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Life Science and Clinical Medicine Research Center, Affiliated Hospital of Youjiang Medical University 
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Background: Recurrence can worsen conditions and increase mortality in ICH 
patients. Predicting the recurrence risk and preventing or treating these patients 
is a rational strategy to improve outcomes potentially. A machine learning model 
with improved performance is necessary to predict recurrence.

Methods: We collected data from ICH patients in two hospitals for our 
retrospective training cohort and prospective testing cohort. The outcome was 
the recurrence within one year. We  constructed logistic regression, support 
vector machine (SVM), decision trees, Voting Classifier, random forest, and 
XGBoost models for prediction.

Results: The model included age, NIHSS score at discharge, hematoma volume 
at admission and discharge, PLT, AST, and CRP levels at admission, use of 
hypotensive drugs and history of stroke. In internal validation, logistic regression 
demonstrated an AUC of 0.89 and precision of 0.81, SVM showed an AUC of 
0.93 and precision of 0.90, the random forest achieved an AUC of 0.95 and 
precision of 0.93, and XGBoost scored an AUC of 0.95 and precision of 0.92. In 
external validation, logistic regression achieved an AUC of 0.81 and precision 
of 0.79, SVM obtained an AUC of 0.87 and precision of 0.76, the random forest 
reached an AUC of 0.92 and precision of 0.86, and XGBoost recorded an AUC 
of 0.93 and precision of 0.91.

Conclusion: The machine learning models performed better in predicting ICH 
recurrence than traditional statistical models. The XGBoost model demonstrated 
the best comprehensive performance for predicting ICH recurrence in the 
external testing cohort.
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Introduction

Patients with intracerebral hemorrhage (ICH) have higher rates of disability and mortality 
compared to those with ischemic stroke (1, 2). Factors such as recurrence can lead to 
worsening conditions and increased mortality in ICH patients (3). The recurrence rate in ICH 
patients is approximately 2–10% (3). Consequently, predicting the recurrence risk and 

OPEN ACCESS

EDITED BY

Tarun Singh,  
University of Michigan, United States

REVIEWED BY

Wei Yue,  
Tianjin Huanhu Hospital, China
Adria Arboix,  
Sacred Heart University Hospital, Spain

*CORRESPONDENCE

Chaohua Cui  
 cchaiwp@163.com

RECEIVED 26 March 2024
ACCEPTED 02 May 2024
PUBLISHED 22 May 2024

CITATION

Cui C, Lan J, Lao Z, Xia T and Long T (2024) 
Predicting the recurrence of spontaneous 
intracerebral hemorrhage using a machine 
learning model.
Front. Neurol. 15:1407014.
doi: 10.3389/fneur.2024.1407014

COPYRIGHT

© 2024 Cui, Lan, Lao, Xia and Long. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 22 May 2024
DOI 10.3389/fneur.2024.1407014

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2024.1407014﻿&domain=pdf&date_stamp=2024-05-22
https://www.frontiersin.org/articles/10.3389/fneur.2024.1407014/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1407014/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1407014/full
https://www.frontiersin.org/articles/10.3389/fneur.2024.1407014/full
mailto:cchaiwp@163.com
https://doi.org/10.3389/fneur.2024.1407014
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2024.1407014


Cui et al. 10.3389/fneur.2024.1407014

Frontiers in Neurology 02 frontiersin.org

implementing preventive or therapeutic measures for patients at 
higher risk of recurrence is a rational strategy to improve outcomes 
potentially (3, 4).

Currently, there are a few studies on predicting the recurrence of 
ICH. One predictive model, which included 38 patients with recurrent 
ICH, demonstrated an AUC of 0.802 (5). However, the limited number 
of outcome events could lead to the model’s performance instability. 
Additionally, the model lacked an external cohort for validation, 
which is crucial for assessing its generalizability. Other recurrence 
model had a similar condition. Therefore, a model that includes more 
outcome events and an external validation cohort is necessary to 
predict ICH recurrence more accurately.

Numerous risk factors can influence the recurrence rate (6). For 
example, the patient’s condition, lobar cerebral hemorrhages or deep 
subcortical intracerebral hemorrhages, amount of bleeding, changes 
in the amount of bleeding, and medication status after discharge 
should be  documented (6). These factors, with their intricate 
correlations, also impact the accuracy of predictions (6). All these 
aspects affect the performance of traditional statistical models. 
Machine learning models could appropriately address these challenges 
(7, 8). Two studies constructed machine learning models to predict 
outcomes in ICH patients, outperforming traditional statistical 
models and scores (9, 10). One study developed a machine learning 
model to predict the occurrence of seizures in ICH patients, which 
also performed well (11).

In this study, we aim to construct a machine-learning model to 
predict the recurrence of ICH. The model incorporates a larger cohort 
of patients and more outcome events. Furthermore, we validated the 
model’s generalizability using an external cohort.

Methods

Study subjects

The training cohort of ICH patients was drawn from neurosurgery, 
neurology, and rehabilitation departments at the affiliated hospitals 
Youjiang Medical University for Nationalities. The inclusion period 
was from January 1, 2018, to January 1, 2021, with follow-up extending 
to January 1, 2022. This was a retrospective cohort. The testing cohort 
of ICH patients originated from the affiliated Baidong hospitals of 
Youjiang Medical University for Nationalities, from January 1, 2021, 
to January 1, 2022, and follow-up until January 1, 2023. This was a 
prospective cohort.

Inclusion criteria: 1. Aged 18 years or older who underwent head 
CT examinations and met the WHO’s diagnostic criteria for ICH. 2. 
Standard medical or surgical treatment was administered to all 
patients. 3. First ICH patients.

Exclusion criteria: 1. Traumatic cerebral hemorrhage, ICH due to 
venous sinus thrombosis, metastatic lesions, or underlying vascular 
lesions. 2. Recurrence of intracerebral hemorrhage secondary to 
infection or hemorrhagic cerebral infarction excluded. 3. The patient 
died during hospitalization.

The study was conducted by the Declaration of Helsinki and the 
ethical standards of the institutional and/or national research 
committee. The study received approval from the Ethics Committee 
of the Affiliated Hospital of Youjiang Medical University for 
Nationalities. Informed consent was obtained from all study 

participants or their surrogates. Patients who could not give consent 
and those without a legally appointed representative were excluded 
from our study.

Risk factors and outcomes

Patient data were collected from electronic medical records, 
including demographic information such as age, gender, and 
nationality. Vital signs, including heart rate and blood pressure, were 
recorded at admission. Comorbidities, such as renal insufficiency, 
epilepsy, pneumonia, and the location of ICH, were also 
documented. Laboratory data, including PLT (blood platelet), INR 
(international normalized ratio), ALT (glutamic-pyruvic 
transaminase), AST (glutamic oxalacetic transaminase hemoglobin), 
LDL-C (low-density lipoprotein), CRP (C Reactive Protein), and 
others, were collected. Medical histories and medication profiles 
were obtained using structured questionnaires completed by patients 
or their relatives.

Clinical assessments, such as NIHSS (National Institute of Health 
stroke scale) scores at admission and discharge, mRS (Modified 
Rankin Scale) scores at admission and discharge, GCS (Glasgow 
Coma Scale) scores at admission, and ADL (activity of daily living) 
scores at admission, were conducted. Hematoma volumes were 
measured using the ABC/2 method and evaluated by the Alice 
software (PAREXEL International, Waltham, MA, United States) (12). 
Two experienced neurologists blinded to the patient’s conditions and 
outcomes performed these evaluations at admission and discharge.

The outcome was the recurrence of ICH within 1 year post-onset. 
We  follow up with each patient until 1 year after the onset of the 
disease, and document any occurrences of recurrent intracerebral 
hemorrhage or death within the year. Head CT examinations 
confirmed recurrent cases according to the WHO’s ICH diagnostic 
criteria. The neurologists evaluated these data independently of the 
patient’s other conditions and baseline data.

The training and testing cohorts were subjected to the same 
evaluation and inclusion criteria, and the uniform process collected 
data for both cohorts. Both cohorts shared similar baseline 
characteristics. All laboratory data adhered to a uniform standard for 
normal values.

Availability of data and material

Data from the study are available from the corresponding 
author upon.

Statistical analysis and machine learning 
model

After gathering and processing data from all patients, 
we performed statistical and machine learning modeling.

The number of missing features constituted less than one-fifth of 
the total variables in the cohort. We used multiple imputations to 
address missing data. Continuous variables were not converted into 
categorical variables. All data from the final cohort were included in 
the model. Statistical analyses were performed using SPSS 23.0 for 
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Windows and Python 3.8.0. The threshold for statistical significance 
was set at p < 0.05.

Baseline characteristics between cohorts
We presented normally distributed continuous variables as 

mean ± SD (standard deviation) and non-normally distributed as 
median and frequencies. These data were compared using a t-test 
for normally distributed variables (such as blood pressure, heart 
rate, laboratory data, etc.) or a Mann–Whitney U test for 
non-normally distributed variables (such as NIHSS, ADL, GCS, 
etc.) between the two cohorts. Categorical variables (such as gender, 
history of disease, history of medication, etc.) or ranked variables 
(such as mRS, occupation, nationality, etc.) were expressed as 
numbers and percentages. These data were compared using the 
chi-square test.

Data pre-processing
To mitigate the significant impact of class imbalance on 

machine learning performance, we applied random under-sampling 
(RUS) technique to balance the data (Scikit-learn library in 
Python). To guarantee fairness in the under-sampling process and 
unbiased generalization capabilities of the model, we performed 
200 repeated experiments with distinct random under-sampling in 
each, coupled with ten-fold cross-validation to examine the results’ 
stability.

Feature selection
Our data included 70 variables. We conducted feature selection 

using various methods to identify relevant variables for the model. 
We selected relevant features through Lasso regression and a step-by-
step recursive procedure (Boruta library in Python). When the p-value 
of the feature is less than 0.05, the feature is included in the model. 
Additional features were identified and included based on clinical 
guidelines and literature (4–6).

Construction and internal validation of the model
We choose commonly used and well-performing basic machine 

learning algorithms (logistic regression, support vector machine, and 
decision trees) and integrated machine learning algorithms (Voting 
Classifier model, random forest model, and XGBoost model) that have 
shown good performance in previous medical research to build the 
model (7–11).

We constructed three fundamental machine learning algorithms: 
logistic regression, support vector machine (SVM), and decision trees 
(sklearn library in Python). We employed a five-fold cross-validation 
(4:1) for randomly splitting the training cohort’s data. Subsequently, 
we performed grid search and cross-validation to optimize parameters 
(sklearn library in Python). We also calculated the ROC and precision 
values and depicted the model performance using ROC and precision 
plots (sklearn library in Python).

We further constructed integrated algorithm models based on 
three fundamental algorithms. The integrated algorithm included a 
Voting Classifier model, random forest model, and XGBoost model 
(sklearn library in Python). We  calculated the F1 score for each 
integrated algorithm model and comprehensively compared the 
performance of each model through AUC, precision values, and F1 
scores. We evaluated whether these integrated algorithms improved 
the performance of the fundamental algorithm models and selected 
the model with the best performance.

External validation of the model
We addressed outliers and class imbalance in the testing cohort 

data similarly to the training cohort data. We  then predicted the 
recurrence of ICH in the testing cohort data (without outcome events) 
using the selected model from the previous step. The actual outcome 
events were used to validate the model’s performance. 
We demonstrated the model’s external performance and generalization 
ability through AUC and prediction accuracy.

Model visualization
To further elucidate the selected model, we visualized the model 

using feature importance and individual prediction. We depicted the 
importance of each feature in the final model with bar charts (SHAP 
library in Python). We illustrated the effect of each feature on individual 
patient predictions using visual representations (LIME library in Python).

Results

Baseline characteristics

Initially, 1,133 patients were eligible for the training cohort; however, 
we  excluded 129 patients due to loss of follow-up, missing data, or 
withdrawal from the study. In the end, the training cohort included 1,024 
patients, with 114 experiencing ICH recurrence, and 203 patients who 
passed away (176 due to neurological causes and 27 due to 
non-neurological causes). The training cohort had 53 patients with 
missing data, which we addressed through multiple imputations. The 
mean age of the training cohort was 63.50 ± 13.550 years, 43.3% of whom 
were female (443 patients). After excluding 24 patients for the same 
reasons as in the training cohort, the test cohort comprised 265 patients, 
with 31 experiencing ICH recurrence, and 41 patients who passed away 
(36 due to neurological causes and 5 due to non-neurological causes). 
Similarly, 11 patients in the test cohort had missing data, which 
we addressed through multiple imputations. The mean age of the test 
cohort was 59.82 ± 13.634 years, 40.4% of whom were female (107 
patients) (Supplementary Figure S1).

In the training cohort, patients with recurrence were less likely to 
take hypotensive drugs post-onset and had less well-controlled blood 
pressure. Additionally, patients with recurrence were older and had 
greater hematoma volume at admission and discharge, higher NIHSS 
and ADL scores, and higher PLT levels at admission. Other features 
showed no significant differences (Table 1).

In the test cohort, patients with recurrence had higher NIHSS and 
ADL scores at discharge and greater hematoma volume at admission and 
discharge. Other features showed no significant differences (Table 2). 
Both cohorts had a similar distribution in baseline characteristics.

To compare the baseline data between the training and test cohorts, 
patients in the training cohort were older than those in the test cohort. 
Other baseline data showed no significant difference between the two 
cohorts (Table 3).

Data pre-processing and feature selection

Through random under-sampling and cross-validation, the model 
performance has improved by approximately 10%.

Through Lasso regression and a stepwise process, we identified 
several relevant variables for the model, including age, NIHSS score at 
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TABLE 1 Baseline characteristic of training cohort.

Feature All patients (N  =  1,024) Recurrence (N  =  114) No-Recurrence (N  =  910) p*
Age, years 63.50 (13.550) 68.81 (12.960) 62.84 (13.483) <0.001

Female, % 443 (43.3) 48 (42.1) 395 (43.4) 0.361

Discharge NIHSS score 6 (1–15) 20 (15–35) 4 (1–11) <0.001

Admission ADL score 40 (20–70) 25 (10–45) 45 (25–75) <0.001

Admission hematoma, mL 21 (11–24) 25 (22–28) 19 (10–24) <0.001

Discharge hematoma, mL 13 (7–22) 36 (32–40) 12 (6–19) <0.001

History of stroke, % 277 (27.1) 26 (22.8) 251 (27.6) 0.137

Hypotensive drugs, % 826 (80.7) 67 (58.8) 759 (83.4) 0.003

Platelet, mmol/L 202.80 (71.176) 179.78 (64.950) 205.69 (71.429) <0.001

AST, mmol/L 26.48 (16.340) 26.57 (17.264) 26.47 (16.230) 0.949

CRP, mmol/L 19.55 (16.975) 20.88 (17.470) 19.39 (17.155) 0.375

p* was calculated by ANOVA, Chi-square test, or Mann–Whitney U test as appropriate. NIHSS, National Institute of Health stroke scale; ADL, activity of daily living; AST, glutamic oxalacetic 
transaminase; CRP, C-reactive protein.

TABLE 2 Baseline characteristic of testing cohort.

Feature All patients (N  =  265) Recurrence (N  =  31) No-Recurrence (N  =  234) p*
Age, years 59.82 (13.634) 61.48 (12.951) 59.60 (13.733) 0.471

Female, % 107 (40.4) 13 (41.9) 94 (40.2) 0.615

Discharge NIHSS score 5 (1–17) 18 (11–35) 4 (1–12) <0.001

Admission ADL score 50 (0–85) 45 (10–65) 65 (15–90) <0.001

Admission hematoma, mL 18 (11–25) 28 (26–29) 16 (10–23) <0.001

Discharge hematoma, mL 12 (6–25) 30 (27–32) 10 (5–20) <0.001

History of stroke, % 56 (21.1) 6 (19.4) 50 (21.4) 0.657

Hypotensive drugs, % 228 (86.0) 24 (77.4) 204 (87.2) 0.198

Platelet, mmol/L 200.39 (70.061) 193.45 (52.069) 202.19 (72.113) 0.444

AST, mmol/L 26.77 (15.174) 27.32 (18.707) 26.70 (14.689) 0.831

CRP, mmol/L 19.67 (14.017) 19.93 (13.336) 19.62 (14.132) 0.910

p* was calculated by ANOVA, Chi-square test, or Mann–Whitney U test as appropriate. NIHSS, National Institute of Health stroke scale; ADL, activity of daily living; AST, glutamic oxalacetic 
transaminase; CRP, C-reactive protein.

TABLE 3 Baseline characteristic between training and testing cohort.

Feature Training set (N  =  1,024) Testing set (N  =  265) p*
Age, years 63.50 (13.550) 59.82 (13.634) <0.001

Female, % 443 (43.3) 107 (40.4) 0.317

Discharge NIHSS score 6 (1–15) 5 (1–17) 0.279

Admission ADL score 40 (20–70) 50 (0–85) 0.273

Admission hematoma, mL 21 (11–24) 18 (11–25) 0.116

Discharge hematoma, mL 13 (7–22) 12 (6–25) 0.907

History of stroke, % 277 (27.1) 56 (21.1) 0.317

Hypotensive drugs, % 826 (80.7) 228 (86.0) 0.203

Platelet, mmol/L 202.80 (71.176) 200.39 (70.061) 0.622

AST, mmol/L 26.48 (16.340) 26.77 (15.174) 0.790

CRP, mmol/L 19.55 (16.975) 19.67 (14.017) 0.917

p* was calculated by ANOVA, Chi-square test, or Mann–Whitney U test as appropriate. NIHSS, National Institute of Health stroke scale; ADL, activity of daily living; AST, glutamic oxalacetic 
transaminase; CRP, C-reactive protein.
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discharge, hematoma volume at admission and discharge, and PLT, AST, 
and CRP levels at admission. Subsequently, based on clinical significance 
and literature (4–6), and for enhanced model performance after adding 
additional variables, particularly the improvement in model 
performance during external validation, we have chosen to incorporate 
the use of hypotensive drugs and history of stroke into the model.

Internal validation performance of models

For the basic machine learning models, internal validation revealed 
that the AUC for the logistic regression model was 0.89, and the 
precision was 0.81, the positive predictive value (PPV) was 87.3%, and 
negative predictive value (NPV) was 76.0%. The SVM model had an 
AUC of 0.93 and a precision of 0.90, a PPV of 94.2% and a NPV of 
88.5%, while the decision trees model showed an AUC of 0.91 and a 
precision of 0.71, a PPV of 79.0% and a NPV of 81.5%. All three models 
demonstrated excellent discrimination, with the logistic regression and 
SVM models also exhibiting excellent calibration.

For the integrated machine learning models, the score for the 
Logistic Regression model was 0.951, for the Decision Tree 
Classifier was 0.962, and for the SVC model was 0.883. In the Voting 
Classifier model, the score for the soft voting method was 0.928, 
with an AUC and precision of 0.96 and 0.86, a PPV of 94.2% and a 
NPV of 89.4%, respectively. The random forest model scored 0.966 
and exhibited an AUC and precision of 0.95 and 0.93, a PPV of 
95.0% and a NPV of 92.3%, respectively. The XGBoost model scored 
0.977, with an AUC and precision of 0.95 and 0.92, a PPV of 94.6% 
and a NPV of 93.1%, respectively. All three integrated machine 
learning models exhibited excellent discrimination, and the latter 
two models demonstrated excellent calibration. The random forest 
and XGBoost algorithms improved the basic models’ performance.

External validation performance of models

External validation for the basic machine learning models showed 
that the AUC for the logistic regression model was 0.81 

(Supplementary Figure S3a-1), with a precision of 0.79 
(Supplementary Figure S3a-2). The SVM model had an AUC of 0.87 
(Supplementary Figure S3b-1) and a precision of 0.76 
(Supplementary Figure S3b-2), and the decision trees model had an 
AUC of 0.71 (Supplementary Figure S3c-1) and a precision of 0.70 
(Supplementary Figure S3c-2).

For the integrated machine learning models, the random 
forest model exhibited an AUC of 0.92 
(Supplementary Figure S4a-1) and a precision of 0.86 
(Supplementary Figure S4a-2), while the XGBoost model had an 
AUC of 0.93 (Supplementary Figure S4b-2) and a precision of 
0.91 (Supplementary Figure S4b-2). The random forest model 
had a PPV of 90.0% and a NPV of 85.2%, and the XGBoost model 
had a PPV of 92.5% and a NPV of 93.2%. The integrated machine 
learning algorithms still demonstrated excellent discrimination 
and calibration in the test cohort.

Model visualization

In the feature importance figure of the XGBoost model, we found 
that the value of the hematoma and NIHSS scores at discharge had the 
most significant effect on the model. Then, the age, the value of PLT 
and AST, and the value of hematoma at admission also affected the 
model differently (Figure 1). In the feature importance figure of the 
random forest model, we  found that the value of hematoma at 
discharge had the best significant effect on the model. Then, the 
NIHSS score at discharge, the value of hematoma at admission, age, 
and the value of PLT and AST also affected the model differently 
(Supplementary Figure S2).

Figure 2 shows the process of the XGBoost model to predict 
the recurrence rate in individual ICH patients. First, the XGBoost 
model calculated the score through the difference in volume extent 
of hematoma and NIHSS score, age, PLT, and AST. Then, the 
model calculated the possibility of ICH recurrence in the 
individual patients. For the selected patients, the model accurately 
predicts the patients would have recurrent ICH with a 100% 
possibility.

FIGURE 1

The importance of the feature plot of the XGBoost model. 2-1: the importance of features for predicting in the total model; 2-2: the importance of 
features for predicting in each patient of the model.
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Discussion

The study constructs machine learning models to predict the 
recurrence of ICH. We evaluated six machine learning models. The 
models included age, NIHSS score at discharge, and hematoma 
volume at admission and discharge. The SVM and decision trees were 
performed better than logistic regression model in the training cohort. 
The integrated machine learning models performed better than the 
basic models in the training cohort. In the test cohort, the AUC and 
precision of the basic models all decreased to less than 0.9. However, 
the integrated models, such as the random forest and XGBoost 
models, still performed better. Notably, the XGBoost model performed 
excellently in the testing cohort, with an AUC and precision greater 
than 0.9.

We performed multiple imputation on data with a small 
number of missing features, and data with more than 30% missing 
features were not included in the analysis. Less than 1% of the data 
was not included in the analysis, and it did not significantly affect 
the result analysis. We standardized all the data included in our 
model; thus, the data distribution did not significantly affect 
the results.

For selected features, the NIHSS score at discharge had a highly 
significant impact on the model. Their importance was ranked 
second and third in the final random forest and XGBoost models. 
The neurological deficit at discharge contained more information 
for predicting long-term events. The discharge score at least reflects 
the illness’s initial state and therapy’s effect. In other study, the 
discharge score had a more pronounced relationship with patient 
outcomes (5, 9–11). The hematoma volume also had a similar 
effect. Our model included hematoma volume at admission and 
discharge, allowing it to evaluate the changing situation throughout 
hospitalization. These changes could more accurately reflect the 
patients’ conditions. This was similar to other models, including 
the GCS score at admission and discharge (5). The hematoma 
volume consistently ranked among the top three in our final 
random forest and XGBoost models, significantly improving our 
model’s performance.

Our model also included age and PLT levels. It is plausible that 
older age and lower PLT levels could increase the risk of ICH 
recurrence, which is consistent with other studies (13). Our model 
also indicated that AST and CRP levels affect the risk of recurrence. 
Poor liver function and infection can affect the state of the illness (14, 
15). However, these effects require further investigation. Our model 
includes a history of stroke and the use of hypotensive drugs. Although 
these two features did not significantly affect our model performance, 
these clinically significant features could improve the model’s 
generalizability. Therefore, our model could perform better in different 
region cohorts. An acute intraparenchymal hematoma in a young 
patient can be  the presenting manifestation of a hematological 
disorder (16). The hematologic disorders from other stroke etiologies 
that have a different treatment approach and outcome (16). For less 
young patients in our cohort, a model included more young patients 
was more suit for these patients with hematological disorder.

The recurrence of ICH can be influenced by numerous risk factors 
that vary over time. These factors exhibit a complex interrelationship 
that traditional statistical models struggle to represent. Machine 
learning models are more adept at processing these complex 
characteristics. Consequently, machine learning models have the 
potential to identify novel predictors with enhanced predictive value. 
They demonstrated excellent performance in the training cohort due 
to the abovementioned advantages. However, machine learning 
models face challenges when applied to external datasets. In other 
words, they may exhibit poorer generalization performance. The 
overall performance of our model decreased in the test cohort. 
Nevertheless, the integrated model exhibited superior generalization 
capabilities, maintaining its excellent performance even within the test 
cohort. Consequently, the integrated model could hold significant 
clinical value across various regions.

Another common challenge with machine learning models is the 
interpretability of their outcomes. The SHAP library is widely used for 
global interpretation of model outcomes, revealing the significance of 
each model feature (17). This means the library elucidates the impact 
and contribution of each feature to the predictive results and displays 
each feature’s value within the model. The LIME library, which stands 

FIGURE 2

Local interpretable model-agnostic explanation (LIME) with XGBoost model applied to one correctly predicted patient that ICH recurrence within 
1  year.
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for Local Interpretable Model-Agnostic Explanations, can demonstrate 
the model’s prediction process for individual samples (18). 
Consequently, LIME visually illustrates how the model predicts the 
likelihood of outcome events based on the value of each feature. These 
two libraries enhance our model’s interpretability, demonstrating 
practical value and superior performance in clinical settings.

This study faced several limitations. First, the training cohort 
might be susceptible to bias owing to its retrospective design. Second, 
the training and testing cohorts, which originated from the same 
geographical region, had a similar feature distribution. Consequently, 
it becomes imperative to validate the model’s performance across 
diverse regional patient populations further. Third, our model did not 
incorporate neuroimaging data; including a broader array of data 
types could potentially enhance model performance.

Conclusion

The machine learning model demonstrated excellent performance 
in predicting the recurrence of ICH compared to traditional statistical 
models. The XGBoost models with hematoma volume at admission 
and discharge outperformed the external test cohort. The change 
situation in hematoma volume improves the performance of model. 
The XGBoost model exhibited the best discrimination and calibration 
in predicting the recurrence of ICH. The XGBoost model offered 
excellent predictive value for guiding medical care in patients at a 
higher risk of ICH recurrence.

The use of this XGBoost model, along with other machine 
learning models for predicting recurrent intracerebral hemorrhage, 
can improve the accuracy of recurrent intracerebral hemorrhage 
prediction. It guides the formulation of personalized treatment and 
prevention plans in clinical medicine. The next step involves validating 
the model’s applicability in other regions and ethnicities to confirm its 
practicality and universality.
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