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Background: Currently, effective therapeutic drugs for age-related macular 
degeneration (AMD) are urgently needed, and it is crucial to explore new 
treatment targets. The proteome is indispensable for exploring disease targets, 
so we conducted a Mendelian randomization (MR) of the proteome to identify 
new targets for AMD and its related subtypes.

Methods: The plasma protein level data used in this study were obtained from 
two large-scale studies of protein quantitative trait loci (pQTL), comprising 
35,559 and 54,219 samples, respectively. The expression quantitative trait loci 
(eQTL) data were sourced from eQTLGen and GTEx Version 8. The discovery 
set for AMD data and subtypes was derived from the FinnGen study, consisting 
of 9,721 AMD cases and 381,339 controls, 5,239 wet AMD cases and 273,920 
controls, and 6,651 dry AMD cases and 272,504 controls. The replication set for 
AMD data was obtained from the study by Winkler TW et al., comprising 14,034 
cases and 91,234 controls. Summary Mendelian randomization (SMR) analysis 
was employed to assess the association between QTL data and AMD and its 
subtypes, while colocalization analysis was performed to determine whether 
they share causal variants. Additionally, chemical exploration and molecular 
docking were utilized to validate potential drugs targeting the identified proteins.

Results: SMR and colocalization analysis jointly identified risk-associated proteins 
for AMD and its subtypes, including 5 proteins (WARS1, BRD2, IL20RB, TGFB1, 
TNFRSF10A) associated with AMD, 2 proteins (WARS1, IL20RB) associated with 
Dry-AMD, and 9 proteins (COL10A1, WARS1, VTN, SDF2, LBP, CD226, TGFB1, 
TNFRSF10A, CSF2) associated with Wet-AMD. The results revealed potential 
therapeutic chemicals, and molecular docking indicated a good binding 
between the chemicals and protein structures.

Conclusion: Proteome-wide MR have identified risk-associated proteins for 
AMD and its subtypes, suggesting that these proteins may serve as potential 
therapeutic targets worthy of further clinical investigation.
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1 Introduction

Age-related macular degeneration (AMD) is a leading cause of 
blindness in adults aged 60 and above worldwide, characterized by 
progressive degeneration of the retinal pigment epithelium, retina, 
and choroidal capillaries (1, 2). The global prevalence of AMD is 
approximately 8.7%, affecting over 190 million people (3). The global 
cost of vision loss due to AMD is estimated to exceed 300 billion 
U.S. dollars, and this figure is expected to continue rising (1), imposing 
a significant burden on society as a whole.

AMD can be divided into two types: neovascular (wet) AMD and 
non-neovascular (dry) AMD, with approximately 80% classified as 
dry AMD and the remaining 20% as wet AMD (4). Dry AMD, also 
known as geographic atrophy, typically has a better visual prognosis 
compared to wet AMD, which accounts for about 80% of severe 
vision loss in AMD cases. Age, smoking, body mass index, 
hypertension, hyperlipidemia, and genetics have been identified as 
important risk factors for AMD (5), but the exact pathogenesis of the 
disease remains unclear. Currently, all clinically approved treatments 
for AMD cannot cure the condition, and therapy is primarily based 
on the use of anti-vascular endothelial growth factor drugs (6). 
Therefore, research focused on identifying therapeutic targets for 
AMD is crucial to develop effective treatments. Proteins, due to their 
specific binding sites or regions, can often serve as targeted binding 
sites for small molecules or biologics, allowing the precise and 
controlled development of drugs that interact with proteins (7). The 
advancement of proteomic technologies has led to an increasing 
number of studies exploring the relationship between proteins and 
the risk of AMD, such as the protective role of complement factor 
H-related protein 1/3 deficiency in AMD (8). However, limitations of 
observational studies mean that results may be influenced by external 
variables or reverse causation bias. Mendelian randomization (MR) 
analysis uses genetic variants as instrumental variables to strengthen 
causal inference, and compared to observational studies, this method 
is less susceptible to confounding and reverse causation biases. MR 
analysis has been widely used to explore associations between plasma 
proteins and health outcomes. Summary data-based MR (SMR) 
extends MR analysis and demonstrates greater statistical power when 
exposure and outcome data can be obtained from two independent 
samples with large sample sizes (9). Leveraging data from large-scale 
genome-wide association studies (GWAS) and protein quantitative 
trait loci (pQTL), we  conducted a proteome-wide MR study to 
investigate the connections between over a thousand plasma proteins 
and AMD and its related subtypes.

2 Materials and methods

2.1 Study design

The study methods were compliant with the STROBE-MR 
checklist (10), further details can be found in Supplementary Figure S1. 
First, we applied the SMR method to analyze pQTL and GWAS data. 
In this study, the exposure variables were two large pQTL datasets, 
and the outcome variables were GWAS data for AMD and its subtypes. 
Afterwards, we utilized the Heterogeneity in Dependent Instrument 
(HEIDI) to test for heterogeneity and conducted power calculations 
for causal effect estimation using an online power calculator. 

Subsequently, we further strengthened the causal inference between 
proteins and AMD through colocalization analysis. For the proteins 
yielding positive results, we conducted additional validation using 
data from expression quantitative trait loci (eQTL) in blood samples. 
To understand the functional characteristics and interactions of the 
identified target proteins, we constructed a protein–protein interaction 
(PPI) network. Furthermore, in order to identify potential therapeutic 
chemical compounds, we  searched for protein-related potential 
chemicals and explored the availability and pharmacological activities 
of drugs targeting potential AMD targets through molecular docking 
studies. The specific research workflow is illustrated in Figure 1.

2.2 Data sources

The two proteomic datasets were derived from the UK Biobank 
Pharma Proteomics Project (UKB-PPP) and the deCODE Genetics 
study in Iceland. The UKB-PPP collected data on 2,923 proteins from 
plasma samples of 54,219 participants using the Olink platform (11), 
while the deCODE study analyzed summary-level statistics on 
genetic associations with plasma protein levels for 4,907 proteins in 
35,559 Icelandic individuals (12). Top cis-pQTLs meeting threshold 
selection (p < 5e-8) were chosen as instrumental variables. The blood 
eQTL data were obtained from the eQTLGen1 and the Genotype-
Tissue Expression (GTEx) project.2 Subsequently, summary data on 
AMD and its subtypes from the latest release (R10 version) of the 
FinnGen study were utilized as outcomes. AMD comprised 9,721 
cases and 381,339 controls, wet AMD included 5,239 cases and 
273,920 controls, and dry AMD included 6,651 cases and 272,504 
controls. Detailed information on the data sources is provided in 
Supplementary Table S1.

2.3 Summary-data-based MR analysis

We utilized the SMR method to analyze the correlation between 
plasma proteins and the risk of AMD and its subtypes, and validated 
the positive results at the eQTL level. The cis region was defined as 
the top QTL plus/minus 1,000 kb window, and QTLs within this 
region that met the specified threshold (p < 5e-8) were selected as 
instrumental variables. Quality control was conducted on allele 
frequencies, and SNPs were excluded if the allele frequency 
differences between datasets in pairwise comparisons (including the 
LD reference sample, the QTL data, and the GWAS summary data) 
exceeded a specified difference threshold (set at 0.2) (13). HEIDI tests 
were performed to determine whether there was pleiotropy between 
the exposure and outcome (9). A p-value <0.01  in HEIDI tests 
indicated potential pleiotropy (14). Additionally, the Benjamini–
Hochberg method was utilized to adjust the false discovery rate 
(FDR) of SMR analysis results to avoid false positives, with FDR < 0.05 
considered significant for SMR analysis. Subsequently, we integrated 
the results of the two protein datasets with the analysis of AMD and 

1 https://www.eqtlgen.org/

2 https://www.genome.gov/Funded-Programs-Projects/

Genotype-Tissue-Expression-Project
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its subtypes to broadly screen for targets, retaining deCODE’s SMR 
analysis data for overlapping proteins. Follow-up colocalization 
analysis was conducted on proteins that met the criteria of FDR < 0.05 
and HEIDI >0.01. SMR analysis and HEIDI tests were performed 
using SMR software version 1.3.1 and the “DrugTargetMR” package 
(version 0.2.6) in R software version 4.3.1.

2.4 Statistical power

We used an online power calculator to assess the statistical power 
of the MR analysis to validate the stability of the results3 (15). Power 
values greater than 0.8 were considered to have high statistical 
power (16).

3 https://sb452.shinyapps.io/power/

2.5 Colocalization analysis

We performed colocalization analysis to determine whether the 
selected positive proteins and AMD are driven by the same genetic 
variants, making the causal relationship between genetic variants and 
outcomes more authentic and excluding the influence of linkage 
disequilibrium or other confounding factors (17). The colocalization 
analysis assumes that causal variables are included in the variable set, 
and within the genomic region of interest, each trait has at most one 
association. The colocalization analysis preferably estimates single 
SNP regression coefficients along with their variances or standard 
errors, and calculates posterior probabilities (PP) through univariate 
association p-values and MAF values (18). Colocalization analysis 
results support five hypotheses and report the PP for each hypothesis: 
H0: the genetic variant is not associated with any trait within the 
locus; H1: associated with only one trait; H2: associated with another 
trait; H3: associated with both traits, but does not have a common 
causal variant; H4: associated with both traits and shares the same 

FIGURE 1

Flowchart of this study.
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causal variant (18). Based on previous studies (19), we  set the 
colocalization window to ±1,000 kb. A posterior probability (PPH4) 
greater than 0.75 was considered strong evidence for colocalization. 
The colocalization analysis was conducted using the “DrugTargetMR” 
package (version 0.2.6) in R software version 4.3.1. The positive 
proteins identified through SMR and colocalization analysis are 
considered to be associated with AMD and its subtypes, and further 
validation was conducted at the blood eQTL level.

2.6 Phenotype scanning

To understand whether the identified instrumental variables are 
closely associated with other traits and exhibit pleiotropy, 
we conducted a phenotype scan using the PhenoScanner database.4 
The criteria for phenotype scanning were as follows: (1) GWAS data 
originated from European populations; (2) the effect allele of the 
instrumental variable was consistent with our results; (3) the 
instrumental variable exhibited genome-wide significant correlation 
(p < 5E-8) with the trait.

2.7 PPI network, chemical exploration, and 
molecular docking

To explore potential interactions among the identified proteins in 
this study, we  utilized GeneMANIA5 to construct functional and 
interaction networks of positive proteins for AMD and its subtypes 
based on SMR and colocalization analysis. We searched for potential 
therapeutic chemical compounds for the identified proteins through 
the Comparative Toxicogenomics Database,6 which provides 
information on chemical substance-gene/protein interactions. The 
most relevant chemical substances to each protein were selected for 
further analysis. Subsequently, we performed molecular docking of 
the chemical substances with the corresponding proteins to assess the 
binding affinity and mode between candidate drug molecules and 
proteins, identifying high-binding protein-drug interaction patterns. 
Structural data for the related compounds were obtained from the 
PubChem Compound database,7 while protein structure data were 
obtained from the Protein Data Bank.8 Molecular docking was carried 
out using AutoDockTools software version 1.5.7, and visualization was 
completed using pymol software version 2.3.0.

3 Results

3.1 Results of SMR analysis

In the deCODE dataset, a total of 1733 eligible proteins were 
subjected to SMR analysis and HEIDI testing for their association with 
AMD (Supplementary Table S2), Dry-AMD (Supplementary Table S3), 

4 http://www.phenoscanner.medschl.cam.ac.uk/

5 http://www.GeneMANIA.org

6 https://ctdbase.org/

7 https://pubchem.ncbi.nlm.nih.gov/

8 https://www.rcsb.org/

and Wet-AMD (Supplementary Table S4). After FDR adjustment 
(p < 0.05) and HEIDI tests (p > 0.01), the SMR analysis identified 7, 6, 
and 8 plasma proteins causally related to AMD, Dry-AMD, and 
Wet-AMD, respectively. Among them, SFTA2, LTA, BRD2, PILRA, 
and ACADSB were identified as protective proteins for AMD, while 
COL10A1 and WARS1 were identified as risk proteins for AMD. The 
protective effect of SFTA2 was validated in the replicated data for 
AMD (Supplementary Table S5); SFTA2, LTA, HSPA1L, and ACADSB 
were identified as protective proteins for Dry-AMD, with COL10A1 
and WARS1 as the risk proteins; for Wet-AMD, SFTA2, VARS1, and 
HSPA1L were identified as protective proteins, while COL10A1, 
WARS1, VTN, SDF2, and LBP were identified as risk proteins. In the 
UKB-PPP dataset, a total of 2001 eligible proteins were subjected to 
SMR analysis and HEIDI testing for their association with AMD 
(Supplementary Table S6), Dry-AMD (Supplementary Table S7), and 
Wet-AMD (Supplementary Table S8). After FDR adjustment (p < 0.05) 
and HEIDI tests (p > 0.01), the SMR analysis identified 9, 5, and 6 
plasma proteins causally related to AMD, Dry-AMD, and Wet-AMD, 
respectively. Among them, PAXX, TGFB1, and TNFRSF10A were 
identified as protective proteins for AMD, while IL20RB, ABO, CFD, 
PILRA, WARS1, and TNFSF14 were identified as risk proteins for 
AMD. Specifically, the protective effect of TNFRSF10A on AMD was 
validated in the replicated data (Supplementary Table S9); PAXX and 
ACADSB were identified as protective proteins for Dry-AMD, while 
IL20RB, WARS1, and DPEP2 were identified as risk proteins; for 
Wet-AMD, CD226, TGFB1, and TNFRSF10A were identified as 
protective proteins, while CSF2, ABO, and WARS1 were identified as 
risk proteins. WARS1 and PILRA were identified in the SMR analysis 
of both protein datasets for AMD, with WARS1 showing a consistent 
risk trend but PILRA showing a different direction, thus PILRA was 
excluded; for Dry-AMD, the analysis of the two protein datasets for 
WARS1 and ACADSB showed the same trend; for Wet-AMD, WARS1 
showed the same trend in the analysis of both protein datasets. 
Integrating the SMR analysis results of the two protein datasets, a total 
of 13, 9, and 13 plasma proteins causally related to AMD, Dry-AMD, 
and Wet-AMD were identified, and these positive proteins were 
included in the colocalization analysis (see Table 1 for details).

3.2 Results of colocalization analysis and 
phenotype scanning

The positive proteins identified in the SMR analysis underwent 
co-localization analysis with AMD (Supplementary Tables S10, S13), 
Dry-AMD (Supplementary Tables S11, S13), and Wet-AMD 
(Supplementary Tables S12, S15). The findings reveal evidence of 
co-localization between five proteins (WARS1, BRD2, IL20RB, 
TGFB1, TNFRSF10A) and AMD (Figure  2A). Furthermore, two 
proteins (WARS1, IL20RB) exhibit co-localization support with 
Dry-AMD (Figure 2B). Additionally, nine proteins are associated with 
co-localization in Wet-AMD (Figure  3), sharing causal variation, 
including COL10A1, WARS1, VTN, SDF2, LBP, CD226, TGFB1, 
TNFRSF10A, CSF2. Refer to Table 1 for specifics.

The phenotype scan results revealed associations between BRD2 
and traits such as lymphocyte count, oropharynx cancer, and nuclear 
pore membrane glycoprotein 210-like levels. IL20RB showed 
associations with phenotypes including prostate cancer, monocyte 
count, and carpal tunnel syndrome. COL10A1 exhibited associations 
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with systemic lupus erythematosus and liver enzyme levels. Please 
refer to Supplementary Table S16 for details. There is no evidence 
indicating a direct association between these phenotypes 
and osteoarthritis.

3.3 Validation analysis

To validate our findings at the gene expression level, we conducted 
additional validation analyses using blood eQTL data for the positive 

proteins identified through SMR and colocalization analyses. 
We excluded VTN, SDF2, LBP, CSF2, and TGFB1 due to the absence 
of qualifying eQTLs in both datasets. The final results are presented in 
Table 2. In the eQTLGen dataset, increased expression of IL20RB was 
associated with higher risk of AMD (OR = 2.09, 95%CI: 1.74–2.84, 
p = 1.61E-02) and Dry AMD (OR = 2.31, 95%CI: 1.14–4.66, p = 2.01E-
02), while expression of WARS1 was associated with decreased risk of 
AMD (OR = 0.90, 95%CI: 0.86–0.95, p  = 4.42E-05), Dry AMD 
(OR = 0.91, 95%CI: 0.85–0.96, p  = 1.94E-03), and Wet AMD 
(OR = 0.89, 95%CI: 0.83–0.95, p = 9.06E-04). TNFRSF10A expression 

TABLE 1 Results of SMR and colocalization analysis of plasma proteins with AMD and its subtypes.

Outcomes Proteins OR (95%CI) p value after FDR 
adjustment

p value for 
HEIDI test

PPH4 Power

AMD SFTA2 0.02 (0.01–0.07) 3.95E-09 0.031 <0.01 1.00

LTA 0.05 (0.01–0.21) 3.46E-03 0.026 0.07 1.00

BRD2 0.13 (0.04–0.41) 4.56E-02 0.015 0.79 1.00

COL10A1 1.47 (1.27–1.71) 7.74E-05 0.233 0.67 0.91

ACADSB 0.55 (0.40–0.76) 2.59E-02 0.015 <0.01 0.99

WARS1 1.48 (1.27–1.72) 4.29E-05 0.551 0.99 0.92

IL20RB 1.75 (1.33–2.32) 3.69E-03 0.086 0.88 0.99

ABO 1.06 (1.03–1.10) 1.93E-02 0.448 0.11 0.12

PAXX 0.70 (0.58–0.86) 1.76E-02 0.923 0.01 0.87

CFD 1.54 (1.22–1.94) 9.88E-03 0.742 0.64 1.00

TGFB1 0.74 (0.65–0.84) 2.70E-04 0.905 0.99 0.74

TNFRSF10A 0.88 (0.83–0.94) 2.59E-02 0.155 0.78 0.80

TNFSF14 1.24 (1.10–1.41) 3.61E-02 0.031 <0.01 0.75

Dry-AMD SFTA2 0.02 (0.01–0.08) 5.48E-08 0.114 <0.01 1.00

LTA 0.06 (0.01–0.25) 1.40E-02 0.043 0.07 1.00

HSPA1L 0.16 (0.10–0.24) 1.67E-13 0.014 <0.01 1.00

COL10A1 1.46 (1.22–1.75) 3.74E-03 0.112 0.23 0.97

ACADSB 0.46 (0.31–0.69) 1.28E-02 0.054 <0.01 1.00

WARS1 1.45 (1.22–1.73) 3.88E-03 0.708 0.95 0.97

IL20RB 2.07 (1.49–2.89) 9.54E-04 0.072 0.93 1.00

PAXX 0.67 (0.53–0.84) 2.97E-02 0.734 0.02 0.83

DPEP2 1.66 (1.28–2.14) 4.84E-02 0.418 <0.01 0.96

Wet-AMD SFTA2 0.01 (0.00–0.05) 5.41E-08 0.017 <0.01 1.00

VARS1 0.11 (0.06–0.19) 5.62E-12 0.023 <0.01 1.00

HSPA1L 0.14 (0.08–0.22) 1.52E-12 0.049 <0.01 1.00

COL10A1 1.66 (1.36–2.03) 1.37E-04 0.412 0.95 0.95

WARS1 1.51 (1.24–1.84) 4.43E-03 0.838 0.95 0.85

VTN 1.06 (1.03–1.09) 3.20E-02 0.332 0.77 0.12

SDF2 1.37 (1.15–1.63) 3.34E-02 0.172 0.76 0.9

LBP 1.11 (1.05–1.17) 3.76E-02 0.056 0.75 0.32

CSF2 1.46 (1.22–1.74) 7.27E-03 0.127 0.95 0.97

ABO 1.08 (1.03–1.13) 3.61E-02 0.462 0.16 0.2

CD226 0.75 (0.65–0.88) 1.96E-02 0.231 0.80 0.84

TGFB1 0.69 (0.58–0.82) 1.82E-03 0.203 0.97 0.97

TNFRSF10A 0.84 (0.77–0.92) 1.55E-02 0.148 0.87 0.81
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was associated with reduced risk of AMD (OR = 0.84, 95%CI: 0.74–
0.95, p  = 8.72E-03) and Wet AMD (OR = 0.79, 95%CI: 0.67–0.93, 
p = 5.73E-03), while CD226 expression was associated with decreased 
risk of Wet AMD (OR = 0.79, 95%CI: 0.71–0.89, p = 9.36E-05). These 
results passed the HEIDI test, but only the effects of WARS1 on AMD 
and CD226 on Wet AMD remained significant after FDR correction 
(PFDR = 4.46E-03 and PFDR = 1.04E-02). In the GTEx dataset, expression 
of WARS1 was associated with reduced risk of AMD (OR = 0.87, 
95%CI: 0.81–0.93, p = 4.96E-05), Dry AMD (OR = 0.88, 95%CI: 0.82–
0.95, p = 1.87E-03), and Wet AMD (OR = 0.86, 95%CI: 0.79–0.94, 
p  = 1.07E-03), while TNFRSF10A expression was associated with 
decreased risk of AMD (OR = 0.81, 95%CI: 0.71–0.91, p = 5.22E-04) 
and Wet AMD (OR = 0.73, 95%CI: 0.62–0.87, p = 2.79E-04). These 

associations also passed the HEIDI test, but only the protective effect 
of WARS1 on AMD remained significant after FDR correction 
(PFDR = 1.47E-02). The protective effect of WARS1 expression on AMD 
was validated in both datasets.

3.4 Results of PPI, chemical exploration, 
and molecular docking

We constructed the PPI networks of the positive proteins for 
AMD and its subtypes using GeneMANIA. As shown in Figure 4, in 
addition to interacting with each other, they also interact with around 
20 surrounding potential proteins, generating hundreds of interaction 

FIGURE 2

Result of colocalization analysis. (A) Colocalization analysis for AMD; (B) Colocalization analysis for DRY-AMD.
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links. In the PPI network of AMD-related proteins, these connections 
mainly include Physical Interactions (70.9%), Co-expression 
(16.01%), Predicted (4.96%), etc. For Dry-AMD and Wet-AMD, the 
connections mainly include Physical Interactions, Co-expression, 
Co-localization, etc. Furthermore, the top five significantly enriched 
functional pathways were analyzed, showing network functions such 
as transmembrane receptor protein serine/threonine kinase activity, 
tRNA aminoacylation, response to molecule of bacterial origin, etc. 
Potential therapeutic chemicals were searched using the Comparative 
Toxicogenomics Database, and we selected chemicals most relevant 
to the corresponding proteins. Detailed information can be found in 
Table 2. Candidate chemical structures and protein structures were 
obtained from PubChem and PDB databases for molecular docking 
to evaluate the affinity between the chemicals and their target 
proteins. Due to the absence of some molecular structures, molecular 
docking was performed for 9 protein-molecule pairs to generate 

corresponding binding energies. The binding energies of most 
protein-molecule pairs were low, indicating stable binding through 
visible hydrogen bonds and strong electrostatic interactions with 
their protein targets, with each ligand successfully occupying the 
binding pocket of the candidate molecules. Among them, IL20RB 
and 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl) 
benzamide showed the lowest binding energies, indicating highly 
stable binding. For specific details, please refer to Tables 2, 3 and 
Figure 5.

4 Discussion

This study identified 5 proteins (WARS1, BRD2, IL20RB, TGFB1, 
TNFRSF10A) associated with AMD through SMR and colocalization 
analysis, 2 proteins (WARS1, IL20RB) associated with Dry-AMD 

FIGURE 3

Result of colocalization analysis for WET-AMD.
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proteins, and 9 proteins (COL10A1, WARS1, VTN, SDF2, LBP, 
CD226, TGFB1, TNFRSF10A, CSF2) associated with 
Wet-AMD. Subsequently, the biological interaction relationships of 
these proteins were elucidated using the PPI network. Potential 
therapeutic chemicals for these proteins were then explored, and 
molecular docking of proteins with the interacting chemicals was 
performed, demonstrating their therapeutic value.

AMD is the result of multifactorial interactions, with 
inflammation believed to play a significant role in the pathogenesis 
of AMD. Local inflammation leads to degeneration of the retinal 
pigment epithelium (RPE), Bruch’s membrane damage, and the 
development of choroidal neovascularization (20, 21). Colony 
stimulating factor 2 (CSF2) is a hematopoietic growth factor that 
primarily acts to stimulate the formation of colonies of bone marrow 
cells to produce granulocytes and macrophages (22). CSF2 affects 
various bone marrow cell lines, including macrophages and 
neutrophils, by inducing these cells to produce cytokines involved 
in the inflammatory response (23). This highlights the important 
biological role of CSF2 in regulating bone marrow cell development 
and inflammation modulation. Previous studies have shown that 
CSF2 is expressed in astrocytes in the central nervous system 
through stimulation by IL-1β (24). Additionally, research has 
indicated that CSF2 can induce proliferation of microglia in 
hippocampal slice cultures without inducing the production of 
pro-inflammatory cytokines (25). Recently, Kosuke Saita et al. (26) 
explored the role of CSF2-induced microglia in modulating retinal 
inflammation in retinal degeneration. The study found that CSF2 
was strongly induced in the retina and led to upregulation of C-C 
motif chemokine ligand 2 (Ccl2) and C-X-C motif chemokine ligand 

10 (Cxcl10) in activated microglia, indicating that CSF2 triggers a 
robust inflammatory response in the retina. We  predicted the 
potential action of lipopolysaccharide (LPS) on CSF2. LPS is a major 
cell wall component of Gram-negative bacteria, and numerous 
studies have shown that LPS induces increased expression of CSF2 
protein, such as the expression of GM-CSF at mRNA and protein 
levels in LPS-induced MDA-MB-231 cells (27). In AMD, LPS 
induces inflammatory responses in retinal pigment epithelium, 
increasing the risk of AMD (28). Our results suggest that increased 
CSF2 protein expression may elevate the risk of AMD, and our 
hypothesis is that LPS-induced stimulation of CSF2 protein 
expression exacerbates retinal inflammation leading to AMD, which 
requires further validation.

Bromodomain-containing proteins (BRDs) are substances 
involved in protein–protein interactions, serving as recruiting 
platforms that link protein complexes with acetylated histones (29, 
30). Dysregulation of proteins containing bromodomains leads to 
changes in acetylation levels, thereby promoting abnormal expression 
of inflammatory cytokines and causing inflammation. Bromodomain 
extra-terminal (BET) proteins, such as BRD2, are important members 
of the bromodomain-containing protein family. Previous studies have 
shown that BET proteins promote gene transcription in inflammation 
by recruiting the transcriptional coactivator P-TEFb (31). Therefore, 
BET proteins may serve as valuable targets for treating 
inflammatory diseases.

Transforming growth factor beta 1 (TGFB1) is an important 
cytokine that has been shown to promote fibrosis and inflammatory 
responses, as well as regulate proliferation, differentiation, apoptosis, 
adhesion, and migration of various cell types (32). In addition, 

TABLE 2 The eQTL data of positive results and SMR analysis of GWAS.

Outcomes Proteins Origins OR (95%CI) P value P value after FDR 
adjustment

P value for 
HEIDI test

AMD BRD2 eqtlGen 1.18 (0.93–1.34) 2.31E-01 7.53E-01 0.009

GTEx - - - -

WARS1 eqtlGen 0.90 (0.86–0.95) 4.42E-05 4.46E-03 0.070

GTEx 0.87 (0.81–0.93) 4.96E-05 1.47E-02 0.307

IL20RB eqtlGen 2.09 (1.47–3.84) 1.61E-02 2.89E-01 0.414

GTEx - - - -

TNFRSF10A eqtlGen 0.84 (0.74–0.95) 8.72E-03 2.10E-01 0.486

GTEx 0.81 (0.71–0.91) 5.22E-04 1.17E-01 0.131

Dry-AMD WARS1 eqtlGen 0.91 (0.85–0.96) 1.94E-03 1.07E-01 0.171

GTEx 0.88 (0.82–0.95) 1.87E-03 2.38E-01 0.503

IL20RB eqtlGen 2.31 (1.14–4.66) 2.01E-02 4.06E-01 0.887

GTEx - - - -

Wet-AMD COL10A1 eqtlGen 0.89 (0.61–1.33) 5.96E-01 9.36E-01 0.202

GTEx - - - -

WARS1 eqtlGen 0.89 (0.83–0.95) 9.06E-04 7.42E-02 0.384

GTEx 0.86 (0.79–0.94) 1.07E-03 2.23E-01 0.644

CD226 eqtlGen 0.79 (0.71–0.89) 9.36E-05 1.04E-02 0.488

GTEx - - - -

TNFRSF10A eqtlGen 0.79 (0.67–0.93) 5.73E-03 2.45E-01 0.415

GTEx 0.73 (0.62–0.87) 2.79E-04 1.06E-01 0.154

https://doi.org/10.3389/fneur.2024.1400557
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Pu et al. 10.3389/fneur.2024.1400557

Frontiers in Neurology 09 frontiersin.org

TGFB1 can induce the synthesis of extracellular matrix (ECM) 
proteins, participate in angiogenesis, endothelial cell proliferation, 
ECM deposition, and disruption of the blood-retinal barrier (33, 34). 
TGFB1 plays a significant role in the process of angiogenesis (35, 36). 

Previous studies have indicated that TGFB1 can restrict angiogenic 
potential by acting on CLENDO cells (37). We predicted the chemical 
compound Estradiol as a potential agent acting on TGFB1, and 
protein docking studies also revealed stable binding affinity. Animal 

FIGURE 4

PPI results.
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experiments have shown that 17β-estradiol (E2) can inhibit the 
expression of TGFB1 mRNA in normal mouse pituitary prolactin 
cells (38). E2 reduces TGFB1 protein activity, protecting foot cells 
from TGFB1-induced apoptosis (39). Research by M. Pastorcic et al. 
suggests that estradiol-17 beta intervention during pituitary tumor 
development reduces TGFB1 protein levels in anterior pituitary tissue 
(40). Additionally, TGFB1 is one of the main targets of estrogen 
stimulation, and Estradiol has a significant impact on vascular 
endothelial growth factor (VEGF) signaling, aiding in angiogenesis 
(41). While studies on their role in retinal-related tissues have not 
been found, based on existing research, we speculate that Estradiol 
may influence retinal neovascularization by inhibiting TGFB1 
protein activity and expression, potentially playing a role in 
AMD. However, further research is needed to elucidate the specific 
clinical mechanisms.

TNF Receptor Superfamily Member 10a (TNFRSF10A) is the 
receptor for the cytokine TNF-related apoptosis-inducing ligand 
(TRAIL), and it is involved in apoptosis, necrosis, and inflammatory 
signaling pathways (42, 43). TRAIL binds to TNFRSF10A, and 
TNFRSF10A initiates the receptor pathway by exposing its 
cytoplasmic death domain (44). Dysfunction of retinal pigment 
epithelium (RPE) is one of the pathological changes in AMD. Tumor 
necrosis factor receptor superfamily member 10A 
(TNFRSF10A)-LOC389641 shares the same SNP (rs13278062), 
which has been identified to be associated with AMD risk in previous 
genome-wide association studies (45, 46). Based on this, Kenichiro 
Mori et al. elucidated that downregulation of TNFRSF10A expression 
leads to inactivation of protein kinase C-alpha (PKCA) signaling and 
results in cellular vulnerability of RPE cells through studies using 
RPE cells and TNFRSF10A knockout mice (47). This may be the 
reason why TNFRSF10A plays a protective role in 

AMD. We hypothesized that the chemical compound Resveratrol 
may act on TNFSFR10A. It belongs to the stilbenoid family, is a 
polyphenolic plant toxin, and has been shown to prevent apoptosis 
in human RPE cells in vitro (48). Resveratrol protects or delays 
H2O2-induced RPE cell death through its antioxidant properties and 
exhibits potent anti-inflammatory characteristics, significantly 
inhibiting CXCL11 induction by pro-inflammatory cytokines, thus 
exerting a protective effect against AMD (49, 50). However, the 
pathway through which Resveratrol stimulates TNFSFR10A protein 
in AMD remains to be further elucidated, and our findings provide 
direction for this.

Vitronectin (VTN) protein is a plasma protein widely present in 
the human circulatory system, distributed in the extracellular matrix 
(ECM) of various tissues, including the retina. Specifically, it can 
be detected in ocular tissues such as the choroid, Bruch’s membrane, 
and RPE (51, 52). Vitronectin interacts with multiple ligands, 
participating in processes such as cell adhesion and migration, 
immune responses, angiogenesis, and fibrinolysis (53–56). 
Accumulation of sub-RPE deposits is one of the pathological 
hallmarks of AMD. Several studies have identified vitronectin as a 
major component and coordinating factor in the formation of 
AMD-related retinal deposits (57–59). In this study, Vitronectin also 
showed a trend toward increased risk for AMD. Additionally, research 
indicates that Vitronectin levels in tissues increase with the presence 
of inflammation and age (60–62), with age being a significant risk 
factor for AMD, which aligns with the role of Vitronectin in AMD 
development. We  hypothesized that the chemical compound 
bisphenol A (BPA) may act on VTN, as it is an estrogenic compound. 
Current research suggests that BPA induces apoptosis in ARPE-19 
cells through downregulation of the Nrf2/HO-1 pathway under 
oxidative stress and mitochondria-dependent apoptotic pathways 

TABLE 3 Chemical exploration of identified proteins and their molecular docking results.

Outcomes Target PDB ID Chemicals PubChem CID Binding energy

AMD WARS1 1O5T Cyclosporine 5284373 −3.07

BRD2 1X0J lipopolysaccharide, Escherichia coli O111 B4 - -

IL20RB 4DOH 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-

2-yl)benzamide

4521392 −8.58

TGFB1 5VQP Estradiol 5757 −6.01

TNFRSF10A 5CIR Resveratrol 445154 −6.70

Dry-AMD WARS1 1O5T Cyclosporine 5284373 −3.07

IL20RB 4DOH 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-

2-yl)benzamide

4521392 −8.58

Wet-AMD COL10A1 1GR3 Bisphenol A 6623 −5.46

WARS1 1O5T Cyclosporine 5284373 −3.07

VTN 3BT1 Bisphenol A 6623 −5.77

SDF2 SDF2 Bisphenol A 6623 −5.37

LBP 4M4D Bisphenol A 6623 −5.61

CD226 6ISB Bisphenol A 6623 −6.36

TGFB1 5VQP Estradiol 5757 −6.01

TNFRSF10A 5CIR Resveratrol 445154 −6.70

CSF2 2GMF Lipopolysaccharides - -
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FIGURE 5

Molecular docking results. (A) WARS1 docking cyclosporine. (B) IL20RB docking 4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl) 
benzamide. (C) TGFB1 docking estradiol. (D) TNFRSF10A docking resveratrol. (E) COL10A1 docking bisphenol A. (F) VTN docking bisphenol A. (G) SDF2 
docking bisphenol A. (H) LBP docking bisphenol A. (I) CD226 docking bisphenol A.
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(63). Although some studies have reported an increase in VTN protein 
expression with BPA (64) and docking studies have shown stable 
binding affinity, the specific mechanism by which BPA acts through 
the VTN pathway in AMD remains unclear.

The strength of this study lies in the utilization of MR and 
colocalization methods to jointly estimate the causal effects of 
plasma proteins on AMD and its subtypes through genetic 
variations. Additionally, we integrated the results from two protein 
datasets to comprehensively screen feasible therapeutic targets for 
AMD. There are several notable limitations to this study. Firstly, the 
study population being of European descent restricts the 
generalizability of the results to other populations. Secondly, 
although colocalization analysis reduces biases that may arise due to 
linkage disequilibrium, horizontal pleiotropy may not necessarily 
be minimized. Uncertainty in attribution exists if the variance of 
regression coefficients is estimated through minor allele frequencies 
of genotyped SNPs and sample sizes. Additionally, interpretation of 
the posterior probability of colocalization (PPH4) should 
be  cautious, as smaller outcomes of PPH4 may not represent 
evidence against joint localization, especially when PPH3 is also low 
(18). Furthermore, molecular docking can only predict the binding 
state of drug molecules and proteins, without reflecting the 
metabolism and pharmacological effects of drug molecules in vivo. 
Therefore, molecular docking can only serve as a supplementary and 
guiding tool. Finally, the biological mechanisms of targeting proteins 
and related chemical substances require further in vitro and in vivo 
experimental results to elucidate, in order to better understand the 
therapeutic effects of targeting proteins.

5 Conclusion

In conclusion, this study identified potential protein targets for 
AMD and its subtypes through SMR and colocalization analysis, 
expanding the current biomarkers for AMD and its subtypes. The 
study also searched for and validated actionable chemical 
compounds for the identified proteins. It is hoped that our research 
findings will contribute to the development of targeted drugs for 
AMD and its subtypes.
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