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Amyotrophic lateral sclerosis (ALS) is a debilitating motor neurological disorder 
for which there is still no cure. The disease seriously jeopardizes the health 
and lifespan of adult populations. The authors extensively retrieved the current 
literature about clinical and experimental ALS treatments. Based on them, this 
review primarily focused on summarizing the current potential clinical usage 
and trialing therapeutics of ALS. Currently, the clinical ALS treatments have 
focused primarily on relieving symptoms to improve the quality of life yet. 
There are a number of therapeutic approaches such as medicine, gene therapy, 
neuron protectants, combination therapy and stem cells. Among them, Stem 
cells including embryonic stem cells, mesenchymal stem cells, neural stem 
cells, and many other types of stem cells have been used in ALS treatment, 
and although the short-term efficacy is good, it is worth exploring whether this 
improved efficacy leads to prolonged patient survival. In addition, the supportive 
treatments also exert an important effect on improving the quality of life and 
prolong the survival of ALS patients in absence of effectively care for stopping 
or reversing the progression of ALS.
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1 Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes the loss of 
upper and lower motor neurons, ALS patients mainly are with muscle weakness, stiffness and 
atrophy. Although the disease usually does not affect the patient’s intellect or senses at early 
stage, it may eventually lead to generalized paralysis, the impairment of multiple nervous 
systems and the loss of respiratory function. As a chronic progressive disease, ALS has 
progressively worsening symptoms that usually lead to severe disability within 3–5 years. 
Although some people can survive longer than the period of disease course, most patients 
eventually die from the respiratory dysfunction. ALS has an incidence of about 2.5 per 100,000 
people and has a poor prognosis with an average survival of 3–5 years. Although ALS primarily 
affects motor neurons, many patients experience other symptoms such as difficulty swallowing, 
speech disorders, and breathing difficulties. In addition, some patients may experience some 
mood swings or mild cognitive impairment (1).

While the etiology of most ALS patients is unknown, about 10% of patients are linked to 
genetic factors. In addition, a number of environmental factors, such as long-term exposure 
to certain chemicals or heavy metals, have been suggested as possible links to the development 
of the disease (2). Based on genetics, ALS can be categorized into familial and sporadic types, 
with the former accounting for about 10% of cases and the latter for about 90%. More than 30 
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ALS-related genes have been identified, among them, the more 
common genes are superoxide dismutase 1 (SOD1), chromosome 9 
open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR 
DNA-binding protein (TDP-43/TARDBP), which are involved in a 
variety of cellular functions such as RNA metabolism, protein folding, 
autophagy and inflammation (3).

Although we have gained some understanding of some genetics 
and molecular mechanisms of ALS, there are still many unknowns in 
this area. More in-depth studies are needed to identify potential 
therapeutic targets and provide guidance for future drug development. 
Given the complexity of ALS, multiple strategies may be needed to 
effectively combat the disease. This includes not only medications, but 
also gene therapy, stem cell therapy, neuroprotective strategies, 
supportive and symptomatic treatment. This further emphasizes the 
urgency of in-depth research to develop a comprehensive 
treatment approach.

2 Available medications

2.1 Single medications of medicine

Riluzole is the drug that prolongs survival in ALS patients, with 
the greatest benefit from early use (4), but does not improve motor 
function, muscle strength or respiratory function. Results from two 
pivotal experimental studies of Riluzole show that Riluzole slightly 
delays the onset of respiratory dysfunction and prolongs patient 
survival by approximately 2–3 months (5, 6). In subsequent studies, 
several real-world population studies comparing Riluzole with ALS 
patients not using Riluzole have found significant differences in the 
median survival between two groups, ranging from 6 to 19 months (7). 
In addition, Riluzole may be  the most effective at the advanced 
respiratory stage of ALS (8–10). The mechanism of Riluzole effects in 
the treatment of ALS remains to be elucidated and may be related to 
the inhibition of glutamate release, the reduction of neuronal toxicity 
response, the stabilization of neuronal membranes and the blockade 
of voltage-sensitive sodium channels (11) to reduce the neuronal 
excitability. Riluzole might be able to exert the transient effects on the 
cortical and axonal hyperexcitability, potentially accounting for the 
modest clinical effectiveness in ALS. Some ALS patients may 
experience the elevated liver function enzymes with Riluzole, which 
are more common in the high-dose patients and are reversible after 
discontinuation of the drug, and some patients may experience the 
gastrointestinal symptoms, mild malaise or weakness (6), the 
decreased lung function, neutropenia and other adverse effects. 
Therefore, while using Riluzole, we  need to pay attention to 
monitoring liver function enzymes, gastrointestinal tract, lung 
function and blood cells.

Free radical-induced oxidative stress involving not only motor 
neuron degeneration but also glial and endothelial cell dysfunction 
may be  an important factor in the progression of ALS, and may 
be  further exacerbated by nutritional deficiencies, cachexia, and 
psychological stress as ALS progresses (12, 13). Edaravone was the 
first drug shown to inhibit motor deterioration in ALS since Charcot 
firstly described ALS nearly 150 years ago. Edaravone is a free radical 
scavenger that may protect neurons from oxidative stress damage by 
scavenging free radicals and inhibiting neuroinflammatory responses 
(14–16). Edaravone slows the functional decline by about 33% in ALS 

patients (17), originally developed as intravenous (IV) therapy for 
acute ischemic stroke. Based on an open-label phase 2 study, the use 
of Edaravone resulted in a significant reduction in the change of 
Revised ALS Functional Rating Scale (ALSFRS-R) scores in the 
patients with ALS. Moreover, Edaravone reduced 3-nitrotyrosine 
concentrations in the cerebrospinal fluid of ALS patients (16, 18). 
Some investigators have conducted a placebo-controlled phase 3 
studies of Edaravone for more than 24 weeks, however, the results 
showed that Edaravone did not show a significant difference in 
ALSFRS-R scores compared to placebo, while the post hoc analyses of 
these data showed that greater effects were demonstrated in the ALS 
patients who met the specific following enrollment criteria: 2 scores 
or more on all items of ALSFRS-R, at least 80% of forced vital capacity 
at baseline, definite or probable ALS diagnosed by El Escorial and 
revised Airlie House criteria, and the disease duration of 2 years or 
less (19).

To validate the safety and efficacy of Edaravone effects of this post 
hoc analysis, an investigator conducted a randomized, double-blind, 
placebo-controlled, phase III trial in Japan, which recruited ALS 
patients aged 20–75 years old who met the enrollment criteria between 
November 28, 2011 and September 3, 2014, at 31 hospitals. The results 
show that Edaravone demonstrated efficacy in a small group of ALS 
patients who met the screening criteria for the post hoc analysis, with 
a significantly smaller decrease in ALSFRS-R scores compared to 
placebo (20). Edaravone was eventually initially approved for ALS 
treatment in Japan in 2015, and was approved by the U.S. Food and 
Drug Administration (FDA) in May 2017 for the treatment of ALS. It 
is important to note that the effects appear to be more pronounced in 
earlier, younger patients and those with slower disease progression. 
The possible side effects of Edaravone include allergic reactions, rash, 
itching, breathing difficulty, the swelling of face, bruises or contusions, 
gait disturbance, headache, dermatitis, the decreased numbers of 
platelets, red blood cells and white blood cells, and the elevated 
creatine kinase levels.

In the CENTAUR trial which was a placebo-controlled, double-
blind, multicenter and randomized study, the effectiveness and safety 
of sodium phenylbutyrate-taurursodiol (PB-TURSO) were confirmed 
in the patients with ALS (21). Despite the absence of phase 3 clinical 
trial data, PB-TURSO has received a conditional approval for 
treatment in Canada in June 2022, the trade name is Albrioza. 
PB-TURSO was fully approved in the United States in September 
2022, the trade name is Relyvrio. PB-TURSO was administered in a 
sachet containing fixed-dose co-formulation of 3 g of PB and 1 g of 
TURSO (AMX0035). PB is utilized for lowering ammonia levels in 
certain types of urea cycle disorders and short-chain fatty acid 
disorders. As a pro-drug, it is quickly converted into phenylacetate, 
which then acetylates glutamine, resulting in the formation of 
phenylacetylglutamine. In cellular models, PB may affect the ALS 
disease progression by altering transcription, reducing 
neuroinflammation and improving cellular energy metabolism (22). 
In animal experiments, PB alleviated histone hypoacetylation, leading 
to a delay in the development of motor deficits, an extension of 
survival time, and the enhancements of motor function (23, 24). In 
the United States, TURSO is referred as taurursodiol, while in Canada 
and Europe, it goes by the name ursodoxicoltaurine. Additionally, 
TURSO is frequently used as an alternative term for TUDCA, which 
stands for tauroursodeoxycholic acid, a derivative of ursodeoxycholic 
acid (UDCA) that includes taurine. TURSO, a hydrophilic secondary 
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bile acid, is formed when taurine is conjugated to ursodeoxycholic 
acid. While it is primarily produced in liver, the synthesis of TUDCA 
can also occur within brain (25). TURSO exhibits effects that prevent 
cell death and reduce inflammation by inhibiting the permeability of 
mitochondrial membrane (26). In a cellular model for SOD1 
neurodegeneration, TURSO conjugated with glycine diminishes 
oxidative stress and neuroinflammation through the reduction of 
nitrite production and the inhibition of matrix metallopeptidase 9 
activation (27). Nevertheless, the rationale for PB-TURSO in the 
treatment of ALS remains to be clarified, as the transcriptional and 
metabolic effects of the combination differ significantly from those of 
PB or Turso alone. It is possible that the combined action of 
PB-TURSO may involve processes such as nucleic acid metabolism, 
RNA processing, nucleoplasmic transfer, unfolded protein response, 
mitochondrial function, and innate immune function, which need to 
be confirmed by further studies. However, the recent failure of the 
AMX0035 and TUDCA trials was reported. AMX0035 received US 
FDA approval in September 2022. However, oral treatment with 
AMX0035 and TUDCA failed to meet primary clinical and 
electrodiagnostic endpoints in clinical trials. Despite this failure, a 
number of exploratory endpoints included in phase 2/3 trials suggest 
AMX0035 and TUDCA has the potential to significantly slow clinical 
worsening, improve quality of life, and prolong survival in 
ALS. Further study of AMX0035 and TUDCA in the clinical trial is 
currently underway (Table 1).

2.2 Combination applications of medicine

One study identified the combination of nebivolol and donepezil 
(nebivolol-donepezil) for the treatment of ALS by analyzing data 
based on the genetic information from ALS patients and the 
pharmacogenomic data from the drug. The results showed that 
nebivolol-donepezil significantly reduced cytokine levels in microglial 
cell lines, inhibited nuclear factor-κB nuclear translocation in HeLa 
cells, and significantly protected against the excitotoxicity-induced 
neuronal loss by modulating the PI3K-Akt pathway, and facilitated the 
differentiation of neural precursor cells to motor neurons (28). Some 
studies have synthesized Edaravone derivatives coupled with 
1-aminoadamantane with alkylidene or hydroxypropyl groups and 
investigated their biological activity, and the compounds have been 

found to inhibit the lipid peroxidation and the calcium-associated 
mitochondrial permeability, block fast sodium currents in the neurons 
of central nervous system, and reduce the aggregation of FUS-protein 
in the typical mutant form of ALS, and have the potential to 
be  optimized for using in the treatment of ALS (29). PXT864, a 
low-dose combination of aminocaproate and baclofen, can show the 
protection of neuromuscular junction and motor neuron integrity in 
the glutamatergic-injured primary neuron-muscle, suggesting that it 
may be a promising therapeutic strategy for ALS (30). These results 
suggest that combination applications of medicine may help to stop 
the progression of ALS disease, improve the quality of life and life 
expectancy of patients, and are very promising treatments.

3 Advances in emerging drug 
therapies: genetically targeted 
therapies

TDP-43 is an RNA-binding protein, and cytoplasmic TDP-43 
aggregates are present in sporadic and familial ALS, in addition to 
familial ALS caused by mutations in SOD1, and its aberrant 
aggregation and aberrant function have been implicated in the 
pathogenesis of ALS (31, 32). Several antibodies have been developed 
to recognize the misfolded or exposed regions of TDP-43, especially 
in the RNA recognition motif domains. Some of these antibodies can 
induce the degradation of pathological TDP-43 by proteasome or 
autophagy, or reduce inflammation and improve the cognitive and 
motor function in animal models (33). Peptides derived from the 
C-terminal domain of TDP-43 have been designed to reduce TDP-43 
aggregation by interfering with self-interaction or promoting 
clearance (34). Some of these peptides are conjugated with cell-
penetrating or hydrophobic motifs to enhance their delivery and 
efficacy. Small molecules have been discovered or screened to bind to 
the different domains of TDP-43, such as the N-terminal domain, the 
RNA recognition motifs, or the C-terminal domain (33, 35). These 
molecules can modulate TDP-43 aggregation, degradation, or nucleic 
acid binding, and have shown the beneficial effects in cell and fly 
models of TDP-43 proteinopathy.

Antisense oligonucleotides (ASOs) are the synthetic nucleic acid 
molecules that can complementarily pair with a target mRNA to 
activate the endogenous RNase H enzyme, leading to the degradation 

TABLE 1 Current available major medications.

Drugs Effect Mechanism of action Side reaction

Riluzole Prolongs survival Inhibition of glutamate release. Stabilization of 

neuronal membranes and decrease in 

neuronal excitability

Liver function enzymes, gastrointestinal symptoms, 

malaise or weakness, decreased lung function, neutropenia.

Edaravone Inhibit motor deterioration Protect neurons from oxidative stress damage. Allergic reactions, bruises or contusions, gait disturbance, 

headache, and Dermatitis, decreased numbers of platelets, 

red blood cells, and white blood cells, and elevated creatine 

kinase levels.

PB-TURSO Influencing ALS disease 

progression

Altered transcription, reduced 

neuroinflammation and improved cellular 

energy metabolism.

Abdominal pain, diarrhea, nausea, upper respiratory 

infection.

Qalsody Neuroprotection Antisense oligonucleotide against SOD1. Pain, fatigue, arthralgia, increased leukocytes in 

cerebrospinal fluid
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of mRNA, or to block the interaction of mRNA with RNA-binding 
proteins, which regulates the shearing or processing of mRNA without 
degrading mRNA (36). MiRNA is a naturally occurring small 
molecule RNA that can partially complementarily pair with the 3′ 
untranslated region of the target mRNA to inhibit the translation of 
mRNA or promote the degradation of mRNA (36). Both approaches 
can be  used to reduce or inhibit the expression of mutant genes, 
thereby reducing the production of mutant proteins, which may be an 
effective therapeutic strategy for some mutations with the toxic gain 
or loss of function. Both approaches have been used to target the 
SOD1 and C9orf72 genes in ALS therapy. MiRNA therapy targeting 
the SOD1 and C9orf72 genes has so far only shown some effects in 
animal models and in vitro cellular models (37–39). The ASO therapy 
targeting the C9orf72 gene has completed a phase I clinical trial, but 
has not shown significant clinical benefit yet (40). The ASO therapy 
targeting the SOD1 gene has entered phase III clinical trials but has 
not shown significant clinical benefit yet.

The RNA interference (RNAi) is a method of silencing specific 
genes using double-stranded RNA that can be used to reduce the 
expression of mutant proteins by fully or partially complementary 
pairing with the target mRNA, which can lead to the degradation or 
translational repression of mRNA (36). The RNAi molecules usually 
include the short interfering RNAs (siRNAs), the short hairpin RNAs 
(shRNAs) and the artificial miRNAs, which need to be delivered to the 
cell via the viral vectors (e.g., adeno-associated viruses) to function as 
gene silencers (41). In ALS, this approach has been used to the target 
mutations in the SOD1 and C9orf72 genes, both of which can lead to 
the degenerative changes and death of neurons (42, 43). The RNAi 
therapy targeting the SOD1 gene has shown some effects in animal 
models, reducing the SOD1 protein levels and delaying the disease 
onset and progression (44–46). In humans, a study using the AAV9 
vector to deliver an artificial miRNA targeting the SOD1 gene in two 
patients with familial ALS found that it could safely inhibit SOD1 
transcription, reduce polypeptide dipeptide levels, and maintain the 
functional stability for 18 months (47). The RNAi therapy targeting the 
C9orf72 gene has not entered clinical trials yet, but has shown some 
effects in the in vitro cellular and animal models, reducing C9orf72 
mRNA levels, RNA aggregation and polypeptide repeat protein 
production, and improving the neuronal survival and function 
(37–39).

The CRISPR/Cas is a technology that uses a repetitive sequence 
and associated proteins found in bacteria to enable gene editing, 
which can be  done by designing specific single-stranded RNAs 
(sgRNAs) to direct the Cas enzyme to cleave the target DNA sequence, 
thereby repairing or knocking out the mutated DNA (48). In a study 
of CRISPR/Cas therapy targeting the SOD1 gene using the AAV9 
vector to inject SaCas9 and sgRNA targeting the SOD1 gene into 
neonatal transgenic G93A-SOD1 mice through a facial vein, it was 
found that it could significantly reduce the level of the mutant SOD1 
protein, increase the number of motor neurons, delay the onset and 
progression of the disease, and improve survival rates (49). The 
CRISPR/Cas therapy targeting the C9orf72 gene was found to reduce 
the transcription or levels of repetitive RNA, RNA aggregation and 
peptide repeat protein production in two studies targeting G4C2 
repeat-expanded DNA or RNA, respectively (50, 51). This approach 
has the advantage of directly correcting the mutated DNA, thereby 
eliminating the downstream aberrant pathway, and could theoretically 
be used as a one-time intervention. However, the safety and feasibility 

of this approach has not been fully validated in humans, and a number 
of potential issues need to be addressed, such as the precision of gene 
editing, nonspecific side effects, effective vectors and delivery systems, 
and ethical and legal regulations.

Methods such as small molecule compounds or antibodies can 
also be used to intervene in the transcription process or to reduce the 
levels of mutant proteins, thereby attenuating or delaying the 
progression of neurodegenerative diseases, but there are more 
challenges involved. Some studies using methods such as small 
molecule compounds or antibodies are listed next, including: 
Interference with the secondary structure of repetitive RNA using 
compounds such as TMPyP4 (5,10,15,20-tetra (N-methyl-4-pyridyl) 
porphyrin), which reduces the RNA aggregation and peptide repeat 
protein production (52). The anti-GA antibody was used to inhibit the 
intra- and extracellular dissemination of GA peptides, thereby 
reducing cytotoxicity (53). Small molecule heat shock proteins such 
as heat shock protein B8 were used to promote the autophagic 
clearance of all five polypeptide repeat proteins, thereby improving the 
neuronal survival and function (54–56).

Approximately 2% of patients with ALS have mutations in the 
gene that encodes SOD1, a metalloprotease that protects against 
oxidative stress. These mutations lead to the dysregulation and 
overproduction of SOD1 protein (3, 57, 58). Under development by 
Biogen, Tofersen, known commercially as Qalsody™, is a 
therapeutic antisense oligonucleotide designed to target SOD1 
mRNA, with the goal of treating ALS. By targeting the SOD1 mRNA, 
Tofersen works through an antisense mechanism. This mechanism 
involves binding to the mRNA sequence and triggering a process 
known as RNase H-mediated degradation. This degradation prevents 
the translation of SOD1 mRNA into SOD1 protein, thereby lowering 
the amount of mutant SOD1 protein in affected cells (59). Tofersen 
was recently approved by the European Medicines Agency (EMA) 
and US FDA to use in treating SOD1 patients in April 2023. 
However, although Qalsody (Tofersen) performed well in terms of 
safety and tolerability and showed some degree of neuroprotection, 
it failed to meet the primary endpoints of reducing SOD1 protein 
levels and improving ALS functional scores in a phase III clinical 
trial (40).

4 Neuroprotective therapies

Antioxidants are a class of substances that resist oxidative stress 
and protect cells from damage caused by free radicals and other 
reactive oxygen species. Antioxidants may play an important role in 
the treatment of neurodegenerative diseases such as ALS, as oxidative 
stress is considered to be one of the main factors leading to neuronal 
death (60). There are many types of antioxidants, including 
endogenous (e.g., glutathione, superoxide dismutase, catalase, etc.) 
and exogenous (e.g., vitamin C, vitamin E, beta-carotene, polyphenols, 
etc.) (61). The efficacy of antioxidants has not been clearly 
demonstrated in clinical trials in ALS yet, but some antioxidants such 
as vitamin E, coenzyme Q10, melatonin and N-acetylcysteine have 
been used as adjunctive therapies in ALS or are undergoing further 
study (62–64). The safety and dosage of antioxidants are also factors 
to be considered, as excess antioxidants may have negative effects, 
such as inhibiting endogenous antioxidant defense systems, increasing 
oxidative stress, and interfering with the action of other drugs.
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Mitochondria are the energy factories of cell and are involved in a 
variety of life activities such as the respiratory chain, calcium homeostasis, 
reactive oxygen species (ROS) production and apoptosis. The 
mitochondrial dysfunction leads to the motor neuron degeneration and 
death. To protect mitochondria from oxidative damage, several 
mitochondria-targeted antioxidants have been developed, such as 
MitoQ. These compounds are able to selectively accumulate in 
mitochondria, scavenge ROS, improve mitochondrial function, and delay 
the course of disease in animal models of ALS (65). The mitochondrial 
quantity and quality are regulated by the mitochondrial biosynthesis and 
clearance, including the mitochondrial dynamics and the mitochondrial 
autophagy. In ALS, all these processes are affected, leading to the 
disorganization of the mitochondrial network and accumulation of 
damaged mitochondria. Some compounds that modulate the 
mitochondrial biosynthesis and clearance, such as Olesoxime and 
Triheptanoin, have been evaluated as the potential therapeutic agents for 
ALS, but the results of clinical trials have been unsatisfactory (66, 67).

5 Stem cell therapies

The stem cell therapy is a method using stem cells or their 
derivatives to repair or replace the damaged nerve tissue with a view 
to the slowing or reversing progression of ALS. Currently, two main 
types of stem cells are used for ALS treatment, neural stem cells 
(NSCs) and mesenchymal stem cells (MSCs). NSCs are the pluripotent 
cells being capable of differentiating into neurons, astrocytes and 
oligodendrocytes, whereas MSCs are the pluripotent cells being 
capable of differentiating into a wide range of mesenchymal tissues, 
such as bone, cartilage, muscle and fat. Stem cells can protect the 
damaged or residual neurons against oxidative stress, apoptosis and 
the inflammatory damage by secreting neurotrophic factors such as 
brain-derived neurotrophic factor, glial cell-derived neurotrophic 
factor and insulin-like growth factor-1 (68–72) (Figure 1). Stem cells 
can replace dead or dysfunctional cells by differentiating into neurons 
or glial cells, restoring the structure and function of neural networks 
(69, 70, 73, 74) (Figure 1). Stem cells can also inhibit the onset and 
progression of neuroinflammation and attenuate the immune-
mediated injury in neurodegenerative diseases by influencing the 
activation, differentiation, migration and secretion of immune cells 
(69, 70, 73, 74). Several clinical trials are currently underway or have 
been completed to evaluate the safety and efficacy of NSCs or MSCs 
in the patients with ALS. The transplantation of NSCs is usually done 
by the surgical injection of cells into spinal cord or brain ventricles, 
whereas the transplantation of MSCs can be done by intravenous or 
intraspinal injections. The source of NSCs and MSCs can 
be embryonic stem cells, adult stem cells, or induced pluripotent stem 
cells, and can be autologous or allogeneic.

There are a number of stem cell treatments that have entered 
clinical trials. A study included 20 subjects with a confirmed diagnosis 
of ALS and ALSFRS-R score of >20, who received intrathecal MSC 
injections 1–4 times at 3–6 month intervals, with the primary 
endpoints being safety and tolerability, efficacy assessments included 
ALSFRS-R score and forceful lung capacity (FVC) as secondary 
endpoints, results in no serious adverse events observed throughout 
the trial (75). A study evaluated the safety and efficacy of autologous 
bone marrow-derived mesenchymal stem cells (BM-D MSCs) (76), 
the results showed that treatment with BM-D MSCs slowed the 
disease progression in ALS patients with an inherently rapid disease 

course, However, due to the small size of this group, it wasn’t possible 
to assess whether these changes were statistically significant. A phase 
I  clinical trial that included 18 patients with ALS validated the 
feasibility and safety of stem cell transplantation by microinjecting 
human neural stem cells (hNSCs) into the patients’ lumbar spine or 
cervical medullary gray matter bundles to evaluate hNSCs and 
monitoring the patients’ clinical, psychological, neuroradiological and 
neurophysiological profiles before and after transplantation (77). 
None of these patients exhibited serious adverse effects or accelerated 
disease progression as a result of the treatment for up to 60 months 
postoperatively, which suggests that the transplantation of hNSCs did 
not cause any long-term complications and that some patients showed 
the temporary clinical improvement after transplantation.

Although stem cell therapy has shown some safety and efficacy in 
clinical trials for ALS, a number of challenges and limitations remain. 
There are numerous factors that influence the effectiveness of stem cell 
therapy and there are no uniform standards or guidelines to regulate 
these factors. The transplantation of stem cells can be  risky, with 
difficulties such as the financial burden, cell supply and heterogeneity.

6 Supportive treatment

In addition to medications, the supportive treatment is an 
important component of treatment for ALS patients, including 
physical, occupational and speech therapy, nutritional and respiratory 
therapy, and psychological and palliative treatment. The supportive 
treatment not only relieves symptoms caused by ALS, but also 
improves quality of life and functional ability. The multidisciplinary 
treatment is the foundation of ALS treatment, involving neurologists, 
nurses, physical therapists, speech therapists, dietitians, psychologists 
and other professionals to provide a comprehensive medical and 
psychological support for ALS patients to improve quality of life and 
prolong survival (78–80) (Figure 2).

6.1 Non-motor symptoms treatment/
symptomatic treatments for ALS

In the absence of cure or any medical intervention which might 
reverse or stop the progression of ALS, Therefore, the focus on the 
symptom, rehabilitation and palliation treatment with overall aim of 
optimizing quality of life is especially important. Among them, the 
treatments that can release/alleviate symptoms but do not target the 
pathogenic processes of ALS are included those that target ALS at the 
impairment level, such as the mechanical ventilation for respiratory 
insufficiency, the enteral feeding for maintaining the nutrition 
impairment, and the treatments of spasticity, sialorrhoea (autonomic 
nerves impairment), cramps and pain (sensory pain), and those that 
target ALS at the level of activity and participation, such as 
multidisciplinary care, repetitive transcranial magnetic stimulation 
(rTMS) and therapeutic exercise. A wide range of interventions is used 
in treating the diverse symptoms and impairments including 
cognitive-behavioral treatment in ALS.

6.1.1 At the level of impairment, interventions 
include the following

 1 The mechanical ventilation of tracheostomy and non-invasive 
ventilation might prolong the survival and optimize quality of 
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life by ventilation in those with clinically significant respiratory 
muscle weakness (81).

 2 The enteral feeding might maintain the bodyweight balance, 
prolong the survival, and improve the quality of life by 
providing a safe and reliable route nutrition in ALS patients 
who may have dysphagia, poor appetite and impaired ability to 
feed themselves to lead to the reduction of oral intake, 
malnutrition and dehydration.

 3 The spasticity treatment is very widely, including the 
physiotherapy such as therapeutic exercises, stretching and 
positioning; The modalities such as heat, cold, vibration and 
electrical stimulation; The prescription medication such as 
baclofen; The non-prescription medication such as vitamins; 
The chemical neurolysis such as botulinum toxin; The surgical 
interventions such as intrathecal pumps and the alternative 
therapies such as reflexology. How these interventions might 
work varies widely from one intervention to another, most 
commonly, stretching techniques are used in combining with 
one or more ‘true’ muscle relaxants line baclofen (82), and such 
interventions work by lengthening with or without the 
assistance of weakening the muscle agonist.

 4 The sialorrhoea treatments include suction, drug treatments 
and more invasive approaches, such as injecting botulinum 
toxin or irradiating salivary glands, which may improve 
sialorrhoea secretion and quality of life. These intervention 
measures reducing the amount of saliva either through its 
removal such as suction or reducing salivary secretion such as 
anticholinergic medication and botulinum toxin injection. The 

autonomic symptoms occur in majority of ALS patients to late 
stages over time, which implies that the autonomic dysfunction 
represents an intrinsic non-motor feature of ALS. A higher 
autonomic burden is a poor prognostic risk factor, being 
associated with a more rapid development of disease and 
shorter survival (83).

 5 The cramps treatment, because the pathogenesis of cramps is 
not very clearly known yet, the mechanisms of treatment aren’t 
clear yet. Currently, 2 different pathophysiological mechanisms 
have been proposed, the abnormal excitation of terminal 
branches of motor axons (84), and the hyperexcitability or 
bistability of motor neurons in spinal cord (85). Therefore, the 
etiology of cramps in ALS and the mechanism of treatment 
measures remains uncertain yet.

 6 The pharmacological treatment of pain in ALS, the present 
treatment for pain mainly reduces the pain symptom. 
Analgesics exert via different pathways. Such as paracetamol 
and non-steroidal anti-inflammatory drugs inhibit the 
production of pain by inhibiting the production of 
prostaglandins, while opiates such as morphine imitate natural 
neuromediators by binding their receptors such as endorphin 
receptors to relieve pain.

 7 The cognitive-behavioral treatment. Approximate 50% of ALS 
patients experience the mild cognitive-behavioral changes. The 
cognitive impairment can lead to the increased variability in 
gait parameters and a higher risk of falls (86). The behavioral 
disturbances may result in the refusal of necessary therapeutic 
interventions in the advanced stages of ALS, such as 

FIGURE 1

Mechanisms of stem cell action. BDNF, brain-derived neurotrophic factor; GDNF, glial cell-derived neurotrophic factor; IGF-1, insulin-like growth 
factor-1. Drawn by Figdraw.
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tracheostomy or PEG tube placement (87). ALS patients with 
executive dysfunction have a worse prognosis, and the 
behavioral changes have a negative impact on the carer quality 
of life (88, 89). Screening for cognitive deficits is recommended, 
because it can provide the patients and carer support (90–92). 
Standard memory tests, such as Mini-Mental State 
Examination, ALS-Cognitive Behavioral Screen and more 
extensive University of California San Francisco Screening 
Battery (93), and the Edinburgh Cognitive Assessment Screen 
(94) are recommended in clinical cognitive estimation. 
Moreover, other types of neurological dysfunction including 
ataxia and autonomic dysfunction also should be estimated. 
Currently, no accurate evidences exist to guide the management 
of cognitive or other neurological deficits in ALS, and 
establishing the evidence-based strategies to manage such ALS 
cognitive-behavioral symptoms should be  a priority for 
further research.

Approximate half of ALS patients experience psychological 
symptoms, such as emotional lability, pathological laughter or crying, 
these symptoms are more common in the ALS patients with bulbar 
onset ALS (95). The compounds of dextromethorphan combining 
with quinidine can improve emotional symptoms (96, 97). In addition, 

selective serotonin reuptake inhibitors such as citalopram and 
amitriptyline (91, 98, 99) also can be  used in treating emotional 
symptoms such as depression and anxiety. The psychological 
symptoms are common including depression, anxiety and fatigue, and 
have a negative effect on quality of life (100–102). Modafinil can 
be safely used for fatigue (103). Otherwise, psychological support, 
palliative care and physical therapy is recommended (92), along with 
standard drug treatments used in other diseases (104).

6.1.2 At the level of activity and participation, 
interventions include the following

 1 Multidisciplinary care might reduce disability and improve 
quality of life by applying “a problem-solving education 
process” (105), delivered by medical and allied health 
disciplines, for example, physiotherapy, occupational therapy 
and speech therapy, which are focused on maximizing activity 
and participation.

 2 Transcranial magnetic stimulation might stimulate nerve cells 
in superficial areas of brain by applying a high-energy magnetic 
field at the skull surface which induces a perpendicular 
electrical field in the vertical plane through cerebral cortex, 
which might provide a non-invasive approach to condition the 
excitability and activity of neurons (106), and at the low 

FIGURE 2

Multidisciplinary care. Drawn by Figdraw.
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frequency of equal to or less than 1 Hz, bring a reduction in 
glutamate-induced excitotoxicity, which may improve motor 
function in ALS patients (107). At the higher frequency of 
faster than 1 Hz, it is thought that the increased expression of 
neurotrophic factors could be neuroprotective (108). In the last 
20 years, several modalities of neuromodulation, mainly based 
on non-invasive brain stimulation (NIBS) techniques, have 
been tested as a non-pharmacological therapeutic approach to 
slow disease progression in ALS. In both sporadic and familial 
ALS patients, the neurophysiological studies pointed to the 
motor cortical hyperexcitability as a possible priming factor in 
neurodegeneration, likely related to the dysfunction of both 
excitatory and inhibitory mechanisms. A trans-synaptic 
anterograde mechanism of excitotoxicity is thus postulated, 
causing upper and lower motor neuron degeneration. 
Specifically, both motor neuron hyperexcitability and 
hyperactivity are attributed to intrinsic cell abnormalities 
related to alter the ion homeostasis and to impair the glutamate 
and gamma aminobutyric acid gamma-aminobutyric acid 
signaling. Several neuropathological mechanisms supported 
both excitatory and synaptic dysfunction in ALS. In addition, 
corticospinal excitability can be suppressed or enhanced using 
NIBS techniques such as rTMS and transcranial direct current 
stimulation (tDCS), as well as invasive brain and spinal 
stimulation. Experimental evidence supports the hypothesis 
that the after-effects of NIBS are mediated by long-term 
potentiation−/long-term depression-like mechanisms 
modulating synaptic activity, with different biological and 
physiological mechanisms underlying the effects of tDCS and 
rTMS and possibly different rTMS protocols. Overall, these 
studies suggest a possible efficacy of neuromodulation in 
determining a slight reduction of ALS progression, related to 
the type, duration and frequency of treatment, but current 
evidence remains preliminary (109, 110).

 3 The therapeutic exercise might reduce disability and fatigue, 
and improve quality of life by improving cardiovascular 
deconditioning and disuse weakness in ALS patients.

7 Conclusion

The current mainstay of treatment for ALS remains 
comprehensive care and symptom management, and a number of 
medications are available to slow disease progression. Gene therapy 
and combination therapy is also a promising area of research, but is 
still in the experimental stage. The treatment of ALS remains 
challenging and further research and clinical trials are needed to find 
more effective treatments. Establishing more accurate animal 
models, exploring more genetic variants and biomarkers, and 
developing more effective and safe treatments may help to develop 
strategies for ALS treatment in the future. Recent studies employing 
skin biopsies have pointed out that when ALS patients are categorized 
according to King’s stages, there is a gradual rise in intraepidermal 
nerve fiber and a progressive decline in Meissner corpuscles 
throughout the clinical stages, aligning with the progression and 
severity of ALS. This evidence could be  valuable in trials as a 
surrogate outcome to monitor ALS progression and treatment 

response (111). Based on literature screening criteria, although the 
pathogenesis of ALS has not very clear, the excitatory toxicity and 
oxygen free radicals lesion participates in the pathogenesis of ALS is 
universally acknowledged, the drugs on which the focus was placed 
were chosen based on these two key damaged mechanisms in ALS, 
the extensive available and approved drugs for the treatment of ALS 
in the worldwide only Riluzole and Edaravone, which are the 
inhibitor of excitatory toxic of glutamate neurotransmitter and the 
scavenger of oxygen free radicals, respectively. In addition, there are 
numerous trials undertaken and in progress regarding ALS 
treatments including medications, neuroprotection agents, gene 
therapeutic measures, and stem cells, such as PB-TURSO, AMX0035, 
TUDCA, nebivolol-donepezil, Edaravone derivatives, PXT864, 
Tofersen, Olesoxime, Triheptanoin, NSCs, and MSCs, etc. Among 
them, some trials are failed, some results of clinical trials have been 
unsatisfactory, some trails are in progress. Although several drugs 
are used in clinical treatment of ALS, and numerous trials 
undertaken regarding ALS treatments, no effective measures could 
reverse or stop the progression of ALS up to now. In the present 
clinical practice implication, the combination of multiple treatment 
measures to improve the quality of life and prolong survivals of ALS 
patients, including medicine and supportive treatment, especially 
symptomatic and supportive treatment for the quality of life and 
survival of patients especially are important in the absence of 
effective drugs at present. In our clinical experiences, we applied 
multiple measures to treat the ALS patients based on the current 
reported potential pathogenesis of ALS and improve the quality of 
life and partially extend the survival of ALS patients, including 
Riluzole and Edaravone as well as neuron protective drugs used in 
clinically treating other diseases such as stroke, immunological 
inhibitors such as clinically treating autoimmunological diseases, 
antivirus drugs, neuronutritive drugs such as vitamin E and B, neural 
growth factors, etc. Meanwhile, we combine the multidisciplinary 
care and the Chinese traditional medicine. This treatment is known 
by our-self as “Cocktail treatment,” which currently obtain partial 
effects in the partial ALS patients. Of course, our “Cocktail 
treatment” need further experimental and clinical evidences to 
support, and search more effective combination.
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