motor system.

From the acoustic modality, spectral and cepstral features are 
commonly used to assess vowel distortion, consonant imprecision, 
abnormal voice quality (e.g., dysphonia), and prosodic deficits during 
speech (17–30). In addition, time-domain features (e.g., rate and 
variability of vocalic, consonantal, and syllabic intervals, pause duration) 
have been employed to assess rhythmic disturbances and abnormal 
pause patterns during speech (31–33). From the kinematic modality, 
both pointwise and trajectory-based measures have been derived to 
characterize the positioning, movement, and coordination of orofacial 
structures (e.g., tongue, jaw, lips). These measures, including range of 
motion, displacement, speed/velocity, acceleration, jerk, cumulative 
path, area, asymmetry, variability, and spatiotemporal coupling, provide 
targeted assessment of reduced, slowed, jerky, asymmetrical, irregular, 
and dyscoordinated orofacial motion, as well documented in the motor 
speech disorders literature (11, 24, 25, 30, 34–42). Such speech-based 
acoustic and kinematic measures have shown promise for detecting 
clinically indiscernible subclinical bulbar involvement in ALS. However, 
it should be noted that, due to the distal nature to the loci of lesion in the 
neuromuscular system, these measures reflect the integrated outcomes 
of many interrelated neurophysiological (e.g., motor unit recruitment 
and firing patterns), biomechanical (e.g., stiffness, viscosity), and 
behavioral (e.g., compensatory strategy) factors that underlie speech 
production. These factors remain hard to disentangle from lower-level 
measures as obtained by acoustic and kinematic techniques.

Surface electromyography (sEMG)—a noninvasive 
electrophysiological technique widely available in neurology 
practices—provides a more proximal and direct means of assessing 
neuromuscular pathology. While the current clinical applications of 
sEMG are qualitative and observational in nature, the rapid digital 
innovations over recent decades have given rise to powerful signal 
processing and data analytic techniques, allowing for better 
exploitation of the quantitative potential of sEMG. Along this line, 
Rong and colleagues have carried out a series of studies to develop 
fit-for-purpose facial sEMG analyses to quantitatively assess and 
characterize bulbar neuromuscular performance (43–45). Various 
features representing the amplitude, complexity, and regularity of jaw 
myoelectric activities, and the functional connectivity of the jaw 
muscle network have been identified and demonstrated sensitivity for 
detecting subclinical bulbar neuromuscular changes in ALS.
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Thus far, a variety of objective measures have been obtained from 
various modalities (e.g., acoustic, kinematic, sEMG) to characterize and 
assess different constructs of bulbar/speech motor control (e.g., prosody, 
rhythm, functional connectivity). Mechanistically, these constructs are 
underpinned by a variety of neuromotor and physiological factors, 
which emerge from different levels of the bulbar motor system and are 
(differentially) susceptible to ALS. Some constructs such as prosody 
only emerge as a meaningful entity at the lower level of the bulbar 
motor system and is directly related to the behavioral end product (i.e., 
speech output). Other constructs such as functional connectivity are 
more relevant to the higher-level neuromuscular control, which 
underlies the modular organization of the bulbar motor system (i.e., 
organization of discreate bulbar muscles into holistic functional 
modules to facilitate task implementation). In addition, there are also 
constructs (e.g., rhythm) which constitute meaningful descriptors of the 
neuromotor and physiological processes at all levels. Given the complex 
nature of these constructs, measures obtained from a single modality as 
in most existing studies are unlikely to capture the disease effects on all 
facets of these constructs. To comprehensively assess these disease 
effects urges a multimodal measurement tool to hierarchically detect 
and quantify changes in all constructs at all applicable levels. Such a 
hierarchical multimodal measurement tool is currently lacking.

To fill the above gap, this study proposes a multimodal 
measurement tool integrating two noninvasive instrumental 
techniques—facial sEMG and acoustic—with novel data analytics, to 
provide a hierarchical assessment of seven carefully selected constructs 
of bulbar/speech motor control at two distinct levels (i.e., 
neuromuscular, acoustic). Compared to other instrumental 
techniques, sEMG and acoustic instruments are readily available in 
neurology/speech clinics, rendering high clinical scalability to the 
proposed multimodal approach. The selected constructs, including 
prosody, pause, functional connectivity, amplitude, rhythm, 
complexity, and regularity, are mechanically and clinically relevant to 
bulbar involvement in ALS. The clinical relevance of these constructs 
has been well demonstrated by prior unimodal investigations as 
outlined above. Mechanistically, all constructs can be explanatorily 
linked to the combined effects of both UMN and LMN involvement 
on bulbar neuromuscular pathology. An overview of such explanatory 
links is provided in Figure 1 and further elaborated below.

UMN involvement is known to reduce the voluntary recruitment 
and firing rates of motor units (46). In addition, impairment of the 
motor cortical network due to UMN degeneration compromises the 
oscillatory drives which provide common neural inputs to comodulate 
functionally related bulbar muscles (47, 48). LMN involvement, on the 
other hand, results in denervation, which reduces the number and 
recruitment of viable motor units, increases the variability of motor 
unit firing rates, and changes the muscle fiber conduction velocity (49). 
As a compensatory response to denervation, collateral sprouting 
occurs spontaneously to reinnervate denervated muscle fibers by 
surviving axons at greater distances (50, 51). Yet, due to the variability 
in axon length, myelination, and safe factor, the contractile properties 
of the reinnervated and intact motor units tend to vary, resulting in 
more heterogeneous motor units discharge patterns.

Among all UMN and LMN-related neuromuscular changes, 
reduced voluntary recruitment, firing rates, and number of viable 
laryngeal and respiratory motor units would contribute to prosodic 
deficiency (e.g., monopitch) and abnormal pause (e.g., longer, more 
frequent and variable pauses between speech events) (31, 52, 53); such 

changes in prosody and pause can be  detected from lower-level 
acoustic measurements. Reduced voluntary recruitment and number 
of viable bulbar motor units, degradation of oscillatory drives to 
comodulate the recruited motor units, and increased heterogeneity of 
the motor unit contractile properties tend to globally weaken the 
neural binding of bulbar muscles and in turn reduce the functional 
connectivity of the bulbar muscle network (43, 44, 46, 54–57); such a 
decrease in functional connectivity would be manifested by higher-
level neuromuscular measurements as obtained by sEMG. Moreover, 
the global reduction of voluntary recruitment, firing rate, and number 
of viable bulbar motor units, as well as changes in firing rate variability 
and muscle fiber conduction velocity are expected to modify the 
amplitude dynamics of the bulbar motor system’s outputs at both 
higher (e.g., neuromuscular) and lower (e.g., acoustic) levels (46, 49, 
58), as encoded across modalities. In addition, reduced voluntary 
recruitment and number of viable bulbar motor units can also 
compromise the ability of the bulbar motor system in conveying 
complex motor commands, which would be  manifested by the 
complexity of the system’s outputs at all levels (10, 45). Abnormal 
discharge patterns of bulbar motor units, as relating to slower and 
more variable firing rates, more heterogeneous contractile properties, 
and changes in muscle fiber conduction velocity, can disrupt the 
rhythms of bulbar motor activities across modalities (49, 58–61). 
Lastly, increased variability and heterogeneity of the firing rates and 
contractile properties of bulbar motor units tend to globally reduce 
the regularity of bulbar motor activities across modalities (10, 45). 
Taken together, these evidenced-based explanatory links comprise a 
conceptual framework, illustrating the mechanistic relevance of the 
selected seven constructs to bulbar neuromuscular pathology in ALS.

This study aimed to (1) develop a multimodal measurement tool, 
integrating facial sEMG and acoustic instrumental techniques with a 
custom-developed, fully automated data analytic approach, to 
hierarchically assess and measure the seven targeted constructs during 
a speech task; (2) provide an initial validation of this measurement tool 
following the consensus-based V3 framework (62), focusing on the 
reliability, validity, and efficacy for early detection and progress 
monitoring of bulbar involvement in ALS. A speech task was selected 
because, as a fine oromotor behavior that requires sophisticated 
coordination of a variety of bulbar muscles, speech has been consistently 
demonstrated by prior studies to be  sensitive for detecting early 
subclinical bulbar involvement in ALS (40, 41, 63, 64). Based on the 
theoretical and empirical evidence obtained from the conceptual 
framework in Figure  1 and prior unimodal investigations, 
we hypothesized that the multimodal measurement tool would hold 
high reliability (internal consistency), validity (concurrent and 
construct), and efficacy for early detection of prodromal bulbar 
involvement and for monitoring of bulbar progression across the 
prodromal and symptomatic stages. Moreover, it was further 
hypothesized that the multimodal measurement tool would outperform 
its unimodal subcomponents as obtained from each constituent modality.

2 Materials and methods

The study protocol was part of a larger-scope project, which was 
approved by the Institutional Review Board of the university medical 
center. Written informed consent was obtained from all participants. 
All study procedures were non-invasive and involved minimal risk.
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2.1 Participants

Twenty-three participants including 13 individuals with ALS (8 
men, 5 women; age: 38–74 years) and 10 age-matched neurologically 
healthy controls (3 men, 7 women; age: 38–81 years) took part in this 
study. Participants with ALS were further divided into two subgroups: 
(1) a bulbar-symptomatic subgroup (ALS + B), consisting of 7 
individuals with overt clinical bulbar symptoms and (2) a bulbar-
prodromal subgroup (ALS − B), consisting of 6 individuals without 
overt bulbar symptoms. The presence of bulbar symptoms was 
determined by standard clinical examination procedures administered 
by the second author. These procedures included an oral mechanism 
examination, a dysarthria screening/examination, a functional speech 
assessment, as well as swallow-related, patient-reported outcome 
measures, screeners (i.e., 3 oz. water test) or clinical and/or 
instrumental assessments [i.e., video fluoroscopic swallow study 
(VFSS) or fiberoptic endoscopic evaluation of swallowing (FEES)]. 
The inclusionary criteria were (1) being diagnosed with definite or 
probable ALS as per the revised El Escorial Criteria (2) for the ALS 
group or reporting no known neurological diseases or injury for the 
healthy control group; (2) speaking American English as the first and 
primary language; (3) passed hearing screening at 1,000, 2,000, and 
4,000 Hz at 30 dB in at least one ear; (4) possessing adequate cognitive 
function to understand instructions and perform tasks as per by 
standard cognitive screening procedures.

To allow for evaluation of the concurrent validity of the 
multimodal measurement tool, two functional speech metrics were 

obtained from the Sentence Intelligibility Test (SIT)—a well-
established and widely used functional speech assessment (65)—to 
serve as the criteria to correlate with the novel measures. In this test, 
participants read 11 randomly generated sentences with varying 
lengths ranging from 5 to 15 words. Speech was digitally recorded 
at 22,050 Hz and later orthographically transcribed and timed by 
two naïve listeners. The listeners were undergraduate students in the 
speech-language pathology major, who qualified the following 
conditions: (1) speaking American English as the first and primary 
language; (2) reporting normal speech, language, hearing, and 
cognitive functions, and (3) being unfamiliar with either the stimuli 
or the speaker profiles. Based on the judgment of each listener, 
speech intelligibility and speaking rate were derived as the 
percentage of words correctly transcribed out of the total number 
of words and the number of words per minute (WPM), respectively. 
Inter-listener reliability has been previously verified in another 
study [intelligibility: r = 0.86, inter-listener discrepancy = 
1 02 1 44. % . %± ; rate: r = 0.99, inter-listener discrepancy = 3 15 2 03. .±  
WPM; see (40)]. Lastly, both measures were averaged across 
listeners, giving rise to two standard metrics to index the functional 
speech capacities of the participants. Between the two metrics, 
speech intelligibility is a well-established outcome measure of 
communication effectiveness; speaking rate currently serves as the 
clinical proxy for staging and guiding management of dysarthria in 
ALS (66, 67). The demographic, clinical, and functional 
characteristics of the participants are provided in 
Supplementary Table S1 and summarized in Table 1.

FIGURE 1

Schematic illustration of mechanistic links of the targeted constructs (and their anticipated changes) to bulbar neuromuscular pathology in 
amyotrophic lateral sclerosis. The color of the constructs reflects the modality of measurement: blue (functional connectivity)  =  surface 
electromyography (sEMG); orange (prosody, pause)  =  acoustic; mixed (amplitude, rhythm, complexity, regularity)  =  sEMG + acoustic. UMN, upper 
motor neuron; LMN, lower motor neuron; MU, motor unit.
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2.2 Experimental procedures

Data collection took place in a quiet lab environment. Participants 
were seated in an armed chair, wearing a set of surface electrodes on 
multiple regions of their head and face (for myoelectric data 
acquisition) as well as a head-mounted microphone around their ears 
(for acoustic data acquisition). All participants read the Rainbow 
Passage at their habitual speaking rate and loudness. Rainbow Passage 
is a standard phonetically balanced reading passage, consisting of 19 
sentences with varying lengths. It has been used in previous studies 
and proven to robustly capture jaw muscle activities (43, 44).

Myoelectric data were collected from three muscles of the 
mandibular system on the dominant side (right), including two jaw 
elevators—masseter and anterior temporalis—and one jaw 
depressor—anterior belly of digastric, using a wireless sEMG 
system (BIOPAC). Following the best practice guidelines for sEMG 
recording (68, 69), self-adhesive bipolar Ag/AgCl electrodes with 
11 mm diameter size and 20 mm inter-electrode distance were 
attached to the skin over the belly of each target muscle, parallel to 
fiber orientation. Before placing the electrodes, the target areas of 
skin were prepared using an alcohol swab to increase skin 
conductance. To maximize reproducibility, several craniofacial 
anatomical landmarks were used to guide the placement of 
electrodes along the cantho-gonial line for masseter, vertically at 
the coronal suture for anterior temporalis, and submentally along 
the posterior-inferior direction for anterior belly of digastric. A 
ground electrode was attached to the participant’s shoulder. The 
placement of electrodes was then verified by calibration tasks such 
as jaw oscillations and clenching to ensure the jaw muscle activities 
were captured properly by the relevant electrodes. The analog 
signals were pre-amplified by 2,000 and band-passed filtered at 
5–500 Hz by the wearable BioNormadix modules, digitized at 
2,000 Hz by the MP160 data acquisition module, and finally 
recorded by the Acknowledge software. Acoustic data were 
acquired by a head-mounted microphone (DPA dfine 4188) placed 
approximately 5 cm away from the left lip corner, processed by the 

Behringer Xenyx 802 sound conditioner, and digitized and 
recorded at 22,050 Hz, simultaneously with the sEMG data. The 
flowchart in Figure  2 provides a graphic illustration of the 
experimental setup.

2.3 Data processing and feature extraction

Data analysis was conducted in MATLAB (R2021a), using a 
custom-developed, fully automated algorithmic program. To enhance 
data quality, sEMG recordings were pre-processed to remove electrical 
and mechanical artifacts, following the recommended procedures as 
used in prior work (45, 61, 70). Specifically, all sEMG channels were 
notch-filtered at 60 Hz and high-pass filtered at 20 Hz to remove 
power line noise and movement artifacts; DC offsets were then 
removed from each channel. Next, the pre-processed sEMG and 
acoustic signals were submitted to a feature extraction algorithm, 
which extracted 60 features from each sentence of the Rainbow 
Passage for each speaker (total N = 23 participants × 19 sentences = 
437  speech samples). These features included (1) 3 acoustic-based 
measures of prosody, (2) 3 acoustic-based measures of pause, (3) 9 
sEMG-based measures of functional connectivity, (4) 3 sEMG-based 
and 1 acoustic-based measures of amplitude, (5) 9 sEMG-based and 
12 acoustic-based measures of rhythm, (6) 3 sEMG-based and 13 
acoustic-based measures of complexity, and (7) 3 sEMG-based and 1 
acoustic-based measures of regularity. An overview of these features 
is provided in Table 2, and the procedures for feature extraction are 
elaborated below.

2.3.1 Prosody
To extract prosodic features, the vocal fundamental frequency (f0) 

trace was obtained from the acoustic waveform, using the cross-
correlation method (71). A moving window of 20-msec length for 
males and 10-msec length for females was applied to account for the 
pitch difference between male and female voice. Based on each f0 
trace, the mean, standard deviation, and interquartile range were 

TABLE 1 Statistical summary of demographic, clinical, and functional characteristics of participants.

Participant characteristics ALS (N  =  13) Control (N  =  10) ALS vs. control comparison

Demographic

Women (n%) 38.46% 70.00% χ2  = =1 17 0 28. , .p

Age, years (M; SD) 59.54; 12.78 66.80; 13.02 F p1 21 1 80 0 19,( ) = =. , .

Clinical

Disease onset (n%)
Bulbar: 30.77%

N/A N/A
Spinal: 69.23%

Stage of bulbar involvement (n%)
Prodromal: 53.85%

N/A N/A
Symptomatic: 46.15%

Days since diagnosis (M; SD) 362.15; 422.56 N/A N/A

Functional

ALSFRS-R: total (M; SD) 36.92; 6.87 N/A N/A

ALSFRS-R: bulbar (M; SD) 10.08; 2.40 N/A N/A

Speech intelligibility, % (M; SD) 87.34; 25.03 99.45; 0.56 F p1 21 2 32 0 14,( ) = =. , .

Speaking rate, WPM (M; SD) 135.02; 41.27 183.65; 23.02 F p1 21 11 14 0 003,( ) = = ∗
. , .

ALS, amyotrophic lateral sclerosis; Control, healthy controls; WPM, words per minute; ALSFRS-R, ALS Functional Rating Scale-Revised. Significant statistical effects are marked by asterisks.
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calculated on a semitone scale. These features provided objective 
metrics for assessing prosodic deficiency.

2.3.2 Pause
The algorithm for pause analysis was adapted from the Speech Pause 

Analysis (SPA) program described in Green et al. (31). The differentiation 
between pauses and speech events is contingent on three threshold 
settings—minimum pause duration, minimum speech event duration, 
and minimum signal amplitude threshold. Green et al. (31) has tested a 
variety of threshold values in an ALS cohort with varying speech 
severities and shown that the measurements of pause can vary notably 
with threshold settings, especially for minimum pause duration and 
minimum signal amplitude threshold. Leveraging their findings with 
the current dataset (including both individuals with ALS and healthy 
controls), we selected the following baseline threshold values: minimum 
pause duration = 150 msec, minimum speech duration = 35 msec, 
minimum signal amplitude threshold = 0.04. These values roughly 
aligned with the pause-speech patterns of a speaker with an intermediate 
speaking rate at around 160 WPM. Given the large variability of 
speaking rate across speakers, we further scaled the baseline threshold 
value for minimum pause duration and minimum speech duration 
based on the ratio of the actual speaking rate to the baseline (i.e., 160 
WPM) to account for the potential scaling effect related to the variability 
of speaking rate.

The scaled threshold values for minimum pause and speech 
durations along with the minimum signal amplitude threshold were 
entered into the algorithm to automatically identify all pauses and speech 
events from the acoustic waveform for each sentence of the passage. The 
mean and standard deviation of pause duration and the percentage of 
pause time were calculated for each sentence. These features allowed for 
assessment of abnormal pause (e.g., longer, more frequent and variable 
pauses) as previously reported in speakers with ALS (31).

2.3.3 Functional connectivity
Functional connectivity was assessed by intermuscular coherence 

between all three pairs of muscles (temporalis-masseter, temporalis-
digastric, masseter-digastric) in three frequency band: theta/alpha 

(4–12 Hz), beta (12–30 Hz), and low gamma (30–60 Hz), representing 
different oscillatory drives for comodulating these muscles. Specifically, 
the beta and low-gamma bands reflect fast oscillations originating 
directly from the motor cortical network. The two bands have slightly 
different functional roles: beta oscillations have been associated with 
submaximal tonic contractions, whereas low-gamma oscillations have 
been linked to attentionally more demanding, stronger tonic and phasic 
contractions (72–74). The theta/alpha band reflects slow oscillations 
related to diverse subcortical and cortical sources (e.g., hippocampus, 
brainstem) outside of the motor cortical network, enabling indirect 
motor control (75, 76). The feasibility of measuring intermuscular 
coherence in these bands from sEMG signals has been demonstrated by 
previous studies (44, 54, 56, 77–79).

Intermuscular coherence is defined as follows:
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where IMCxy is intermuscular coherence, S fxy ( )  is the cross-
spectrum between muscles, and S fxx ( ) and S fyy ( ) are the auto-spectra 
for the two muscles. To calculate intermuscular coherence, we followed 
similar procedures as in prior studies (44, 45). First, all sEMG signals 
were full wave rectified. Stationary 1-s epochs centered around the 
bursts were then identified and concatenated for each channel. The 
reconstructed sEMG data were fed into a coherence analysis to calculate 
the cross- and auto-spectra as specified in Eq. 1 for each pair of muscles, 
using a 4,096-point Fast Fourier Transform (FFT) applied over a sliding 
1,024-point Hamming window with 75% overlap, following the 
recommendations by Terry and Griffin (80). In addition, a significance 
level corresponding to the upper 95% confidence limit under the 
hypothesis of independence between muscles was calculated as: 

( )1/ 1ˆ
1 0.05

L
S

−
= − , where L̂  is the adjusted number of overlapped

 

segments (80, 81). Based on the coherence spectra, the mean coherence 
value in the theta/alpha, beta, and low-gamma bands were calculated 
for each muscle pair. Lastly, because only coherence above the 

FIGURE 2

Methodology flowchart.
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significance level carries meaningful information about functional 
connectivity (or dependency), the theta/alpha, beta, and gamma-band 
coherence values were compared with the significant level, and all values 

below significance were set to zero. This last step eliminated arbitrary 
fluctuations in coherence measures that carried no meaningful 
functional information to improve the quality of the data.

TABLE 2 Summary of multimodal features.

Construct Modality Feature Feature interpretation

Prosody Acoustic

sdevF0.st Standard deviation of f0 in semitone

iqrF0.st Interquartile range of f0 in semitone

meanF0.st Mean f0 in semitone

Pause Acoustic

MeanDur_intrapause Mean pause duration

SdevDur_intrapause Standard deviation of pause duration

pct_intrapause Percentage of pause time

Functional 

connectivity
sEMG

IMC_RTEMP_RMAS_theta_alpha
Theta/alpha-band intermuscular coherence (slow 

oscillatory drive)
IMC_RTEMP_RABD_theta_alpha

IMC_RABD_RMAS_theta_alpha

IMC_RTEMP_RMAS_beta
Beta-band intermuscular coherence (fast oscillatory 

drive for submaximal tonic contractions)
IMC_RTEMP_RABD_beta

IMC_RABD_RMAS_beta

IMC_RTEMP_RMAS_gamma Low gamma-band intermuscular coherence (fast 

oscillatory drive for stronger tonic and phasic 

contractions)

IMC_RTEMP_RABD_gamma

IMC_RABD_RMAS_gamma

Amplitude
sEMG density_RTEMP, density_RMAS, density_RABD Density of myoelectric activities

Acoustic density_audio Density of acoustic waveform

Rhythm

sEMG

mod_depth_theta_RTEMP
Envelope modulation depth for myoelectric activities at 

the theta timescale (syllable rhythm)
mod_depth_theta_RMAS

mod_depth_theta_RABD

PSI_delta_theta_RTEMP
Delta-theta phase synchronization index for 

myoelectric activities (regularity of syllable stress)
PSI_delta_theta_RMAS

PSI_delta_theta_RABD

PSI_theta_beta.gamma_RTEMP
Theta-beta/gamma phase synchronization index for 

myoelectric activities (temporal stability of syllable)
PSI_theta_beta.gamma_RMAS

PSI_theta_beta.gamma_RABD

Acoustic

hbenvlp_mod_depth_theta_100_300

Envelope modulation depth for critical-band acoustic 

signals at the theta timescale (syllable rhythm)

hbenvlp_mod_depth_theta_300_800

hbenvlp_mod_depth_theta_1000_3000

hbenvlp_mod_depth_theta_3000_8000

hbenvlp_PSI_delta_theta_100_300

Delta-theta phase synchronization index for critical-

band acoustic signals (regularity of syllable stress)

hbenvlp_PSI_delta_theta_300_800

hbenvlp_PSI_delta_theta_1000_3000

hbenvlp_PSI_delta_theta_3000_8000

hbenvlp_PSI_theta_beta.gamma_100_300
Theta-beta/gamma phase synchronization index for 

critical-band acoustic signals (temporal stability of 

syllable)

hbenvlp_PSI_theta_beta.gamma_300_800

hbenvlp_PSI_theta_beta.gamma_1000_3000

hbenvlp_PSI_theta_beta.gamma_3000_8000

Complexity
sEMG DET_RTEMP, DET_RMAS, DET_RABD Determinism of myoelectric activities

Acoustic DET_mfcc1 … DET_mfcc13 Determinism of MFCCs

Regularity
sEMG ShanEn_RTEMP, ShanEn_RMAS, ShanEn_RABD Shannon entropy of myoelectric activities

Acoustic ShanEn_audio Shannon entropy of acoustic waveform
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2.3.4 Amplitude
The measurement and quantification of amplitude has been a 

practically challenging task due to the variety of disease-unrelated 
contextual factors that can influence and confound the amplitude of 
motor speech outputs. For example, variations in mouth-to-microphone 
distance and audio gain would influence the amplitude of acoustic 
waveform; intrinsic inter-speaker variabilities in maximal force 
generation capacity would make a direct comparison of sEMG 
amplitude between speakers meaningless. Although these contextual 
factors can be  controlled by proper calibration procedures, such 
procedures usually require additional equipment and/or tasks to 
be performed and cannot always be accommodated in a clinical setting. 
Since the goal of this study was to develop a clinically scalable bulbar 
measurement tool, a calibration-free method based on graph theoretical 
analysis was adopted to robustly measure and characterize the amplitude 
dynamics of both the acoustic waveform and the sEMG signals.

First, the original signal was transformed into a local standard 
deviation series as follows:
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where U U U Uj N  = …[ ]1 2, , ,  is the original signal, 
V V V Vj M  = …[ ]1 2, , ,  is the transformed local standard deviation 

series, and L is the length of intervals during which standard deviation 
is calculated. These intervals were set to be 50 msec long; thus, L was 
set to 1,103 (22 050 50, Hz msec× ) for acoustic signals and 100 
(2 000 50, Hz msec× ) for sEMG signals.

Next, each local standard deviation series as derived by Eq. 2 was 
converted into a visibility graph, using similar procedure as in Melo et al. 
(82). In the graph, each point in Vj   was treated as a vertex; the 
connection between two vertices Vx and Vy was determined by the 
following criterion:
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where Vz represents a vertex between Vx and Vy. If all Vz meet the 
criterion in Eq. 3, Vx and Vy are regarding as being connected (i.e., 
visible to each other).

Lastly, a graph descriptor—density—was calculated to quantify 
the overall visibility level of the signal, using the following equation:

 
density m

M M
=

×
−( )

2

1  
(4)

where M  and m are the total number of vertices and edges of the 
graph, respectively. Density provides a robust means of characterizing 
the amplitude dynamics of the signal, which is not influenced by 
contextual factors such as inter-speaker variations in overall sound 
intensity level and force generation capacity. In a healthy speaker, the 
activation of the bulbar motor system related to speech production 
tends to generate distinctive amplitude dynamics in motor speech 
outputs (e.g., acoustic waveform, myoelectric activities). In a graphical 
term, such distinctiveness of amplitude dynamics is referred to as 

visibility; that is, vertices corresponding to highly activated states of 
the bulbar motor system tend to be  more visible than those 
corresponding to less activated or inactive states. As such, reduced 
activation of the bulbar motor system in ALS is expected to decrease 
the overall visibility (as quantified by density using Eq. 4) of the graph.

2.3.5 Rhythm
The rhythmic characteristics of both speech acoustic and 

sEMG activities were measured using an envelope modulation 
analysis previously developed by our research team. Technical 
details can be found in our prior studies (59, 60). Briefly here, this 
analysis characterizes the rhythmic modulation of speech events of 
different temporal granularities based on the envelope dynamics of 
motor speech signals at multiple timescales. In line with the rate of 
prosodic, syllabic, and sub-syllabic (onset-rime/phoneme) units in 
English, the delta (0.9–2.5 Hz), theta (2.5–12 Hz), and beta/gamma 
(12–40 Hz) timescales are used to characterize the rhythms of 
prosodic stress, syllables, and sub-syllabic segments, respectively. 
The rhythmic characteristics of these speech events are measured 
by the modulation depth at each timescale and the phase 
synchronization index (PSI) between timescales. Our prior work 
has shown that, of all rhythm metrics derived within and across the 
three timescales, ALS exhibits the most consistent effect on theta 
modulation depth and, to a lesser extent, on PSI between theta and 
its neighboring timescales (59, 60). Hence, this study focused on 
the three theta-related rhythm metrics. Specifically, theta 
modulation depth was used as a metric of syllable rhythm; delta-
theta PSI, which measured the harmonic alignment of syllables 
within prosodic units, reflected the regularity of syllable stress; 
theta-beta/gamma PSI, which measured the harmonic alignment 
of sub-syllabic units (onset-time/phonemes) within syllables, 
provided a metric of temporal stability of syllable structures.

To measure the rhythmic characteristics of jaw muscle activities 
during speech, the non-speech intervals related to pauses were 
excluded from all sEMG channels based on the results of pause-speech 
differentiation as described in the pause analysis session. The Hilbert 
envelope of the reconstructed sEMG signals were derived and 
downsampled to 100 Hz. The power spectrum of each downsampled 
envelope was derived using 2048-point FFT with a hamming window. 
Theta modulation depth was calculated by summing the power at all 
frequency bins within the theta band and normalizing it by the total 
spectral power. To measure PSI, each downsampled envelope was 
further band-pass filtered in the time domain into three 
subcomponents (cutoffs of frequency: 0.9–2.5 Hz, 2.5–12 Hz, 
12–40 Hz), using a fourth-order, zero-lag Butterworth filer. PSI was 
calculated between these subcomponents using the following equation:

 PSI ei n t m t= ( )− ( )( )
| |

φ φ1 2

 (5)

where φ1 t( ) and φ2 t( ) are the instantaneous phase of the signals 
(i.e., subcomponents of the downsampled envelope) at time t ; n and 
m  are integers reflecting the frequency relation between the two 
signals; n t m tφ φ1 2( ) − ( ) represents the generalized phase difference. 
For delta-theta PSI and theta-beta/gamma PSI, the ratio of n :m  was 
set to 2:1 and 3:1, respectively (83). All PSIs ranged between 0 and 1, 
with 0 denoting no synchrony and 1 reflecting perfect synchrony 
between signals.
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To measure the rhythmic characteristics of speech acoustic 
activities, the acoustic waveform was reconstructed by excluding all 
pauses and concatenating all speech events. The reconstructed 
waveform was band-pass filtered in the spectral domain into 28 
narrow spectral bands spanning between 100 and 10,000 Hz, matching 
the sound frequency representations on the cochlear map (84, 85). The 
Hilbert envelope of each narrow-band signal was calculated and 
downsampled to 100 Hz, giving rise to 28 narrow-band envelopes. 
Next, these narrow-band envelopes were combined into four critical-
band envelopes within the following spectral frequency bands: 
100–300 Hz, 300–800 Hz, 1,000–3,000 Hz, 3,000–8,000 Hz. These 
frequency bands are conventionally regarded as encoding the spectral 
contents of vocal pitch (f0), first formant (F1) of vowels, second 
formant (F2) of vowels, and noise energy associated with consonants. 
Lastly, the power spectra of all critical-band envelopes were derived, 
based on which the theta modulation depth was calculated for each 
critical-band envelope.

To calculate PSI, each narrow-band envelope was further band-
pass filtered in the time domain into three envelope modulation series, 
using a fourth-order, zero-lag Butterworth filer with cutoffs that 
matched the delta (0.9–2.5 Hz), theta (2.5–12 Hz), and beta/gamma 
(12–40 Hz) rhythms. At each rhythm, all 28 narrow-band envelope 
modulation series were combined into four critical-band envelope 
modulation series. Delta-theta PSI and theta-beta/gamma PSI were 
calculated based on these critical-band envelope modulation series at 
the relevant timescales, using Eq. 5.

2.3.6 Complexity
The complexity of both the acoustic and sEMG signals was 

measured using a nonlinear computational technique—Recurrence 
Quantification Analysis (RQA). RQA builds upon the recurrence plot, 
which is a visualization tool for displaying the dynamics of the phase 
space trajectory of a signal (86, 87). A recurrence plot consists of a 
varying number of recurrence points, each representing a state when 
the phase space trajectory returns to a previous state. To identify 
recurrence points requires specification of three technical 
parameters—embedding dimension m, time delay τ , and threshold ε
. For technical details about these parameters, refer to Marwan (88). 
Based on the recurrence points identified, RQA derives a quantitative 
metric—determinism—as the ratio of recurrence points forming 
diagonal structures to all recurrence points. This metric quantifies the 
overall periodic content in the recurrence plot and is thus inversely 
related to the structural complexity of the signal.

To measure determinism of sEMG signals, the parameters were 
set to m = 30, τ = 5 , ε = 0 1. , as per both standard computational 
testing (e.g., false nearest neighbors and mutual information) and 
empirical evidence from our prior work (45). RQA was applied to 
non-overlapping 1-s segments; during these short segments, sEMG 
signals were considered as being relatively stable, and such stability 
was necessary for reliable detection of the underlying motor unit firing 
patterns. Determinism was calculated for each segment and then 
averaged across segments for each sEMG channel. To measure 
determinism of an acoustic signal, the first 13 mel-frequency cepstral 
coefficients (MFCCs) were computed, which encoded most of the 
speech-related acoustic content. These MFCCs were fed into RQA, 
with the parameters set to m = 3, τ =15, ε = 0 2.  as determined per 
standard computational methods. Determinism was calculated for 
each MFCC.

2.3.7 Regularity
To measure the regularity of both acoustic and sEMG signals, 

we combined wavelet packet decomposition (WPD) (89) with Shannon 
entropy, as previously applied to the analysis of unimodal data (45). 
Specifically, for each modality, the original series was decomposed into 
eight linear time-frequency representations, using 3-level WPD. Such 
decomposition was achieved through iterated low- and high-pass 
filtering, which has been demonstrated to be an effective means of 
delineating and characterizing physiological signals (90). For each 
time-frequency representation, Shannon entropy was calculated as:
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where si  is the ith time-frequency representation. Lastly, Shannon 
entropy as computed using  Eq. 6 was averaged across all eight time-
frequency representations to provide an integrative metric of 
spectrotemporal irregularity for each signal (i.e., higher entropy 
corresponding to lower regularity).

2.4 Validation of the multimodal 
measurement tool

Validation of the multimodal measurement tool was carried out 
in the R statistical computing program (91). For all probability tests, 
both uncorrected (α < 0 05. ) and Bonferroni-corrected significance 
levels were considered for main effects, and the p-values were adjusted 
using the false discovery rate method for post hoc tests.

2.4.1 Feature screening
To reduce the dimensionality of the feature set, a screening 

procedure was applied to exclude features with limited difference 
between the ALS and healthy control groups. To this end, the effect 
size of the between-group difference for all features was calculated 
using Cohen’s d. Of all features, those revealing at least a medium 
effect size ( d > 0 5. ) were retained, and the rest were discarded. After 
the screening, the reduced feature set was submitted for validation 
testing in the following.

2.4.2 Factorization (construct validity)
To evaluate construct validity, all features were normalized by 

z-score transformation and then fed into a 10-factor confirmatory 
factor analysis (CFA), using the cfa function with the maximum 
likelihood estimator in the lavaan package (92). The 10 factors aligned 
with the targeted constructs as measured by different instruments. 
Specifically, these factors included (1) prosody (Pros_a), (2) pause 
(Pause_a), (3) functional connectivity (IMC_e), (4) amplitude of 
acoustic waveform (Amp_a), (5) amplitude of myoelectric activity 
(Amp_e), (6) rhythm of acoustic activity (Rhy_a), (7) rhythm of 
myoelectric activity (Rhy_e), (8) complexity of acoustic activity 
(Comp_a), (9) complexity of myoelectric activity (Comp_e), and (10) 
regularity of myoelectric activity (Reg_e). Note that no factor was 
generated for the regularity of acoustic activity, because the feature 
related to this construct showed only a small between-group difference 
and was screened out in the last step (see more in the Results session).

During model fitting, all features were loaded onto the related 
factors (e.g., meanF0.st, iqrF0.st, meanF0.st were loaded onto Pros_a), 
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generating a factor loading for each feature. By convention, a loading 
of at least 0.5 is required as an empirical cutoff for convergence (93). 
Based on this rule, all features with a loading lower than 0.5 were 
removed, and the remaining features were regarded as the component 
features of the factors. The CFA model generated a variety of statistics 
for evaluating how well the component features represented the 
targeted constructs. Of these statistics, we  selected two most 
commonly used fit indices—comparative fit index (CFI) and root 
mean square error of approximation (RMSEA)—to evaluate the fit of 
the model. Lastly, the scores of all factors were calculated using the 
Bartlett method. These scores represented individual-level outcomes 
in the factor space.

2.4.3 Internal consistency (reliability)
To evaluate reliability, we focused on the internal consistency of 

the multimodal measurement tool. Internal consistency reflects the 
homogeneity of all subparts of an instrument (94). To assess such 
homogeneity, we calculated the Cronbach’s alpha coefficient for all 10 
factors of the multimodal measurement tool.

2.4.4 Regression (concurrent validity)
To evaluate concurrent validity, the relationships between the 

factor scores of the multimodal measurements tool and two functional 
speech metrics—speech intelligibility and speaking rate—were 
assessed across all 437 speech samples using regression analysis. Three 
regression models were constructed for each outcome, including a 
multiple linear regression (MLR), which served as the benchmark for 
comparison with other models, and two nonlinear regressions based 
on the random forest (RF) and support vector machine (SVM) 
algorithms. RF is an ensemble machine learning (ML) algorithm that 
uses a combination of decision trees to solve classification or 
regression problems (95). RF has several strengths, including its 
robustness to data distribution and the built-in feature importance 
ranking to inform the relative contribution of each predictor to the 
outcome. SVM is another widely used ML algorithm, which allows for 
flexible mapping of the raw data into linear or nonlinear space using 
different kernels (96). In this study, the nonlinear radial basis function 
(RBF) kernel was selected due to the known precedence of subclinical 
bulbar involvement before functional speech decline in ALS, which 
would presumably give rise to a nonlinear relationship between the 
instrumental measures and functional speech metrics. The 
performance of all regression models was estimated through 5-fold 
cross-validation repeated 10 times and evaluated by two standard fit 
indices—R2 and root-mean-square error (RMSE).

2.4.5 Classification (efficacy)
To compare the efficacy of the multimodal measurement tool with 

its the constituent unimodal subcomponents, ML classification 
models based on RF and SVM with the RBF kernel were utilized to 
differentiate between the ALS and healthy control samples, using 
different predictors. For the multimodal classification models, the 
scores of all 10 factors were entered as predictors; for the unimodal 
classification models, the scores of the subset of factors derived from 
each modality (Pros_a, Pause_a, Amp_a, Rhy_a, Comp_a for acoustic 
models; IMC_e, Amp_e, Rhy_e, Comp_e, Reg_e for sEMG models) 
were fed into the relevant models as predictors. The performance of 
all classification models was estimated through 5-fold cross-validation 
repeated 10 times and evaluated by the overall accuracy, sensitivity, 

and specificity of classification. In addition, the Receiver Operating 
Characteristic (ROC) curve and the area under the curve (AUC) were 
calculated for all classification models.

To further evaluate the efficacy of the multimodal measurement 
tool for early detection and progress monitoring of bulbar involvement 
in ALS, multiclass classification was utilized to differentiate between 
three classes—ALS + B, ALS − B, and healthy controls—using the scores 
of all 10 factors as predictors. Similar as above, both RF and SVM with 
the RBF kernel were used to fit the multiclass classification models. All 
models were cross-validated through 5-fold cross-validation repeated 
10 times. Based on the cross-validation, the overall AUC and the 
accuracy, sensitivity, and specificity of classification between each two 
of the three classes were calculated. The efficacy for early detection and 
progress monitoring was indicated by the performance of classification 
between ALS − B and healthy controls and between ALS + B and ALS 
− B, respectively. To further evaluate the relevance of each predictor to 
early detection and progress monitoring, separate linear mixed effects 
(LME) models were applied to all factor scores (dependent variable), 
with a three-level categorical variable representing the subgrouping of 
participants (ALS + B, ALS − B, healthy control) as the fixed effect and 
a subject-dependent intercept as the random effect. Post-hoc pairwise 
comparisons were conducted based on estimated marginal means 
(emmeans) (97) and Cohen’s d to identify factors with significant, large 
differences for each comparison.

3 Results

3.1 Feature screening

A subset of features, including 3 prosodic features, 3 pause features, 
8 features of functional connectivity, 3 sEMG-based amplitude features, 
1 acoustic-based amplitude feature, 4 sEMG-based rhythm features, 7 
acoustic-based rhythm features, 1 sEMG-based complexity feature, 4 
acoustic-based complexity features, and 2 sEMG-based regularity 
features, were identified as having at least a medium effect size of the 
difference between the ALS and healthy control groups. Cohen’s d for 
these selected features is displayed graphically in Figure 3.

3.2 Factorization and construct validity

Of all 36 features as identified above, 31 loaded greater than 0.5 
on the relevant factors; the remaining 5 features (1 for functional 
connectivity, 3 for acoustic-based complexity, 1 for sEMG-based 
regularity) had loadings smaller than 0.5 and were thus discarded. The 
structure of the resulting CFA model is depicted in Figure 4. The 
model fit indices are as follows: CFI = 0 92. , RMSE = 0 066. , which 
satisfy the conventional criteria for acceptable fit (CFI > 0 90. , 
RMSE < 0 08. ) (98, 99), providing supportive evidence for the 
construct validity of the model.

3.3 Internal consistency

The internal consistency of the 10-factor CFA model was indicated 
by Cronbach’s alpha for all factors consisting of more than one 
component feature. Specifically, Cronbach’s alpha coefficient was 0.89 
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for Pros_a, 0.81 for Pause_a, 0.79 for IMC_e, 0.97 for Amp_e, 0.66 for 
Rhy_e, and 0.78 for Rhy_a (Amp_a, Comp_e, Comp_a, Reg_e only had 
one component feature, and Cronbach’s alpha was not applicable). 
While a consensus on the interpretation of Cronbach’s alpha is 
currently lacking, researchers have suggested a value >0.6 as 
satisfactory and a value >0.7 as ideal (93, 94). Because all Cronbach’s 
alpha coefficients calculated herein were greater than 0.6, with the 
majority being greater than 0.7, the internal consistency of the CFA 
model was regarding as satisfactory to ideal.

3.4 Concurrent validity

The statistics summary of the regression models for the 
relationships between the scores of all 10 factors and the two 
functional speech metrics (i.e., SIT-derived speech intelligibility and 
speaking rate) is provided in Table 3. For both outcomes, the RF and 
SVM-based nonlinear regression models showed overall better fit than 
the benchmark (i.e., MLR model), as indicated by smaller RMSE and 
greater R2. Moreover, regardless of ML algorithm, the nonlinear 
regression models consistently accounted for the majority of variance 

in both outcomes (79–88%), providing supportive evidence for the 
concurrent validity of the multimodal measurement tool. In addition 
to the overall fit, the importance of individual predictors to the 
outcomes, as indexed by decrease in node impurity, was estimated by 
the RF-based models. As shown in Table 3, Rhy_a, IMC_e, Amp_e, 
Rhy_e, and Pause_a were the top five predictors of speech intelligibility, 
whereas Rhy_a, Comp_a, Rhy_e, Comp_e, and Pros_a were the top five 
predictors of speaking rate.

3.5 Efficacy of classification between ALS 
and healthy controls: multimodal vs. 
unimodal

Table  4 lists the performance metrics of all six classification 
models that used different predictors to differentiate between ALS and 
healthy control samples. The ROC curves for these models are 
displayed in Figure 5. The two ML algorithms revealed consistent 
performance on all metrics and ROC curve. Of all six models, the two 
based on multimodal predictors (i.e., scores of all 10 factors) showed 
the highest accuracy (0.88), sensitivity (0.88–0.89), specificity (0.88), 

FIGURE 3

Cohen’s d effect size of between-group (ALS vs. healthy controls) difference of selected features, all exhibiting at least a medium effect size ( | | .d > 0 5 ).
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and AUC (0.95), outperforming the other four models based on 
unimodal predictors (i.e., scores of sEMG or acoustic-based factors). 
These results confirmed the superior efficacy of the multimodal 
measurement tool over its unimodal subcomponents for detecting 
bulbar involvement in ALS.

3.6 Efficacy for early detection and 
progress monitoring of bulbar involvement 
in ALS

The results of multiclass classification between ALS − B, ALS + B, 
and healthy controls are provided in Table 5. The two ML algorithms 

exhibited consistently good performance, both on the classification 
across all three classes (AUC = 0 96. ) and on the classification between 
each two of the three classes (accuracy ≥ 0 91. ). More specifically for 
the latter, the better classification model of the two (1) exhibited both 
high sensitivity (0.90) and specificity (0.96) for differentiating ALS + B 
from healthy controls, providing corroborating evidence for the 
efficacy of the multimodal measurement tool for detecting clinical 
confirmed bulbar involvement in ALS; (2) was highly specific (0.94) 
for differentiating ALS − B from healthy controls, confirming the 
specificity of the multimodal measurement tool for detecting 
prodromal bulbar involvement in ALS; (3) was both highly sensitive 
(0.94) and specific (0.98) for differentiating ALS + B from ALS − B, 
substantiating the efficacy of the multimodal measurement tool for 

FIGURE 4

Structure of the factorial model constructed by confirmatory factor analysis. Factors, their component features, and the loadings of these features on 
the factors are displayed on the left, right, and middle sides of the diagram, respectively.
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monitoring the progression of bulbar involvement from prodromal to 
symptomatic stages.

The statistics summary of the LME models and Cohen’s d for 
factor score comparisons across the three classes are provided in 
Table 6. Among the 10 factors, a significant main effect of subgroup 
(ALS − B, ALS + B, healthy controls) was found on the scores of 8 
factors (p < 0 05. ); two of these factors (Amp_a, Rhy_a) survived 
Bonferroni correction of significance level for multiple tests (p < 0 005.

). Based on the post hoc comparisons between ALS − B and healthy 
controls, Pros_a showed a significant large decrease; Reg_e showed a 
significant large increase; Comp_e exhibited a marginally significant 
large decrease. Based on the post-hoc comparisons between ALS + B 
and ALS − B, Rhy_a showed a significant large decrease; Rhy_e 
showed an insignificant large decrease; Amp_a revealed a significant 
medium decrease. For the post-hoc comparisons between ALS + B and 
healthy controls, all factors except Comp_e and Pause_a showed a 
significant difference, most with a large effect size.

4 Discussion

This study developed and validated a multimodal measurement 
tool, which built upon two clinically readily available, noninvasive 
instrumental techniques (sEMG and acoustic) coupled with a fit-for-
purpose, fully automated data analytic algorithm, aiming to offer an 
objective means of assessing bulbar involvement in ALS. Compared 
to the existing clinical and instrumental bulbar assessment methods, 

this tool is innovative and advantageous in that it provides a holistic 
assessment of seven carefully selected constructs of bulbar/speech 
motor control (i.e., prosody, pause, functional connectivity, amplitude, 
rhythm, complexity, regularity), which are mechanically linked to 
both UMN and LMN-related bulbar neuromuscular pathology and 
generate clinically interpretable outcomes that have both assessment 
and management implications.

Using the multimodal measurement tool, a variety of features 
were extracted from the sEMG and acoustic modalities during a 
speech task. These features were successfully clustered into 10 
internally consistent, structurally valid factors in alignment with the 
targeted constructs as encoded in the sEMG or acoustic modality. 
Using machine learning algorithms, the scores of the 10 factors 
demonstrated (1) strong correlations with the functional speech 
outcomes (R2 79 88= − % ) and (2) high accuracy (0 91 0 96. .− ) for 
detecting subclinical bulbar changes, both during the clinically silent 
prodromal stage and during the transition from prodromal to 
symptomatic stages. These results together provide compelling initial 
evidence for the reliability and validity of the multimodal 
measurement tool and its efficacy for both early detection and 
progress monitoring of bulbar involvement in ALS. Moreover, the 
multimodal measurement tool outperformed its unimodal 
subcomponents as obtained from each constituent modality for 
detecting bulbar involvement, which paves the way for combining 
multimodal instrumental measurements in future bulbar assessment.

TABLE 3 Statistics summary of regression models for the relationships 
between the factors obtained by the multimodal measurement tool 
(Pros_a, prosody; Pause_a, pause; IMC_e, functional connectivity; 
Amp_e, sEMG-based amplitude; Amp_a, acoustic-based amplitude; 
Rhy_e, sEMG-based rhythm; Rhy_a, acoustic-based rhythm; Comp_e, 
sEMG-based complexity; Comp_a, acoustic-based complexity; Reg_e, 
sEMG-based regularity) and the functional speech outcomes (speech 
intelligibility, speaking rate).

Speech intelligibility Speaking rate

RF SVM MLR RF SVM MLR

Overall fit

RMSE 7.51 6.48 14.31 17.71 18.55 23.76

R2 0.83 0.88 0.43 0.81 0.79 0.66

Importance ranking

Pros_a 5378.42

N/A N/A

45678.29

N/A N/A

Pause_a 10614.18 32669.43

IMC_e 35995.86 17689.22

Amp_e 26814.74 17737.57

Amp_a 1941.33 6076.06

Rhy_e 16043.70 100002.67

Rhy_a 38703.06 282729.37

Comp_e 4080.26 54594.96

Comp_a 7493.63 112659.34

Reg_e 5379.34 31097.18

sEMG, surface electromyohraphy; RF, random forest; SVM, support vector machine; MLR, 
multiple linear regression; RMSE, root-mean-square error. The importance of individual 
factors to the outcomes is measured by the total decrease in node impurity (i.e., residual sum 
of squares) derived by the RF algorithm; a larger value corresponds to greater importance.

TABLE 4 Performance of classification models that use different 
predictors (multimodal, sEMG, acoustic) to differentiate between the data 
samples for individuals with amyotrophic lateral sclerosis (ALS) and 
healthy controls.

Multimodal sEMG Acoustic

RF SVM RF SVM RF SVM

Overall performance

Accuracy 0.88 0.88 0.80 0.80 0.82 0.83

Sensitivity 0.88 0.89 0.78 0.79 0.84 0.84

Specificity 0.88 0.88 0.81 0.80 0.79 0.81

AUC 0.95 0.95 0.86 0.85 0.90 0.90

Importance ranking

Pros_a 75.36

N/A

N/A

N/A

89.07

N/A

Pause_a 12.48 N/A 36.56

IMC_e 6.08 26.94 N/A

Amp_e 3.79 29.56 N/A

Amp_a 4.46 N/A 19.58

Rhy_e 12.22 49.87 N/A

Rhy_a 17.43 N/A 34.62

Comp_e 24.73 46.91 N/A

Comp_a 14.39 N/A 31.07

Reg_e 39.90 57.60 N/A

sEMG, surface electromyohraphy; RF, random forest; SVM, support vector machine; AUC, 
area under the curve; Pros_a, prosody; Pause_a, pause; IMC_e, functional connectivity; 
Amp_e, sEMG-based amplitude; Amp_a, acoustic-based amplitude; Rhy_e, sEMG-based 
rhythm; Rhy_a, acoustic-based rhythm; Comp_e, sEMG-based complexity; Comp_a, 
acoustic-based complexity; Reg_e, sEMG-based regularity. The importance of individual 
factors to the classification is measured by the total decrease in node impurity (i.e., Gini 
index) derived by the RF algorithm; a larger value corresponds to greater importance.
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4.1 Mechanistic links between the 
outcomes of the multimodal measurement 
tool and bulbar neuromuscular pathology 
in ALS

A major strength of the multimodal measurement tool in this 
study is the mechanistic relevance of the constructs being measured 
to the neuromuscular pathology of bulbar involvement in ALS. Such 
mechanistic relevance, as conceptualized in Figure 1, is empirically 
supported by the factorial model (Figure 4) and the observed disease 
effects on the component features of this model (Figure 3). Specifically, 
the successful factorization of all features into composite outcomes 
(factors) in alignment with the theoretical constructs demonstrates 
the structural construct validity of these features in providing true 
representations of the targeted constructs. Moreover, the internal 
consistency of the outcomes, as indicated by Cronbach’s alpha (> 0 6.
), further provides evidence for the homogeneity of the features in 
measuring the targeted constructs.

Importantly, the component features of the factorial model reveal 
disease-related changes in expected ways consistent with the 
neuromuscular pathology of bulbar involvement in ALS. Based on the 
effect sizes in Figure 3, all prosodic features show large decreases, 
implying prosodic deficiency. All pause measures show large increases, 

revealing a trend toward longer, more frequent and variable pauses 
between speech events. This trend is in agreement with the previously 
reported abnormal pause pattern of speakers with ALS (31, 64, 100, 
101). Intermuscular coherence exhibits medium-to-large decreases 
across all frequency bands (theta/alpha, beta, gamma), pointing 
toward a global trend of reduced functional connectivity of the 
mandibular muscle network. Among the three bands, reduced beta-
band coherence between jaw muscles has been previously reported 
(44, 45), while the current study further extends the finding to the 
coherence in two additional bands. Taken together, these results 
suggest that reduced functional connectivity of the mandibular muscle 
network is associated with the impairment of multiple oscillatory 
drives from both motor cortical and other related cortical and 
subcortical sources.

Regarding amplitude density, both sEMG and acoustic signals 
exhibit large decreases, reflecting less distinctive amplitude dynamics 
of myoelectric and acoustic activities. Regarding rhythm, the theta 
modulation depth for all jaw muscles and the critical-band envelopes 
in the 300–800, 1,000–3,000, and 3,000–8,000 Hz bands show 
medium-to-large decreases, providing converging evidence for 
reduced entrainment of myoelectric and acoustic-physiological 
activities to syllable rhythm, especially pertaining to the articulation 
of vowels (as encoded in the 300–800 and 1,000–3,000 Hz bands) and 
consonants (as encoded in the 3,000–8,000 Hz band). Moreover, the 
delta-theta PSI for masseter shows a large decrease, reflecting reduced 
harmonic entrainment of masseter to produce syllable stress; 
additionally, the theta-beta/gamma PSI for all critical-band envelopes 
exhibit large decreases, revealing reduced harmonic entrainment of 
acoustic-physiological activities to produce stable temporal structures 
of syllables. Together, the observed rhythmic disturbances within and 
across timescales are in keeping with prior finding of impaired 
entrainment of motor speech activities to the rhythms of the 
underlying linguistic events (59, 60).

Regarding complexity, the determinism of temporalis activity 
exhibits a large decrease, which corresponds to increased complexity. 
This increase, although not in entire agreement with the expected 
pathological change in complexity as conceptualized in Figure  1, 
resonates with the finding of prior empirical research (45). Instead of 
being a direct pathological consequence, such an increase in the 
complexity of temporalis activity has been interpreted as a secondary 
functional adaptation (45). This adaptation is characterized by 
reduced functional recruitment of masseter—a preferred agonist for 
speech-related jaw elevation in healthy speakers (102)—and an 
accompanying increase in the recruitment of temporalis, which is a 
biomechanically less advantageous jaw agonist for speech production 
but is histochemically more resistant to ALS than masseter due to the 
higher composition of slow fibers (55, 57, 103). The resulting increase 
in functional recruitment of temporalis could yield more complex 
activation patterns. In contrast, the determinism of the first-order 

TABLE 5 Multiclass classification between individuals at the prodromal stage of bulbar involvement secondary to amyotrophic lateral sclerosis (ALS − B), 
individuals at the symptomatic stage of bulbar involvement secondary to amyotrophic lateral sclerosis (ALS  +  B), and healthy controls (Control).

ALS − B vs. control ALS  +  B vs. ALS − B ALS  +  B vs. control

Model Multiclass AUC Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec.

RF 0.96 0.91 0.86 0.93 0.95 0.94 0.97 0.92 0.83 0.97

SVM 0.96 0.91 0.87 0.94 0.96 0.94 0.98 0.93 0.90 0.96

RF, random forest; SVM, support vector machine; AUC, area under the curve; Acc, accuracy; Sens, sensitivity; Spec, specificity.

FIGURE 5

Receiver operating characteristic (ROC) curve for the classification 
models between the speech samples from individuals with 
amyotrophic lateral sclerosis (ALS) and healthy controls. RF, random 
forest; SVM, support vector machine; sEMG, surface 
electromyography.
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MFCC shows a large increase, reflecting less complex variations in the 
spectral shape of the source-filter transfer function during running 
speech. Such a change would conceivably compromise the ability of 
the speech production system in conveying complex linguistic 
information, in turn degrading the outcome of functional 
communication. Regarding regularity, a large increase in Shannon 
entropy is found in temporalis, reflecting reduced regularity of its 
myoelectric activity. Consistently, prior work has reported a similar 
decrease in the regularity of jaw myoelectric activities, especially of 
temporalis (45).

In summary, the features extracted by the multimodal 
measurement tool are intrinsically homogeneous and valid in 
representing the targeted theoretical constructs of bulbar/speech 
motor control. The disease-related changes in all features are 
interpretable in such a way as to align with the conceptualized effects 
of combined UMN and LMN involvement on the targeted constructs. 
These findings empirically substantiate the mechanistic links between 
the outcomes of the multimodal measurement tool and bulbar 
neuromuscular pathology, which are of fundamental importance for 
a comprehensive understanding and targeted assessment of bulbar 
involvement in ALS.

4.2 Relation of the multimodal 
measurement tool to the existing clinical 
and functional criteria for diagnosing and 
evaluating bulbar involvement in ALS

Based on the nonlinear ML regressions, the outcomes of the 
multimodal measurement tool (i.e., scores of the 10 factors) 
demonstrate strong correlations with the two functional speech 
metrics (R2 0 79 0 88= −. . ; see Table 3), providing evidence for the 
concurrent validity of the multimodal measurement tool. Linear 
regression shows overall worse fit (R2 0 43 0 66= −. . ), especially for the 
intelligibility model. This finding is not surprising given the known 

nonlinearity of intelligibility decline at an incremental rate over the 
time course of bulbar involvement in ALS (64, 101). Speaking rate, on 
the other hand, declines more rapidly, especially during the early stage, 
resulting in a more linear decline pattern than that of intelligibility 
(66, 101).

Based on the importance rankings, the 10 factors exhibit 
differential contributions to the functional speech metrics. Notably, 
the factors related to rhythm (Rhy_a, Rhy_e) are among the top 
contributors to both intelligibility and speaking rate, highlighting the 
functional importance of rhythm in conveying intelligible linguistic 
information at an appropriate rate. Such functional importance can 
be attributed to an oscillation-based speech processing mechanism 
known as rhythmic entrainment. On the perception side, prior 
neuroacoustic studies have associated such a mechanism with a 
bottom-up process through phase-locking of theta oscillations in the 
auditory cortex to the rise-fall dynamics of syllables, allowing the 
incoming sound stream to be parsed into discrete syllables (104–106). 
Such syllable parsing further provides a gate-keeping mechanism to 
entrain oscillations at other timescales (e.g., delta, beta/gamma) for 
hierarchical multiscale speech processing (107). On the production 
side, behavioral studies have provided parallel evidence showing 
entrainment of the motor speech system to the theta rhythm (108, 
109). Linking the processes on the production and perception sides 
reveals a common paradigm of entrainment centered on the theta 
(syllable) rhythm. Such an entrainment paradigm, in the context of 
the current study, corroborates with the strong correlations between 
the theta-related rhythm metrics of motor speech activities and the 
functional speech outcomes. From a clinical perspective, this finding 
provides an impetus to explore the role of syllable rhythm in the 
management of dysarthria in ALS.

In addition to the correlations with the functional speech 
outcomes, the factors also show high efficacy for differentiating 
ALS + B from healthy controls (see Table 5). This finding demonstrates 
the clinical validity of the multimodal measurement tool for detecting 
bulbar involvement as confirmed by the current diagnostic criteria. 

TABLE 6 Statistical results for the main effect of subgroup (ALS − B: individuals at the prodromal stage of bulbar involvement secondary to 
amyotrophic lateral sclerosis; ALS  +  B: individuals at the symptomatic stage of bulbar involvement secondary to amyotrophic lateral sclerosis; Control: 
healthy controls) on the scores of the 10 factors and the post hoc pairwise comparisons.

Factor Main effect Pairwise comparisons

ALS − B vs. control ALS  +  B vs. ALS − B ALS  +  B vs. control

F p t p es t p es t p es

Amp_e 6.26 0.0078 −1.62 0.12 −0.40 −1.85 0.12 −0.52 −3.53 0.0063 −0.89

Comp_e 2.87 0.080 −2.39 0.080 −1.18 1.11 0.29 0.46 −1.08 0.29 −0.66

Rhy_e 6.81 0.0056 −1.78 0.091 −0.73 −1.83 0.091 −0.82 −3.68 0.0045 −1.52

IMC_e 6.04 0.0090 −1.44 0.17 −0.35 −1.95 0.098 −0.56 −3.47 0.0072 −0.89

Reg_e 5.65 0.011 2.40 0.040 1.13 0.76 0.46 0.28 3.11 0.017 1.27

Amp_a 7.18 0.0045 −0.57 0.58 −0.089 −2.90 0.013 −0.58 −3.67 0.0045 −0.66

Comp_a 3.72 0.042 1.50 0.22 0.62 1.16 0.26 0.50 2.68 0.043 1.24

Rhy_a 8.60 0.0020 −1.50 0.15 −0.50 −2.52 0.031 −0.87 −4.14 0.0015 −1.32

Pros_a 6.98 0.0050 −3.58 0.0057 −1.93 0.92 0.37 0.42 −2.41 0.038 −1.14

Pause_a 3.17 0.064 1.57 0.20 0.67 0.87 0.40 0.36 2.43 0.074 1.04

Significant main effects at the uncorrected significance level (α < 0 05. ) are shown in bold, and those surviving Bonferroni correction (α < 0 005. ) are further highlighted in bold-italic. 
Significant p-values and large effect sizes for the pairwise comparisons are shown in bold-italic. F, F-value; p, p-value; es, Cohen’s effect size. p-values for pairwise comparisons are adjusted by 
the false discovery rate method.
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Taken together, the results of the regression and classification analyses 
provide converging evidence for the validity of the multimodal 
measurement tool in relation to the existing clinical and functional 
criteria for diagnosing and evaluating bulbar involvement in ALS.

4.3 Combining multimodal instrumental 
techniques to improve the early detection 
and monitoring of bulbar involvement in 
ALS: a new promising direction

As shown in Table 4 and Figure 5, the multimodal measurement 
tool as a whole outperforms its unimodal subcomponents for 
differentiating between ALS and healthy control samples. It is thus 
conceivable that the measures obtained by sEMG and acoustic 
techniques provide complementary information to the extent that 
leads to improved detection of bulbar involvement through combining 
the two modalities. Moreover, the top five predictors of the 
classification model include both sEMG-based (Reg_e, Comp_e) and 
acoustic-based (Pros_a, Rhy_a, Comp_a) measures, providing further 
evidence for the need for both modalities to achieve satisfactory 
classification performance. Interestingly, four of these predictors 
(Pros_a, Comp_e, Rhy_a, Comp_a) overlap with the top contributors 
to speaking rate—a metric currently used by clinicians to stage the 
course of dysarthria progression in ALS patients (66, 110). This 
observation accentuates the critical roles of prosody, complexity, and 
rhythm, as measured crossmodally, in both the detection and staging 
of bulbar/speech impairment. According to these findings, the 
multimodal measurement tool demonstrates a clear strength over its 
unimodal subcomponents, paving the way for combining multimodal 
instrumental techniques as a means to improve the efficacy of bulbar 
assessment in future clinical practice.

Based on the results of multiclass classification as shown in 
Table 5, the multimodal measurement tool shows promise for both 
early detection of prodromal bulbar involvement and for monitoring 
of bulbar progression from prodromal to symptomatic stages. 
Regarding early detection, the 10 factors combined achieve 91% 
accuracy in differentiating ALS − B from healthy controls. Of all 
factors, prosody (Pros_a), regularity of temporalis activity (Reg_e), 
and complexity of temporalis activity (Comp_e) exhibit the greatest 
changes between ALS − B and healthy controls (see Table  6). 
Regarding progress monitoring, the 10 factors combined are over 93% 
accurate in differentiating ALS + B from ALS − B. Of all factors, the 
rhythm of both acoustic and myoelectric activities (Rhy_a, Rhy_e) 
reveal the greatest changes between the two subgroups of patients.

The above findings elucidate differential susceptibility of the 10 
factors to different stages of bulbar involvement in ALS, rendering 
them potential for distinct clinical applications. Specifically, prosody 
and regularity are most susceptible to the prodromal stage of bulbar 
involvement, and their declines slow down or stabilize as the disease 
progresses from prodromal to symptomatic stages. Complexity is also 
susceptible to early prodromal bulbar involvement, but its change is 
reversed during the transition from prodromal to symptomatic stages 
such that the earlier-observed disease effect is lost during the 
symptomatic stage. This observation is most likely associated with the 
nature of the early-stage increase in the complexity of temporalis 
activity, which is presumed to reflect a secondary functional 
adaptation rather than a direct pathological consequence. Such an 

adaptation may become more difficult as trigeminal motor neurons 
continue to degenerate with disease progression, leading to the 
ultimate loss of the adaptation during a later stage. Despite the 
differential responses to bulbar progression, prosody, regularity, and 
complexity all exhibit large detectible changes during the prodromal 
stage, making them good candidates for early markers of bulbar 
involvement to improve the detection of prodromal changes in 
different constructs of bulbar/speech motor control. On the other 
hand, rhythm is less susceptible to early prodromal bulbar involvement 
but exhibits an accelerated decline during the transition from 
prodromal to symptomatic stages. Given the high responsiveness to 
this transition, the factors related to acoustic and sEMG rhythms may 
be  good candidates for progression markers to monitor bulbar 
involvement in ALS. For the rest of the factors (e.g., IMC_e, Amp_e, 
Amp_a, Comp_a, Pause_a), most exhibit a slower but steady decline 
over the entire course of bulbar involvement. The disease effects on 
these factors are only modest during the prodromal stage yet 
accumulate over time, eventually culminating in notable changes in 
the factor scores when the disease progresses to the symptomatic 
stage. These factors are less preferable as markers for early detection 
or progress monitoring but still contain important explanatory 
information about bulbar dysfunction in ALS.

4.4 Clinical implications

The novel multimodal measurement tool in this study has several 
advantages that render it highly scalable for clinical applications. The 
major advantages include (1) use of clinically readily available, 
noninvasive instrumental techniques, (2) standardization of 
instrumentation and setup (e.g., electrode placement and orientation 
with reference to anatomical landmarks) to maximize inter-subject 
and intersession reliability, (3) standardization and objectification of 
outcome measures to allow for unbiased interpretation and report of 
results, and (4) nonexpert-friendliness, owing to the fully automated 
data processing and analysis methods. Moreover, based on an informal 
post-study survey, all participants reported having no significant 
physical or mental discomfort related to the study procedures and 
were willing to come back for a follow-up session provided that they 
had the functional capacity to do so.

The multimodal measurement tool has three clinical implications. 
First, it can facilitate early access to optimal clinical management of 
bulbar dysfunction, especially pertaining to voice preservation. 
Regardless of disease onset, early consultation on voice preservation 
is advocated, which allows patients to record and bank their voice for 
future use on an AAC device when speech is no longer an effective 
means of communication. Given the demonstrated efficacy for 
detecting prodromal bulbar changes, the multimodal measurement 
tool may improve the early diagnosis of bulbar involvement, which 
would allow patients more time to consult with clinicians and bank 
their voice before their verbal communication starts to deteriorate. 
Second, the multimodal measurement tool can improve stage-
dependent management of dysarthria. The current clinical guideline 
for dysarthria management follows a staging principle, which defines 
five stages of intervention focusing, respectively, on information 
gathering, environmental modification (e.g., minimizing background 
noise), behavioral modification (e.g., volitional speaking rate 
reduction, hyper-articulation), introduction of AAC as a primary or 
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supplementary means of communication, and full reliance on AAC 
(110). To effectively implement such stage-dependent management, it 
is most important to identify critical periods when the patient’s 
communication capacity is expected to change, in order to allow for 
timely adjustment of intervention to meet the new communication 
needs. Given the demonstrated responsiveness to bulbar changes 
across stages, the multimodal measurement tool may provide a 
monitoring technique to track changes related to bulbar progression; 
based on these changes, critical periods can be identified to assist 
clinicians in implementing the staging principle of intervention to 
target the evolving communication needs of patients throughout their 
disease course.

Lastly, the multimodal measurement tool may provide a novel 
means for deep phenotyping of speech impairment in individuals with 
ALS. As a hallmark of ALS, heterogeneity is well recognized across 
functional domains including speech. The presentation and 
progression of speech impairment vary substantially across 
individuals. To delineate such heterogeneity requires deep 
phenotyping of the neuromotor and physiological underpinnings of 
speech impairment rather than clinical manifestations alone. The 
multimodal measurement tool in this study provides such a means for 
deep speech phenotyping. The individual-level phenotype data 
generated by this tool can guide the selection and stratification of 
participants for clinical trials to facilitate the discovery of new 
treatments. In addition, the multimodal measurement tool can also 
be used to collect phenotype data during the course of intervention/
treatment to provide insights into the intervention/treatment progress. 
Such insights can guide clinicians in selecting and adapting evidence-
based practice elements to the responses of individual patients during 
the intervention/treatment course, which would ultimately shape a 
new path for measurement-based care—a practice of basing clinical 
care on patient data collected throughout treatment/intervention (111).

4.5 Limitations and future directions

Despite the promising findings of this study, it must 
be acknowledged that these findings were based on a relatively small 
sample collected from a single site. Further larger-scale cross-site 
validation is warranted to substantiate the reliability, validity, and 
efficacy of the multimodal measurement tool in future work. Along 
these lines, the current study served as a starting point and was 
designed in a way to facilitate future efforts. Specifically, the study 
protocol was developed and implemented in a way as to maximize 
reproducibility and replication, through standardization of 
experimental procedures (e.g., electrodes placement and orientation) 
and automation of data processing and analysis. Validation testing was 
conducted on (1) a heterogeneous ALS cohort, which provided a 
representative sample of the entire course of bulbar involvement 
spanning prodromal to symptomatic stages, and (2) a phonetically 
balanced speech task consisting of 19 sentences with varying contexts 
and lengths, which individually rendered sufficient variability and 
together provided a comprehensive coverage of the phonetic inventory 
to ensure the robustness and generalizability of the results.

It should also be  noted that this study was cross-sectional in 
nature. Thus, the efficacy of the multimodal measurement tool for 
progress monitoring was evaluated based on the comparison of cross-
sectional data obtained from individuals at different stages of bulbar 
involvement (ALS − B, ALS + B) rather than longitudinal data 

reflecting the progression of bulbar involvement within an individual. 
The between-subject differences in the former were by no means 
equivalent to the within-subject differences in the latter. Future work 
should focus on further testing the responsiveness of the multimodal 
measurement tool to the progression of bulbar involvement within an 
individual based on longitudinal data.

There are several factors that can potentially bias or impact the 
generalization of the results and should be further delineated in future 
research. First, while we considered the participants without overt 
clinical bulbar symptoms (i.e., ALS − B) as being at the prodromal 
stage of bulbar involvement (i.e., “false negatives”), it should 
be pointed out that population-wise there is a small proportion of 
patients with ALS who never develop bulbar involvement throughout 
their disease course (i.e., “true negatives”). In our study, the mean 
disease duration of the ALS − B subgroup is 453 days post-diagnosis, 
which according to a prior longitudinal study renders 50%–70% 
probability of functional speech decline and over 90% probability of 
subclinical articulatory decline (e.g., changes in jaw and lip motor 
performance) (101). Thus, we consider the chance of the participants 
in the ALS − B subgroup having subclinical bulbar involvement to 
be high. The observed differences in the composite outcome measures 
between ALS − B and healthy controls corroborate this presumption, 
demonstrating that (1) the majority if not all of the participants in the 
ALS − B subgroup had already experienced subclinical bulbar 
involvement and (2) our multimodal measurement tool can effectively 
capture such subclinical changes. Second, our participants spanned a 
wide age range, and age could influence some speech features such as 
vocal pitch. This potential confounder should be further investigated 
and factored into the analysis in future research. Third, the dataset for 
validating the proposed multimodal measurement tool consisted of 
multiple samples collected from each participant. As an initial effort 
of validation, we did not differentiate between- and within-participant 
variance during the training of the ML models. While all models were 
tested with 5-fold cross-validation repeated 10 times to reduce the 
possibility of overfitting to data samples drawn from specific 
participants, future larger-scale validation studies should account for 
the potential between- and within-participant effects (e.g., by testing 
different data partitioning methods such as leave-one-subject-out).

5 Conclusion

Using combined facial sEMG and acoustic instrumental 
techniques coupled with a fit-for-purpose data analytic algorithm, an 
objective multimodal measurement tool was developed to link seven 
theoretical constructs of bulbar/speech motor control (prosody, pause, 
functional connectivity, amplitude, rhythm, complexity, regularity) 
with measurable outcomes. Based on validation testing on over 400 
speech samples collected from a heterogeneous group of individuals 
with ALS and age-matched healthy controls, the multimodal 
measurement tool demonstrated (1) internal consistency and 
structural validity for measuring the targeted constructs and (2) 
concurrent validity in relation to established clinical and functional 
criteria for diagnosing and evaluating bulbar involvement in 
ALS. Moreover, all outcomes of the measurement tool exhibit 
interpretable disease-related changes in line with the neuromuscular 
pathology of bulbar involvement in ALS. Together, these outcomes 
show high efficacy for detecting subclinical bulbar changes, both 
during the prodromal stage and during the transition from prodromal 
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to symptomatic stages, and outperform the unimodal subcomponents 
as obtained from each constituent modality. The findings of this study 
provide compelling initial evidence for the utility of the multimodal 
measurement tool for improving both the early diagnosis and progress 
monitoring of bulbar involvement, which are critical for timely access 
to and delivery of optimal clinical care. From a practical perspective, 
the multimodal measurement tool has several desirable features, 
including the use of noninvasive, clinically readily available 
instruments, fully automated data analytics, and mechanistically 
relevant and clinically interpretable outcomes, enhancing its scalability 
into future clinical settings.
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