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Neurodegenerative and neuroinflammatory diseases, including Alzheimer’s 
disease, Parkinson’s disease, and multiple sclerosis, affect millions of people 
globally. As aging is a major risk factor for neurodegenerative diseases, the 
continuous increase in the elderly population across Western societies is 
also associated with a rising prevalence of these debilitating conditions. The 
complement system, a crucial component of the innate immune response, 
has gained increasing attention for its multifaceted involvement in the normal 
development of the central nervous system (CNS) and the brain but also as 
a pathogenic driver in several neuroinflammatory disease states. Although 
complement is generally understood as a liver-derived and blood or interstitial 
fluid operative system protecting against bloodborne pathogens or threats, 
recent research, particularly on the role of complement in the healthy and 
diseased CNS, has demonstrated the importance of locally produced and 
activated complement components. Here, we provide a succinct overview over 
the known beneficial and pathological roles of complement in the CNS with 
focus on local sources of complement, including a discussion on the potential 
importance of the recently discovered intracellularly active complement system 
for CNS biology and on infection-triggered neurodegeneration.
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Introduction

Aging is inevitably accompanied by physiological changes in cellular behavior that 
overall result in decline in homeostasis and function and, eventually, cell death. Age-related 
perturbations in cellular activities and neuronal cell loss in the central nervous system 
(CNS) are major underlying causes for neurodegenerative diseases, including Alzheimer’s 
disease (AD), amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), and 
Parkinson’s disease (PD) (1). Furthermore, neuroinflammation, defined as an inflammatory 
response within the brain and/or spinal cord, often cumulates in neuronal loss and 
neurodegeneration, as seen in the autoimmune inflammatory condition multiple sclerosis 
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(MS) (2). Although some risk factors and disease-driving molecular 
mechanisms for neurodegenerative or neuroinflammatory diseases 
have been identified, generally, disease pathologies are not well 
understood. This, in combination with the fact that targeting the 
CNS therapeutically remains difficult due to the highly effective 
function of the blood–brain barrier (BBB) as a selective CNS entry 
guardian (3), contributes to a lack of effective drugs targeting 
primary or secondary neurodegeneration.

The complement system, best known as a key arm of innate 
immunity, has gained attention as a major player in healthy CNS 
biology based on its contributions to normal neuronal development, 
but also for its involvement in inflammatory processes within the 
CNS. Studies have revealed dysregulation of complement activation 
in various neurodegenerative and inflammatory conditions, including 
AD and MS (4, 5). Interestingly, both beneficial and pathological 
activities of complement in the brain or spinal cord are majorly 
dependent on locally produced complement with limited involvement 
from the liver-derived circulating complement (6). This observation 
is in line with recent adjustments in our understanding of the 
complement system. Initially, complement was thought to be  a 
circulation- or vessel-operative system with only a simple role in 
mediating the detection and removal of bloodborne pathogens. 
Today, we acknowledge that the complement system is operative at 
different locations that span the vasculature, the extracellular space in 
tissues where it is critical in mediating protective tissue immunity (7, 
8), and within cells where it regulates basic cellular processes (9). The 
functional reach of complement allows it to directly modulate innate 
and adaptive immune responses and the behavior of non-immune 
cells, both during homeostasis and in response to danger-associated 
molecular patterns (DAMPs) and other noxious triggers. 
Furthermore, complement has emerged as a key mediator of tissue 
homeostasis, repair, and regeneration and as such is also involved in 
the molecular pathways underlying resolution of CNS inflammation 
and remyelination of neurons after myelin sheath loss, for 
example, in MS.

Here, we will give a condensed overview of the known sources 
and roles of complement components in normal CNS function, such 
as neuronal development and nerve pruning, as well as in disease 
pathologies contributing to neurodegenerative or neuroinflammatory 
pathogeneses, and processes that may aid in the resolution or repair 
of CNS tissue injury. Not included here are the emerging roles of 
complement in pathologies of peripheral nerves or neuromuscular 
junctions, such as Guillain-Barré syndrome, and myasthenia gravis 
(MG), and others (1). Of note though, MG is currently the sole 
neurodegenerative disease successfully targeted by an anti-
complement drug (10, 11). We will conclude with a summary on 
emerging areas of new complement locations and activities that 
we  suggest could be  important in CNS pathologies, such as the 
intracellularly active complement system and its tight association 
with the control of single cell physiology and a potential connection 
between viral infections, complement, and neuroinflammation. This 
review is not intended to be  a comprehensive overview on 
complement in the CNS but rather a succinct starting point for 
newcomers to the field, and a perspective on novel developments in 
the complement field to watch. We refer readers seeking in-depth 
insights into the roles of complement across specific CNS-associated 
diseases to excellent recent reviews by respective experts in the field 
such as (2, 4–6).

The complement system

The complement system was discovered by Jules Bordet over a 
century ago (12) and consists of over 50 proteins that are either 
present in circulation in the blood and interstitial fluids (the core 
components and fluid-phase regulators), anchored to cell-surface 
membranes (receptors and membrane-bound regulators) or present 
within cells in subcellular compartments (all components) (13, 14). 
The following provides an abbreviated overview over the currently 
known locations and functions of the contemporary 
complement system.

Extracellular complement—activation, 
function, and regulation

The complement components C3 and C5 are considered the major 
effector molecules of the complement system. They are produced and 
secreted by the liver in pro-enzymatic forms and circulate through the 
blood and lymph. C3 activation into bioactive C3a and C3b is initiated 
when one or several complement activation pathways are triggered by 
the binding of their respective pattern recognition receptor (PRR) 
components to pathogen or danger-associated molecular patterns 
(PAMPs or DAMPs) (Figure 1) (13). The classical pathway (CP) is 
initiated when C1q binds to antibody–antigen complexes on the 
surface of pathogens or to DAMPs exposed by altered self, for 
example, apoptotic cells. The lectin pathway (LP) is triggered by the 
mannose-binding lectin MBL, collectins, or ficolin-mediated 
detection of microbial oligosaccharides and acetylated residues (13). 
The alternative pathway (AP) is continuously activated by tonic 
hydrolysis of the internal C3 thioester bond into C3(H2O) and then 
further amplified through contact with pathogenic, microbial, or 
noxious self-derived antigens (13). All three pathways culminate in 
the formation of the CP/LP and AP C3 convertases (C4bC2b and 
C3bBb) that then cleavage-activate C3 into C3a and C3b. The 
increased deposition of C3b to target surfaces in the vicinity of C3 
convertases fosters immediate formation of the CP/LP, and AP C5 
convertases (C4bC2bC3b and C3bBbC3b) which cleave C5 into C5a 
and C5b.

C3b opsonizes microbes and dangerously altered host cells and 
provides a signal for phagocytic uptake by scavenger cells (15) and 
C5b combines with serum C6 to C9 to form the membrane attack 
complex (MAC), which inserts into target membranes and mediates 
direct lytic killing of pathogens or infected or stressed host cells (13). 
The G protein-coupled receptors (GPCRs) for the anaphylatoxins C3a 
and C5a, C3aR and C5aR1 and C5aR2, are broadly expressed by host 
immune and non-immune cells (13). Their activation is key to 
inducing the classic inflammatory reaction, which involves activation 
of the endothelium leading to adherence and tissue influx of immune 
cells, smooth muscle cell contraction, and the migration and activation 
of innate immune cells to the site of infection or insult (13). Overall, 
target opsonization, lytic killing of pathogens, and innate immune cell 
activation represent the canonical complement functions and 
functional deficiencies in complement effector components cause 
recurrent infections (16, 17). However, complement deficiencies are 
also associated with autoimmune diseases such as systemic lupus 
erythematosus (SLE) (18, 19) because complement also detects and 
removes self-derived dangers such as immune complexes (ICs) and 
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apoptotic or stressed cells (15, 19). In fact, it is now well understood 
that complement is an active participant in the repair processes 
underlying the regeneration of tissues after immune-response-
associated tissue pathology or after injury and trauma (15).

A continuously better understanding of the structures and 
functions of the single complement components revealed that the 
complement system plays also central roles in adaptive immunity. For 
example, signals mediated by the complement receptor 2 (CR2, 
CD21) provide important co-stimulatory input during B cell 
activation (20, 21). Similarly, cell-intrinsic engagement of the 
complement regulator and receptor CD46 during T cell receptor 
engagement (TCR) on CD4 and CD8 T cells provides co-stimulatory 
signals that are required for T helper type 1 (Th1) and cytotoxic T 
lymphocyte (CTL) responses, respectively (7, 22–24). Importantly, the 
engagement of complement receptors on immune cells in tissues is 
largely independent of liver-produced complement components, but 
majorly driven by immune cell-produced and local complement 

activation (Figure 1). For example, C3 and C5 are secreted by activated 
antigen presenting cells (APCs) and/or by T cells during the cognate 
APC–T cell interaction and cleavage-activated in the extracellular 
space by C3/C5 convertases, which form via immune cell-provided 
Factor (F) D and FB (25–27). The anaphylatoxins generated locally 
then engage their respective receptors on cells in the vicinity in an 
autocrine and/or paracrine manner and induce the expression of 
co-stimulatory molecules on APC and T cell, cell proliferation, and 
the production of cytokines—with pathological decreases or increases 
in immune cell-provided complement causing infections or 
autoimmunity, respectively (8).

Once activated, complement components latch onto surfaces 
indiscriminately (15). To prevent detrimental tissue pathologies 
due to unwanted or chronic complement activation, the system is 
tightly controlled by a range of fluid-phase and cell-expressed 
regulators (Figure  1). These operate on three basic levels: 
prevention of C3b and C4b deposition on host cells in the first 

FIGURE 1

Complement activation, regulation, and functions. Three pathways lead to the formation of C3 and C5 convertases that then cleavage-activate C3 into 
C3a and C3b, and C5 into C5a and C5b. Assembly of C5b with C6–C9 induces the insertion of the membrane attack complex (MAC) into target 
membranes while C3b/iC3b opsonizes and tags targets for phagocytic uptake and the anaphylatoxins C3a and C5a mediate the classical inflammatory 
reactions. The system is controlled by several fluid-phase and membrane-bound complement regulators (red). In circulation, this system detects and 
removes invading pathogens and noxious antigens. In tissues, C3 and C5 are secreted by immune and non-immune cells, and the extracellularly 
generated C3 and C5 activation fragments induce cell-specific responses in an autocrine and/or paracrine manner. Intracellularly active complement 
(the complosome) operates across a broad range of cell populations and at different subcellular locations, where they majorly control basic 
physiological processes, often in direct crosstalk with other intracellular danger-sensing systems. C1-INH, C1 esterase inhibitor; C3aR, C3a receptor; 
C5aR, C5a receptor; C4BP, C4b-binding protein; CR1, complement receptor 1; ETC, electron transport chain; FB, factor B; FD, factor D; FH, factor H; 
FI, factor I; MASP, MBL-associated serine protease; MAVS, mitochondrial antiviral signaling protein; MBL, mannose-binding lectin; mTOR, mechanistic 
target of rapamycin; OXPHOS, oxidative phosphorylation; RIG-I, retinoic acid-inducible gene I; ROS, reactive oxygen species. Created with BioRender.
com.
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place by inactivating C3b and C4b; active dissociation of host cell 
surface formed C3/C5 convertases; and prevention of 
MAC insertion.

Intracellular complement—activation, 
function, and regulation

Recent work has revealed, unexpectedly, that the location of 
complement activities is not confined to the extracellular space, but 
that complement is also active within cells (7) (Figure 1). Although 
the intracellularly operating complement [which was coined “the 
complosome” (28)] was initially discovered in human CD4 T cells (7), 
the complosome has, by now, been detected in a broad range of 
immune and non-immune cell populations. There have been recent 
excellent in-depth reviews on the roles of intracellular complement 
activities in health and disease (8, 29–32), and we  will therefore 
provide a short summary only about the system here.

Complement proteins constituting the complosome are encoded 
by the same genes that generate complement components in 
circulation, they are often expressed tonically by non-hepatocytes and 
can be modulated by incoming environmental cues or cell stimulation 
(8, 33–35). Although in most cells, components of the complosome 
originate from cell-intrinsic expression, they can be sourced from the 
extracellular milieu or the cell surface to become part of the 
intracellularly active complement system. Similar to complement in 
circulation, intracellular C3 and C5 can be  cleavage-activated by 
specific proteases or by intracellular C3 and C5 convertases that form 
beneath the plasma membrane and on the surface of subcellular 
compartments (35–37). Furthermore, intracellular C3 activation in 
macrophages is negatively controlled by cell-intrinsic FH (38), 
indicating that the complosome is subject to regulation by “classic” 
complement regulators. Of note, cell autonomous FH activities emerge 
as a particular area of interest as FH not only controls complosome 
activation but also serves non-canonical roles in epithelial cells where 
it may directly control nuclear factor kappa B (NF-κB) nuclear 
translocation and activities (39, 40). C3 and C5, and/or their activation 
fragments and receptors, C1q, and some regulators have been detected 
in the nucleus, cytoplasm, lysosomes, endoplasmic reticulum, 
autophagosomes, and/or on the outer membrane of mitochondria. 
Importantly, the distinct intracellular location of complement 
components provides them with the capacity to populate a discrete 
functional niche: the complosome serves roles that associated with the 
direct control of basic cell physiological processes, including gene 
transcription, cell metabolism, vesicular transport and secretion and 
autophagy (41–44), as well intracellular danger sensing in cooperation 
with the nucleotide-binding domain, leucine-rich–containing family, 
pyrin domain–containing-3 (NLRP3) inflammasome, toll-like 
receptors (TLRs), and mitochondrial-antiviral signaling protein 
(MAVS) (34, 37). Thus, perturbations in normal complosome 
activities are associated with an increasing range of human diseases, 
including infections, arthritic diseases, atherosclerosis, and cancer (8).

Therefore, the field has revised its view on complement as a solely 
plasma-operative system and updated it to one where there is a 
division of labor where circulating complement guards the vascular 
space, while local cell-derived canonical complement functions 
mediate protective tissue immunity and intracellularly active 
complement orchestrates cell physiology (8)—a concept that could 

explain the broad impact of complement dysregulation across innate 
and adaptive immunopathology-mediated human diseases states (14).

Complement sources in the CNS

Anatomically, the CNS is protected by the skull (and vertebrae), 
meninges, and cerebrospinal fluid (CSF) and has historically been 
considered an immune-privileged tissue based on its physical 
separation from circulation by the BBB, lack of lymphatics, and 
limited presence of immune cells in the steady-state (45, 46). However, 
this concept underwent a transformation based on the realization that 
the isolation of the CNS is not absolute but that it engages into 
continuous cross talk with the peripheral immune system through the 
recent re-discovered CNS lymphatic system in the dura mater (47–
49). Moreover, classic key mediators of protective (inflammatory) 
immune responses such as T cells (50) and complement are not only 
present in the healthy CNS but also contribute to normal brain 
development and function (51). In fact, the tonic expression of 
complement in the non-inflamed brain has been noted over three 
decades ago (52–55) with a broad range of CNS cells being capable of 
producing distinct complement components.

Major brain cells

Different types of neurons and glial cells (microglia, astrocytes, 
and oligodendrocytes) are the major cell types of the brain.

Microglia, the brain-resident myeloid cell compartment, perform 
functions akin to peripheral macrophages in immune surveillance 
(56) and represent the primary source of complement in the brain (57, 
58) (Figure 2). They produce C1q, C3 and C4 (59), and express a broad 
range of complement receptors and regulators, including C3aR and 
C5aR1 (60), CR1 to CR4, and CD46, CD55 and CD59 (Figure 1) on 
their surfaces (54, 55, 61, 62). Similar to peripheral macrophages, 
microglia respond to stimulation and environmental cues with 
modulation of their intrinsic complement expression machinery (63). 
For example, microglia substantially increase C5 production and 
C5aR1 expression upon peripheral nerve injury (60). And, vice versa, 
stimulation of the C5aR1 on microglia supports their 
pro-inflammatory effector responses, such as IL-6 and TNF 
production in a p38 and extracellular signal-regulated kinase (ERK) 
1/2 dependent fashion (64).

Astrocytes represent about 30% of cells in the mammalian brain 
and compose the syncytial networks around neurons. They are 
essential for normal neuronal activity, provide neurons with the 
metabolites required for their high levels of energy production and 
cell function, and lend neurotrophic support by recycling 
neurotransmitters, fine tuning buffer ion concentrations locally, and 
interacting with and impacting on the activities of microglia and 
“incoming” immune cells in the vicinity (65). Human astrocyte-
derived cell lines express membrane regulators CD55, CD46 and 
CD59, as well as the receptors CR1 and CR3, the gC1qR and cC1qRs 
(66, 67), and C3aR, C5aR1 and C5aR2 (68–70). Astrocytes are 
further capable of phagocytosis and can subsequently present 
antigens to adaptive immune cells and therefore contribute to local 
immune cell behavior [reviewed in (71, 72)]. Because astrocytes are 
a major source of C3 in the inflamed brain, it is not surprising that 
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astrocyte C3 partakes in the inflammatory milieu-driving astrocyte-
microglia axis (73). Microglia-derived C1q induces the generation 
of neuro-destructive cytotoxic astrocytes (coined A1 astrocytes) 
(71), which, in turn, cause neuronal cell death by generation of 
neurotoxic factors, and proinflammatory cytokines, overall 
perturbing normal dendrite morphology (74, 75). Thus, like 
microglia, astrocytes express a range of complement proteins in the 
steady-state, increase their production or expression in response to 
environmental changes and utilize complement receptor-mediated 
signals for effector functions.

Neurons use chemical and electrical signals to transmit 
information. They synthesize complement factors both in vivo and in 
vitro (58). Neuronal mRNA expression of C1Q, C2, C3, C4, C5, C6, 
C7, C8, and C9 was detected in control postmortem brain tissue and 
noted to be  increased in AD brain tissue (76). This indicates that 
neurons can express all complement effector molecules. While less is 
known about the expression of complement receptors and regulators 
by neurons [although C3aR and C5aR1 expression has been reported 
to be  induced by IFN-γ-mediated signals (77)], neuronal C3 
production is increased during sensory neuron regeneration upon 
dermal infection-associated tissue injury arguing that neuron-
intrinsic complement may also serve specific functions (78).

Oligodendrocytes are the myelinating cells of the CNS and have 
been identified as a significant source of various complement proteins, 
including C1q, C1s, and C2 – C9 (79), with high C3 protein presence 
in the resting state. Human oligodendrocyte (HOG) cell lines express 
complement regulators such as CD46, CD55, and CD59 and secrete 
complement inhibitors such as C1-inhibitor (C1INH), vitronectin, 
and clusterin (46). Oligodendrocytes may be  susceptible to 
complement attack-mediated lysis during CNS inflammation [MS and 
mouse experimental autoimmune encephalomyelitis (EAE)] as they 

then display a reduction in complement inhibitor expression 
(46, 80–82).

Skull, meninges, cerebrospinal fluids, and 
the blood brain barrier

The skull has traditionally been seen as a physical bone shield to 
protect the brain from mechanical impact or trauma. However, it is now 
broadly acknowledged that the skull bone marrow (BM) provides a 
critical local source of monocytes, neutrophils, monocyte-derived 
macrophages and B cells, which are dispersed into the brain during 
infection or inflammation (83–87). Further, the composition of skull BM 
cells is different in the healthy state and in those affected by neurological 
disorders (88), indicating that the skull BM should be considered as an 
important player in neuroinflammatory diseases. Moreover, the existence 
of ossified vascular channels directly connects the skull BM to the dura 
matter thereby allowing immune cells to migrate independently of the 
system in circulation. Indeed, a recent study suggests that SARS-CoV2 
can infiltrate into the CNS through the skull BM channels, and based on 
autopsies of COVID-19 patients with long-term neurological 
complications, it appears that complement activation is among the key 
pathways induced in the BM by virus presence (89). These findings, in 
combination with the emerging role for cell-autonomous complement 
in the development trafficking of BM progenitor cells (90) and the 
activity of myeloid effector cells (35), strongly suggests the need to study 
complement in the skull BM in more detail.

The meninges are a three-membrane layer system (dura mater, 
arachnoid mater, and pia mater) located under the skull protecting the 
brain and spinal cord. They are considered a major immune surveillance 
organ, as they harbor both innate and adaptive immune cells which 

FIGURE 2

Cellular sources of complement in the CNS. Depicted are the currently known expression profiles of complement system components by major cells 
in the CNS. Kolmer’s epiplexus macrophages expressing CR1–CR4 and CD55 and CD59 are not shown. This schematic does not discriminate between 
complement expression measured on the transcriptional (mRNA) or translational (protein) level and combines data derived from resting CNS cells 
(steady state) and from cells activated during neuroinflammation. C1-INH, C1 inhibitor; C4BP, C4b-binding protein; cC1qR, receptor for the collagen-
like region of C1q; CR1–4, “complement receptors 1–4; F, factor; gC1qR, receptor for the globular head region of C1q; MASP1/2, mannose-binding 
lectin associated protease 1 or 2; MBL, mannose-binding lectin. *C3 and C4 activation fragments can be detected specifically during CNS inflammation 
or infection and often in proximity to microglia. Created with BioRender.com.
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provide defense against pathogens but also support immune homeostasis 
at this location (91, 92). The dura matter contains most of the meningeal 
immune cells, including neutrophils, (regulatory) T cells, monocytes and 
macrophages, natural killer (NK) cells, (plasmacytoid) dendritic cells 
(DCs) (93) and (plasma) B cells (85, 91, 94) and innate lymphoid cells 
(85, 91, 94). Meningeal immune cells populate the space adjacent to 
dural venous sinuses, regions of slow blood flow with fenestrations and 
that can be entry points for bloodborne pathogens to the brain (94); 
therefore, immune responses within the CNS are often initiated in the 
meninges before spreading into the parenchyma. There is currently 
virtually nothing known about the role of complement in meningeal 
health or inflammation. However, given the widespread presence and 
functional significance of cell-autonomous complement across immune 
and non-immune cells, we expect (local) complement to emerge as a 
critical player at this location as well.

This notion is supported by the finding that the CSF contains 
several complement proteins, including a broad range of regulators in 
the healthy host (95). Although a large proportion of CSF proteins can 
be sourced from plasma, the fact that the CSF circulates through the 
subarachnoid space of the meninges and disposes of brain molecular 
waste makes it feasible that complement locally produced by meningeal 
immune and non-immune cells contributes to the normal CSF 
complement signature. Bacterial, viral and fungal infections induce a 
strong increase in CSF complement components, including MBL and 
C5 which contributes to pathogen control (95, 96). On the other hand, 
some complement proteins, such as C1q and C3, are pathologically 
increased in the CSF of patients with MS, where elevated C3 levels 
correlate significantly with disease progression (97), and in cerebral 
ischemia (98). Furthermore, the presence of C3/C3a in the CSF has 
been suggested as a potential biomarker for predicting the prognosis 
of MS and AD, although the available data is conflicting (99, 100).

The increase in complement proteins in the CSF during CNS 
infection or neurodegenerative or neuroinflammatory disease is 
thought to largely be based on the influx of complement proteins from 
the periphery through a compromised BBB (101). However, the 
composition of the BBB is complex and includes epithelial and 
endothelial cells, astrocytes, microglia, and pericytes, and many of 
these cells express complement proteins that increase in experimental 
disease conditions (58, 102–105). For example, endothelial cells 
actively produce C3a which can polarize astrocytes toward an A1 
neuro-inflammatory phenotype (106) and engagement of C3aR on the 
choroid plexus epithelium disrupts the blood-CSF barrier and 
supports leptomeningeal metastasis into the CSF (107).

Thus, complement contributes to the maintenance of the normal 
BBB by preventing disease-associated leakage of plasma complement 
into the CNS but the BBB itself should not be dismissed as a potential 
source of CSF complement in health and disease. These considerations 
are not trivial, as they may provide important cues for determining 
when and where to target complement therapeutically in 
neurodegenerative and neuroinflammatory diseases. The reality is 
likely that both local and systemic complement contribute in a 
spatiotemporal fashion to certain disease states (98).

Beneficial complement activities in 
the CNS

In line with the increasing understanding that complement is 
not a mere pro-inflammatory immunological weapon but also an 

integral player in the processes underlying maintenance of tissue 
homeostasis and repair, it is now apparent that complement is 
required for normal brain development and function. Beneficial 
complement activities contribute to normal embryogenesis as well 
as prenatal and postnatal CNS development through orchestration 
of brain cell differentiation, neuronal survival, proliferation, 
migration signaling, and synaptic refinement through pruning and 
axon myelination (6) (Figure 3).

Development

Many of the core complement components (for example, C3, C4, 
and C5) and receptors (C3aR, C1qRs) can be found at particularly high 
levels in the neural crest during development in developmental models, 
for example, Xenopus laevis. During Xenopus embryological CNS 
development, neural crest cells must mutually attract through a 
C3aR-C3a interaction axis and then collectively migrate to form the 
neural tube. Perturbations in the C3aR-C3a crosstalk results in the loss 
of neural crest cell organization (108). Complement-mediated cues also 
guide development of the brain in mice as MASP and C3 knockout 
mice exhibit clear deficiencies in neuronal migration (46, 109, 110) and 
abnormal formation of the embryonic neural tube, with varying degrees 
of severity. Locally produced C5 also partakes in CNS development and 
support particularly neurogenesis through C5aR1-mediated 
polarization and proliferation of mouse embryonic neural progenitor 
cells (111), in addition to providing cues for neuroepithelial cell 
polarization, an important additional step toward normal neurulation 
(112). Interestingly, mice deficient in the complement receptor CR2 
present with increased basal neurogenesis when compared to wild-type 
mice (113). Thus, local complement engages important drivers and 
controllers of neurogenesis and CNS development (114).

Synaptic pruning

One of the most significant recent discoveries regarding the novel 
roles of complement in the CNS is the realization that complement 
functions not only during prenatal stages but also postnatally. 
Complement components C1q and CR3 play a pivotal role in 
selectively removing unused or damaged synapses during postnatal 
brain development, in a physiological process called synaptic pruning 
(115–117). This developmental phase is characterized by the initial 
overproduction of neural circuits, followed by synaptic pruning—a 
process essential for optimizing neural circuitry and enhancing brain 
connectivity (118). During synaptic pruning, CR3-expressing 
microglia recognize and eliminate excess or damaged synapses which 
are marked by C1q deposition and thus display an “eat me” signal 
(115, 119) and mediate the needed fine-tuning of neural networks 
post birth (115, 117, 120). The importance of complement in this 
process has been shown using C3 or CR3 deficient mice, both of 
which have impaired engulfment of synapses by microglia and 
exuberant excitatory connectivity in multiple brain regions (116, 121). 
The process of synaptic pruning is currently considered majorly 
driven by microglia-mediated phagocytosis, however, an alternative 
mechanism termed trogocytosis is now receiving increasing attention 
(122, 123). Complement may also play a role here, as C3 has recently 
been identified as major driver of human and mouse B cell trogocytosis 
(124), and the membrane-bound amphibian regulator of complement 
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activation 3 (aRCA3), a homolog of mammalian CD46, mediates 
axonal pruning in Xenopus (123).

Myelination

Local complement production also aids in neuron myelination, a 
complex process involving the formation of myelin sheaths around 
neuronal axons which is a prerequisite for efficient nerve signal 
transmission. Oligodendrocytes are central to this process as 
producers of myelin and mediators of myelin compaction around 
axons (125, 126). An unexpected key role for C1q in this process was 
identified through the observation that early C1q deficiency in mouse 
brains is associated with impaired myelin development in vivo (127). 
Current studies suggests that microglia-derived C1q may contribute 
to the regulation of oligodendrocyte precursor cell survival and 
myelination in vitro and in vivo through a not-yet fully understood 
molecular mechanism (127) that involves facilitation of myelin protein 
synthesis, as shown in oligodendrocyte-neuron co-culture (128). 
Similar to what is known about complement’s role in peripheral tissue 
regeneration, CNS complement may also support remyelination, the 
adaptive repair-and-restore response to dys- and demyelination (126). 
For example, C5 is required for the process of remyelination in chronic 

lesions of mice in a mouse experimental autoimmune 
encephalomyelitis (EAE) model, as C5-deficient animals display high 
gliosis and extensive lesional scarring in combination with reduced 
axon survival and remyelination when compared to C5-sufficent 
animals (129). Since C5 is also clearly a driver of CNS pathologies (see 
below), this finding indicates the complex and context-dependent 
roles of single complement components in the healthy and 
diseased CNS.

Neuroprotection and DAMP clearance

Normally developed and myelinated neurons need to be protected 
from noxious stimulus-induced damage or death. In vitro studies have 
shown that C1q produced by microglia exerts a direct neuroprotective 
role against amyloid-beta (Aβ)-induced neurotoxicity through the 
expression induction of genes encoding proteins associated with 
neuronal cholesterol metabolism, nerve growth factor (NGF), and 
neurotrophin-3 (NT-3), which collectively enhance neurite outgrowth. 
Furthermore, C1q enhances neuronal survival and promotes 
outgrowth of new neurites (130, 131). Similarly, C5a mediates 
neuroprotection against glutamate excitotoxicity in an in vivo mouse 
model by retraining the activity of the death caspase-3 in neurons 

FIGURE 3

Complement in the CNS—the Good and the Bad. A summary overview over the core beneficial and detrimental activities of complement in the CNS. 
More detailed information (if available) on the specific molecular mechanisms underlying the depicted complement functions can be found in several 
recent reviews on this subject matter. A1, neurotoxic, reactive, astrocytes; BBB, blood-brain barrier; DAMP, danger-associated molecular pattern; EC, 
endothelial cell; MAC, membrane attack complex; MIMS, microglia inflamed in MS; NLRP3, NLR family pyrin domain containing 3. *It is currently 
unclear if the remyelinating capacity of C5aR1 is due to a direct effect on oligodendrocytes or mediated through an indirect effect on other cells. 
Created with BioRender.com.
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(132, 133), indicating an unexpected novel anti-inflammatory role for 
C5a in the CNS (133). If cell-protective mechanisms in the CNS fail 
and extensive cell damage or death occurs, it imperative that these 
sources of DAMPs are removed rapidly and in a non-inflammatory 
fashion. The silent removal of apoptotic cells by efferocytosis is key for 
maintaining CNS homeostasis (134). In the context of efferocytosis, 
complement proteins serve as “eat me” signals by opsonizing apoptotic 
cells, thereby tagging them for recognition and uptake by phagocytes 
(135). Particularly, C1q is upregulated upon CNS injury and during 
the early stages of neurodegenerative diseases and can then, in line 
with its major pattern recognition receptor role (Figure 1), initiate 
removal of apoptotic neurons and neuronal blebs by microglial cells 
through the initiation of C3b deposition onto the dying cells (136). 
Furthermore, multiple epidermal growth factor (EGF)-like domains 
10 (Megf10), a receptor present in astrocyte membrane, has been 
shown to bind C1q and mediate clearance of apoptotic cells by 
astrocytes in the developing cerebellum in vivo (137, 138).

Overall, there are several known important roles for complement 
in normal CNS development and homeostasis, and we fully expect 
that future studies will define additional housekeeping activities for 
complement in this tissue.

Detrimental complement activities in 
the CNS

Although studies noting increased CNS complement activities in 
neurodegenerative and neuroinflammatory diseases strongly suggest 
that augmented complement may contribute to these pathologies (see 
below for discussion of particular diseases), it was human genetic 
evidence that ultimately proved this notion to be  correct. Large 
genome-wide association studies (GWAS) performed to identify risk 
factors for late-onset AD (LOAD) revealed that genes encoding 
complement receptor CR1 (CR1) and the regulator clusterin (CLU) 
were among the significant hits (139, 140). Similarly, exciting recent 
work identified copy number variations in the genes encoding 
complement component 4 (C4A and C4B) as the currently strongest 
risk factor for the development of schizophrenia (141). In the 
following we  provide some of the key evidence for complement’s 
contributions to several prevalent neurodegenerative and 
inflammatory diseases of the CNS.

Multiple sclerosis

Multiple sclerosis (MS) is a chronic autoimmune disease that 
affects the central nervous system, including the brain, spinal cord, 
and optic nerves. It is characterized by the immune system attacking 
myelin, leading to inflammation (and hence considered largely a 
neuroinflammatory disease) and damage that typically include the 
presence of demyelinating lesions in the white matter of the brain and 
spinal cord, gliosis, and axon damage (142). There are several lines of 
evidence that suggest involvement of maladaptive complement in the 
pathogenesis of MS (143, 144). For example, a major feature of sites of 
active myelin destruction (acute lesions) in the MS brain is the 
deposition of the C9 neoantigen (indicative of MAC formation), while 
MAC staining in chronic lesions is less pronounced (145). 
Furthermore, the numbers of patients with active and chronic active 

inflammatory demyelinating lesions in the thalamus seemed higher 
when compared to patients with gray and white matter lesions with 
complement deposition detected highest in thalamic lesions (146). 
Postmortem analyses demonstrate non-neuronal and neuronal 
anti-C3b immunoreactivity (147, 148) and increased C1QA gene 
transcription in neurons in the MS cortical and deep gray matter (149) 
which may be  associated with the IgG aggregate-mediated, 
complement-dependent neuronal apoptosis observed in in vitro 
studies (150). This indicates that high complement activity is a feature 
of actively demyelinating (thalamic) lesions while sustained (lower) 
complement activation associates with chronic lesions. In line with the 
indication that C1q may be a major player in MS, increased serum 
C1q levels positively correlate with T2 lesion volume of MS patients 
(151), and, similarly, augmented C1q protein levels in the serum and 
brain in mice associate with disease severity in a cuprizone mouse 
model of MS.

Our lab recently reported profiling of glial and immune cells in 
samples from patients with progressive MS. Analysis of astrocytes 
inflamed in MS showed ~20-fold upregulation (relative to nonreactive 
astrocytes) of genes encoding the C1q complex activators (C1S and 
C1R) and C1q receptors (CALR, C1QBP), as well as upregulation of 
C3 (152). Furthermore, we identified C1q as a critical activator of 
“microglia inflamed in MS” (MIMS), a glial phenotype with 
neurodegenerative programming. Aligning with these findings, 
studies in the marmorset EAE model identified C1q-positive axons 
and neuronal cell bodies in the gray matter bordering immune cells 
infiltration sites (152), overall suggesting a key role of the CP activator 
C1q in complement-mediated MS pathology. Interestingly, C1q 
immunoreactivity in the rhesus EAE model noted cytoplasmic rather 
than membrane-associated localization indicating local production of 
C1q, possibly by neurons (153). Effector molecules downstream of 
C1q and CP activation are also involved in MS (154). For example, 
increased C4a levels observed in the CSF of patients with MS correlate 
with disease activity and relapse (155), and C4d has been observed at 
the borders of intracortical lesions (156). In another study, increased 
CSF levels of C3a, C4a, and Factor B (FB) cleavage products Ba and 
Bb were found in MS and correlate with higher levels of disability 
(154). There is also strong indication that MAC-mediated local cell 
damage or lysis contributes to MS as systemic inhibition of MAC 
formation via provision of an antisense oligonucleotide targeting 
mouse C6 blocked activation of the parenchymal neuroinflammatory 
responses involving NLRP3 in a mouse EAE model (157).

While the onset of MS is driven by autoimmune and inflammatory 
responses, disease progression often culminates in neurodegeneration 
and synapse loss. A recent study suggested a role for C3 in this process, 
reporting microglial synaptic engulfment and profound synapse loss 
in MS patients and, in a mouse EAE model, synapse loss independent 
of local demyelination and neuronal degeneration but coincident with 
gliosis and increased C3 presence (158). A second, independent, study 
also noted EAE attenuation in C3−/− mice (159). Of note, retinal 
ganglion cells are also among the cells lost during progression of MS, 
which causes optic neuritis. Consistent with studies demonstrating 
that variants in the C3 gene are associated with accelerated retinal 
neurodegeneration in human disease, conditional deletion of C3 in 
astrocytes in mouse EAE protects against loss of retinal ganglion cells 
(160). There is increasing indication that activation of the 
inflammasome, particularly in microglia, is a contributor to their 
proinflammatory activities in MS (161). Given the emerging strong 
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crosstalk between the (intracellular) complement system and the 
NLRP3 inflammasome (162), we  would argue that this may be  a 
functional relationship that should be further explored with regard to 
its role in MS pathology.

Although current data are limited, there is indication that local 
complement activated by self-antibodies to the myelin oligodendrocyte 
glycoprotein (MOG) may also contribute to acute disseminating 
encephalomyelitis (ADEM) through cell destruction (163). Moreover, 
astrocyte death in neuromyelitis optica spectrum disorder (NMOSD) 
and demyelination in MOG-associated disease (MOGAD), diseases 
that can mimic MS, involve terminal complement activation and 
MAC deposition (164–166) as well as C3 activation and neutrophil 
hyper-activity (167). NMOSD associates with a characteristic pattern 
of astrocyte dysfunction and loss, resulting in secondary demyelination 
and neurodegeneration. In most patients, NMOSD is caused by 
pathogenic, complement-activating, IgG autoantibodies against the 
main water channel in the CNS, aquaporin 4 (AQP4), and astrocytes 
are the prime target of the unwanted and detrimental immune 
response in NMOSD patients. In vivo, CNS lesions are characterized 
by deposition of complement proteins including C1q, C4b, and the 
MAC (168). The increased levels of soluble MAC (sC5b-9) and the FB 
activation fragment Ba in the serum of patients in the acute phase of 
NMOSD strongly correlate with clinical stage. Overall, amplification 
of initial CP activation by the AP further increases complement 
activation and contributes to the exacerbation of MAC-mediated 
NMOSD through C5a generation and recruitment of immune cells 
(169, 170). The critical involvement of C5-mediated complement 
effects in NMOSD has been proven unequivocally by the effectiveness 
of the FDA approved monoclonal antibody therapy targeting C5 for 
NMOSD (171).

Alzheimer’s disease

Alzheimer’s disease (AD) is the most frequent form of dementia 
in the elderly, with approximately 60%–70% prevalence over the age 
of 80 years. Amyloid plaques and neurofibrillary tangles (NFTs) 
accumulate (possibly due to age-related reduced efficiency of the 
cellular debris removal machinery) and sustain neuroinflammation, 
neuronal and synapse loss and subsequent neurodegeneration as 
hallmarks of AD (172, 173). A pathological role for complement in 
AD pathophysiology was suggested by studies in the 1990s, which 
noted colocalization of complement proteins C1q, C3, and C4 with Aβ 
plaques in postmortem studies when compared to healthy control 
tissue (174). Additionally, a clear increase in mRNAs encoding C3 and 
C4 was noted in the AD compared to the healthy brain (175). An 
independent study provided evidence that components of the terminal 
complement pathway (Figure 1) are also present in the brains of AD 
cases, which seeded the notion that the MAC may contribute to 
neuronal injury and neurodegeneration (76).

Tangible evidence for a key role of complement in AD was 
provided in 2009, when two independent GWAS studies identified 
genes encoding clusterin and CR1 (and later C1S and C9) as 
significant risk factors to develop AD (139, 140, 176). Also, C4 levels 
in the CSF of AD patients are modulated in preclinical AD and 
significantly increase when brain Aβ pathology, tau pathology, and 
neurodegeneration are measurable (177). A separate recent study 
observed increased C1q incorporation into extracellular vesicles 

circulating in the CSF of patents with AD (178). In addition to the 
postmortem studies, animal models of AD have provided 
opportunities for mechanistic insights. For example, although global 
knockout of C1q in the classic beta-amyloid precursor protein 
(APP) mouse model of AD shows similar Aβ accumulation, the 
phagocytic capacity of activated forms of microglia was significantly 
reduced in absence of C1q, and the animals showed less severe 
neuropathology (179). Downstream of C1q, mice deficient in C3 
display accelerate recovery from axon injury compared to control 
animals (180) and APP/PS1/C3−/− mice have better cognitive 
performance despite similar Aβ level as seen in the control group 
(181). Moreover, antagonizing C5aR1 signaling on microglia in a 
mouse model of AD reduces microglia proinflammatory polarization 
and halts disease progression (182). Similarly, engagement of the 
C3aR on microglia and neurons fosters neuropathology in a APP 
model (183).

Overall, it seems that early pathological augmentation in C1q and 
C3 levels may contribute to synapse loss by undesired over-pruning 
while downstream complement activation (possibly triggered by C1q) 
leads to anaphylatoxin receptor-induced proinflammatory 
programming of microglia, neuronal changes, and local destructive 
MAC formation. It should be  noted though that mouse models 
particularly involving C3 modulations in AD have provided 
inconsistent outcomes; for example, an independent study noted 
accelerated disease in C3-deficient APP mice (184). The reasons are 
currently not clear but could involve differences in microbiota of 
animals housed in different facilities and that can have an impact on 
AD pathogenesis (185) or the usage of global KO animals (see below).

Parkinson’s disease

Parkinson’s disease (PD) is a degenerative disease involving 
specifically loss of dopaminergic neurons which leads to progressive 
motor dysfunction. A diagnosis of PD requires the presence of several 
neuropathological hallmarks including intracellular protein aggregates 
called Lewy bodies. Although disease-causing mechanisms are not 
fully understood, altered mitochondrial activity, abnormal kinase 
activity, proteasomal and lysosomal dysfunction, and 
neuroinflammation are among key components in disease 
pathogenesis (186–189).

A first study in 1980 reported high C3d and C4d deposits within 
the brains of patients with PD (190). These data were confirmed by 
subsequent studies that also detected C1q and C7 to C9 in the Lewy 
bodies (191–193). More recently, several proteomic studies identified 
complement proteins and apolipoproteins in the plasma of patients 
with PD as top candidate biomarkers (194, 195). However, another 
study observed no changes in blood C1q and C3 levels between PD 
and healthy controls but noted a correlation between levels of C3 and 
non-motor symptoms in women, highlighting sex-dependent effects 
of the complement system in different disease and conditions (196). 
In vitro studies in the past attempted to glean insights into mechanistic 
aspects of complement’s contributions to PD, which may involve the 
ability of the disease-associated splice variant of alpha-synuclein-112 
to initiate complement activation (197). Furthermore, C5a can 
synergize with IgG isolated from the serum of PD patients to cause 
death of dopaminergic neurons in rat mesencephalic neuron–glia 
cultures (198). Work that probes complement in animal models of PD 
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is almost non-existent, indicating a need to better understand the role 
of complement in PD.

Huntington’s disease

Huntington’s disease (HD) is a dominantly inherited autosomal 
disorder caused by the abnormal expansion of three-base-pair (CAG) 
repeats in the gene encoding huntingtin (HTT). The CAG repeats lead 
to increased polyglutamine modification of the huntingtin protein 
within neurons and glial cells and eventually to its protein aggregation 
and dysfunction of affected cells (199). HD symptoms are cognitive 
defects, motor dysfunction, psychiatric impairments, and subsequent 
neuronal loss (200). While genetics contribute significantly to HD 
development in the CNS, recent studies have demonstrated role of 
immune cells, and particularly monocytes and DCs, in this disease 
(201–203).

As for many diseases of the CNS, complement activation was 
observed in the postmortem brain of HD patients: mRNA 
measurements found ample transcription in microglia and neurons of 
C1Q, C1R, C4, C3, CD46, CD55, and CD59 in HD patients when 
compared to healthy controls (204). These results were supported by 
other studies, including a paper reporting increased expression of 
C4A, C4B, and C3 genes in different CNS regions of HD patients 
(205), and augmented expression of C3, C4, C7, and C9 proteins in 
the CSF, serum, and plasma from HD patients (202, 206). Importantly, 
elevated levels of C4 and C7 in the CSF were detected before onset of 
visible HD symptoms, while the level of C9 remained unchanged until 
an advanced stage of disease (202).

Animal models have provided some understanding of the 
complement system’s functional involvement in HD. For instance, 
using a rat model of HD based on by administration of 
3-nitropropionic acid (3-NP), which causes striatal degeneration, it 
was found that administration of C5aR1 inhibitors (PMX53 or 
PMX205) reduced striatal lesion size, neutrophil infiltration and cell 
apoptosis (207). Similar data were obtained in a mouse model of HD 
where C5aR1 inhibition led to a reduction in neuronal death and 
gliosis and ameliorated disease pathology and behavioral deficits in 
the mice. How exactly C5aR1 contributes to HD pathology remains 
to be determined. Of note, deletion of C3 assessed in a transgenic 
mouse model of HD (R6/2) failed to impact on disease progression or 
pathology (208). A very recent exciting study reported that the 
selective loss of synaptic connections in HD patients is associated with 
C1q-mediated selective elimination of corticostriatal synapses at an 
early stage in disease pathogenesis (209). Thus, there is accumulation 
evidence that complement contributes to the pathogenesis of HD, but 
the complement-mediated molecular pathways engaged remain 
mostly to be defined.

Schizophrenia

Schizophrenia is defined as a chronic psychiatric disorder. The 
disease described by variety of symptoms including delusions, 
hallucinations, disorganized speech, catatonia, social withdrawal, and 
blunted affection (210). As for AD, dedicated GWAS studies delivered 
strong indication that complement is an unexpected but major player 

in schizophrenia: the extended major histocompatibility complex 
(xMHC) represents a region of strong association with schizophrenia, 
and fine mapping of this region then identified copy number variants 
of the C4 genes (C4A and C4B) as the most significant risk factor 
(211–214). Also, a newly discovered complement C3 and C4 regulator, 
CUB and Sushi multiple domains 1 (CSMD1), has been placed among 
the top of genome-wide risk alleles for schizophrenia (213). The FB*F 
allele may also confer heightened risk for schizophrenia, however, the 
data so far are inconclusive, with some groups observing an 
association and others failing to do so (215). In general, GWAS studies 
have been further supported by reporting increased in complement 
gene expression, protein concentration, and overall activity in the 
serum or plasma of schizophrenia cases compared to controls (141, 
216, 217). In addition, C3 and C1q protein levels in the blood are 
significantly increased in patients with schizophrenia when compared 
to healthy control subjects (218). Given augmented levels of MBL 
activity in the plasma of schizophrenic patients (216), in 
combination with the increased presence of C1q, it is likely safe to 
conclude that, at minimum, LP and CP activation are involved at 
some level of local complement activation (maybe triggered 
through changes in immune cell activation or their death)—
however, this needs to be formally explored.

An interesting recent study noted that about 20 complement-
related genes showed significantly higher expression in the peripheral 
blood mononuclear cells (PBMCs) of patients with schizophrenia 
when compared to unaffected individuals (219). This is an important 
observation because there is accumulating evidence suggesting that at 
least in a subset of patients, schizophrenia is a neuroimmune disorder. 
For example, epidemiological studies suggest a correlation between 
schizophrenia risk and prior diagnosis of autoimmune diseases, 
previous hospitalization due to infection, and prenatal and childhood 
infections (220, 221). In addition, clinical studies have shown that 
inflammatory markers detected in the periphery, such as IL-1β, TNF, 
IL-6, soluble IL-2 receptor, and C-reactive protein, are elevated in 
patients with first-episode psychosis and schizophrenia (222). Given 
the central role of the complosome in the control of immune cell 
activation, it may be prudent to explore a role for the intracellular 
complement system in schizophrenia.

As for the mechanism by which C4 may contribute to 
schizophrenia, Yilmaz and colleagues investigated the role of C4A in a 
humanized mouse model of the disease and found that overexpressing 
C4A reduced cortical synapse density, increased microglial engulfment 
of synapses, and altered mouse behavior — overall indicating that 
uncontrolled C4A-mediated synaptic pruning is associated with 
abnormal brain circuits and behavior (223). Further dissecting the 
exact, and likely complex, mechanisms by which the complement 
system initiates/drives schizophrenia pathology will be important.

Amyotrophic lateral sclerosis

Another CNS disease for which evidence of complement 
involvement is accumulating is Amyotrophic lateral sclerosis (ALS). 
Neuroinflammation has been proposed as an underlying mechanism 
in ALS, and the detection of complement activation fragments in 
motor neurons and immune cells close to the site of inflammation 
support this notion. For example, high levels of mRNA encoding 
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C1QA and C3, C4 and components of the MAC are noted in the spinal 
cord and motor cortex of patients with ALS (224). Furthermore, 
increased presence of complement proteins in the CSF defined 
samples from patients with fast-progressing ALS vs. those with slow-
progressing disease (225). These data, together with the finding that 
the pharmacological inhibition of C5aR1 signaling in a mouse SOD1 
(G93A) disease model of ALS ameliorates disease pathology (226), 
strongly indicate that (local) complement activation may be  a 
contributing factor to this debilitating neurodegenerative condition 
and should be explored for future therapeutic targeting.

Emerging concepts and 
considerations

Although there is evidence that plasma-derived complement that 
can enter the brain through a compromised BBB during 
neuroinflammation, it is generally accepted that local production is a 
major driver of the beneficial and detrimental effects of complement 
in the CNS. Perturbations of the complosome have been associated 
with a range of diseases but a potential role in brain development, 
normal function, and/or neurodegenerative and neuroinflammatory 
diseases has so far not been explored. Given the particularly intimate 
functional relationship between the complosome, mitochondrial 
biology, and cell metabolism and the emerging concept that 
pathological metabolic changes and mitochondrial dysfunction in 
microglia and brain-infiltrating macrophages contribute to smoldering 
inflammation in neuroinflammatory diseases (227), we argue that the 
complosome is a likely player in CNS pathologies. For example, CD46 
controls the balance of arginine vs. glutamine flux in T cells (228), and 
this pathway could possibly extend to neurons, which require arginine 
for survival and function. In addition, heightened intracellular C5 
activation in human and mouse macrophages induces mitochondrial 
reactive oxygen species (ROS) production and an inflammatory 
phenotype in these cells (35), a scenario that may also be applicable to 
chronically activated microglia. We therefore suggest that modulations 
in complosome activities should be considered in future studies on 
CNS pathologies. We do acknowledge that this will be not easy from 
a technical point of view. However, to date, complement-targeting 
drugs in the clinic are aiming at circulating complement and will likely 
not be effective in tissue or intracellular complement-driven disease 
states. Thus, an investment in understanding the functions and control 
mechanisms of tissue- and cell-autonomous complement may 
be important to develop improved drugs for common diseases.

Another area of interest to watch may be a potential association 
between viral infections, neurodegeneration, and complement (229). A 
substantial number of CNS-tropic viruses, including herpes virus 1 
(HSV-1), herpesvirus 6 (HHV-6), human immunodeficiency virus 
(HIV), and measles virus (MV) have been shown to induce complement 
activation as an anti-pathogenic response in the brain [for an excellent 
recent review, see (229)] and latent HSV-1 infection may be associated 
with increased risk for AD (230). Moreover, MS and AD patients show 
an over-proportional presence of HHV-6A and HHV-6B infections 
(231, 232). These infections also accelerate disease course in a marmoset 
EAE model of MS (233). Epstein Barr virus (EBV) establishes life-long 
latency in the host, and is increasingly implicated as a major factor in 

the causal chain of both MS (234) and potentially AD (235). These latter 
findings are particularly interesting as EBV utilizes CR2 (CD21) as cell-
entry receptor (236), which opens the possibility that virus-induced 
changes in CR2-mediated signaling of infected cells may be  a 
contributing factor in addition to virus-triggered local complement 
activation. Similarly, MV infection, which can cause complications 
including encephalomyelitis (237) engages the complement regulator 
and C3b/C4b receptor CD46 on microglia to induce cell–cell fusion in 
the brain and thereby viral spread (238). The mechanisms underlying 
pathogen-initiated CNS complement activation and neurodegeneration 
are not understood but could involve unwanted pruning of “bystander” 
synapses. With regard to cell-autonomous complement activity, our 
collaborators have recently shown that C5 produced by macrophages 
is critically required to control Candida albicans infections in 
susceptible individuals through C5a-mediated metabolic programming, 
which enables macrophages to engage in candida clearance (239). 
Overall, a better understanding of the mechanistic links between CNS 
infection, complement, and neurodegenerative diseases may provide 
new insights that can eventually be harnessed therapeutically.

Finally, animal models involving complement deficiencies have been 
immensely helpful in dissecting complement-mediated pathological 
contributions to neurodegenerative and neuroinflammatory diseases 
and have served as pioneering platform for in vivo testing of complement 
inhibitors (240). However, most studies on complement in CNS 
pathologies have been performed using mice with global deficiencies in 
complement components of interest. Given that most complement 
receptors, and particularly C3aR and C5aR1 and C5aR2 function in a 
cell-specific and often temporal fashion, it may be prudent to assess mice 
with (brain) cell-specific deletions for consistency with previous 
observations. Furthermore, there are species-specific important 
differences in complement genes and pathways that may make 
interpretation of mouse-derived data not straightforward. For example, 
mice lack CD46 expression on somatic tissues (241) and harbor two 
CD59 genes instead of one as observed in humans (242), and humans 
express CR1 and CR2 as single genes, whereas mice express a CR1/CR2 
hybrid gene (243). In addition, there is notable divergence in the 
complement gene module between rodent and primate microglia (244). 
Thus, it will be important to assess for transferability of result derived 
from specific complement mouse models to the human disease pathology.

Despite these open questions, the large body of evidence reviewed 
here provides strong support for the continued investigation of the 
multifaceted roles of complement in neurodegenerative and 
neuroinflammatory diseases and provides hope that modulation of 
complement pathways can be broadly exploited in future treatment of 
those disorders.
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