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Parkinson’s disease (PD) and inflammatory bowel disease (IBD) are the two 
chronic inflammatory diseases that are increasingly affecting millions of people 
worldwide, posing a major challenge to public health. PD and IBD show 
similarities in epidemiology, genetics, immune response, and gut microbiota. 
Here, we review the pathophysiology of these two diseases, including genetic 
factors, immune system imbalance, changes in gut microbial composition, 
and the effects of microbial metabolites (especially short-chain fatty acids). 
We  elaborate on the gut–brain axis, focusing on role of gut microbiota in 
the pathogenesis of PD and IBD. In addition, we  discuss several therapeutic 
strategies, including drug therapy, fecal microbiota transplantation, and 
probiotic supplementation, and their potential benefits in regulating intestinal 
microecology and relieving disease symptoms. Our analysis will provide a 
new understanding and scientific basis for the development of more effective 
therapeutic strategies for these diseases.
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1 Introduction

Parkinson’s disease (PD) and inflammatory bowel disease (IBD) are increasingly affecting 
the global population. PD is a neurodegenerative disease characterized by bradykinesia, resting 
tremor, and myotonia; its pathogenesis involves various factors, including genetics, 
environmental factors, and age (1, 2). IBD, including Crohn’s disease and ulcerative colitis, is 
a group of diseases characterized by chronic intestinal inflammation, leading to abdominal 
pain, diarrhea, and hematochezia. Its etiology is complex and diverse, involving immune 
system abnormalities, genetic susceptibility, and intestinal microbial imbalance (3–5). The 
occurrence of PD and IBD may be intricately linked to each other, and the interplay between 
the gut and the central nervous system—the “gut–brain axis”—provides a potential biological 
basis for this link (6–8). Meanwhile, some studies have shown that IBD is a candidate 
diagnostic marker for PD (9), and the incidence of PD is significantly increased in IBD patients 
(10). Here, we will review the risk factors, pathophysiological mechanisms, and treatment 
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methods of PD and IBD, with special focus on the role of gut 
microbiota and short-chain fatty acids (SCFAs). We aim to provide 
comprehensive information on the relationship between these two 
seemingly different but closely related diseases for future research on 
diagnostic and treatment strategies.

2 Epidemiology of PD and IBD2.1 
epidemiological relationship between 
PD and IBD

Parkinson’s disease is the second most common neurodegenerative 
disease worldwide, and its prevalence is gradually increasing with the 
aging of the global population. PD mainly affects adults over 50 years 
of age; however, cases of PD have also been reported in younger age 
groups. Males are slightly more likely to develop PD than females, and 
most cases are thought to be sporadic, although familial clusters have 
been reported in about 10% of patients (11, 12). The increase in the 
prevalence and incidence of IBD in industrialized and high-income 
countries can be  attributed to changes in environmental factors, 
lifestyle, and genetic susceptibility. Although IBD can occur at any age, 
it is most common in adolescents and young adults, and its incidence 
is similar between men and women. However, family history is an 
important risk factor for IBD, and individuals with family history have 
a significantly increased risk of developing the disease (13–15).

2.1 Risk of PD in patients with IBD

A meta-analysis of nine studies involving 12,177,520 patients 
revealed that the incidence of PD in patients with IBD was higher 
than that in the general population (RR = 1.24; p < 0.001) (10). 
Further, the results of another meta-analysis confirmed that patients 
with IBD had a higher incidence of PD compared with the general 
population (OR = 1.30; p = 0.024) (16). However, it is unclear whether 
the risk of IBD in patients with PD is different from that in the 
general population. The findings of existing studies are inconsistent, 
and sufficient epidemiological studies are not available. A cohort 
study involving 1968 patients with PD and 6,792 controls was 
conducted in Taiwan in 2015. The authors found that the prevalence 
of IBD between the two groups was not significantly different 
(p = 0.561) (17). A Swedish case–control study involving 39,652 
patients with IBD and 396,520 controls revealed that patients with 
IBD were more likely to have PD at the time of IBD diagnosis 
compared with the control population (OR = 1.4; 95% CI: 1.2–1.8). 
Similar results were observed in the subgroup analysis of Crohn’s 
disease (OR = 1.6; 95% CI: 1.1–2.3) and ulcerative colitis (OR = 1.4; 
95% CI: 1.1–1.9) (18). The 2019 update of the World Movement 
Disorder Society diagnostic criteria for the prodromal stage of PD 
specifies that IBD is a candidate diagnostic marker for PD. This 
implies reliable and credible evidence; however, the corresponding 
prospective studies are lacking (9).
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2.2 Risk of IBD in patients with PD

Freuer et al. analyzed 463,372 IBD-related datasets (7,045 cases 
and 456,327 controls) and 1,474,097 PD-related datasets (56,306 cases 
and 1,417,791 controls). Mendelian randomization (MR) analysis 
using inverse variance weighting (IVW) showed that IBD was not 
associated with the risk of PD (OR = 0.98, p = 0.48) (19). MR analysis 
was performed using the data obtained from 59,957 patients with IBD 
(25,042 cases and 34,915 controls) and 1,474,097 patients with 
PD-related using five statistical methods, including IVW and robust 
adjusted profile score (RAPS). The risk of IBD in patients with PD was 
higher than that in the control population (IVW and RAPS OR values 
were 1.062 and 1.063, respectively; both p < 0.05). The results of the 
remaining three statistical methods were negative (19). Two-way MR 
was used to analyze 214,053 patients with IBD (3,753 cases and 
210,300 controls) and 482,730 patients with PD (33,674 cases and 
449,056 controls). The authors observed the incidence of IBD in PD 
(OR = 1.014; 95% CI: 0.967–1.063; p = 0.573) and that of PD in IBD 
(OR = 0.978; 95% CI: 0.910–1.052; p = 0.549) (20). Currently, there is 
a paucity of definitive evidence to establish a direct association 
between PD and IBD; however, epidemiological correlations between 
the two disorders have been observed. Additional prospective and 
mechanistic studies are needed to clarify the possible causal 
relationship between these two diseases and the specific biological 
pathways involved in their interaction. This information may provide 
important clues for the development of new strategies for the 
prevention and treatment of both diseases.

3 Pathophysiology of PD and IBD

3.1 Genetic factors

Several authors have reported common genetic variants associated 
with the risk of PD and IBD (21). The NOD2/CARD15 gene may be a 
common risk gene for PD and IBD (22). This gene is located on 
chromosome 16 and encodes the NOD2 protein (23). Four single 
nucleotide polymorphisms (SNPs; R702W, G908R, L1007fs, and 
P268S) of the NOD2/CARD15 gene are highly expressed in patients 
with Crohn’s disease and PD (22, 24, 25). However, Appenzeller et al. 
suggested that the three SNPs (R702W, G908R, and L1007fs) are not 
associated with PD (26). The NOD2 protein encoded by this gene 
plays an important role in maintaining intestinal homeostasis. Any 
mutation in the NOD2 gene may increase the susceptibility to IBD in 
the corresponding population through nuclear factor-κb activation 
and cytokine response (27). The leucine-rich repeat kinase 2 (LRRK2) 
gene is located on chromosome 12 and encodes the LRRK2 protein 
(28). The LRRK2 gene is one of the important pathogenic genes in PD, 
and it is also related to IBD (29). The LRRK2 gene is highly expressed 
in peripheral blood mononuclear cells and may be involved in the 
inflammatory process. The expression of the LRRK2 gene in B cells, T 
cells, and CD16+ monocytes was higher in patients with PD than that 
in healthy controls. The interferon-γ stimulation can increase the 
expression of this gene in the immune cells of patients with Crohn’s 
disease (30, 31). Several SNP sites in the LRRK2 gene, including 
N1437H, R1441C/G/H, Y1699C, I2012T, G2019S, and I2020T, are the 
pathogenic mutation sites in PD, and M2397T is a risk site in Crohn’s 
disease. N2081D is the common risk locus of PD and Crohn’s disease, 

whereas N551K and R1398H are the common protective loci of PD 
and Crohn’s disease (29). N2081D is located in the kinase domain of 
the LRRK2 gene and is associated with increased kinase activity of the 
LRRK2 protein. R1398H is located in the Roc (Ras/GTPase-protein 
complex) domain of the LRRK2 gene, and mutations in this site can 
inactivate the LRRK2 protein by increasing GTPase activity. N551K is 
not in any domain of the LRRK2 gene, but N551K and R1398H show 
linkage disequilibrium (32, 33). Chronic neuroinflammation and 
intestinal inflammation are important pathophysiological processes 
in PD and IBD, respectively. Therefore, LRRK2 gene mutations may 
mediate inflammatory responses by affecting the kinase and GTPase 
activities of the LRRK2 protein, thereby participating in the 
pathogenesis of these diseases (29). In addition to the LRRK2 and 
NOD2 genes, other genes associated with autophagy, such as ATG16L1 
(34, 35) and IRGM (36), are also associated with the pathology of IBD 
and may be involved in the pathogenesis of PD. These findings support 
the idea of abnormal autophagy as a shared pathophysiological feature 
of PD and IBD. Although these genetic findings provide valuable 
insights, the exact genetic link between PD and IBD remains a 
complex issue that requires further investigation. A better 
understanding of the genetic basis of these disorders may facilitate the 
development of therapeutic strategies targeting shared mechanisms, 
thereby providing patients with better treatment options 
and outcomes.

3.2 Immunomodulatory mechanisms

Chronic non-specific inflammation is often accompanied by 
structural and functional disorders of the gastrointestinal mucosal 
barrier. Crohn’s disease can affect any layers of mucosa from mouth to 
anus, whereas ulcerative colitis usually affects the lining of the colonic 
epithelium (37). C-reactive protein in the blood of patients with IBD 
is a reliable biomarker reflecting the severity of the disease. Atreya and 
Neurath observed an increase in the levels of tumor necrosis factor 
(TNF)-α and other cytokines in the gastrointestinal tract (38) and 
those of inflammation-related proteins, such as calprotectin, 
calgranulin C (also known as S100A12), and lactoferrin, in the feces 
of patients with IBD (39). Neuroinflammation is one of the important 
pathophysiological features of PD (40), and typical inflammation 
occurs in the gastrointestinal tract of patients with PD. The mRNA 
levels of TNF-α, interferons, interleukin (IL)-6, and IL-1β increase in 
the colon tissue of patients with PD. In addition, the levels of IL-1β, 
C-reactive protein, and calprotectin increase in the feces of these 
patients (41). α-Synuclein, an unfolded protein composed of 140 
amino acid residues, is widely expressed in the human brain, especially 
in the synaptic terminals of neurons (42). This protein abnormally 
aggregates and forms fibrous structures called Lewy bodies in the 
brains of patients with PD; these structures are one of the most 
prominent pathological hallmarks of PD (43). Intestinal inflammation 
may cause brain inflammation through secondary systemic 
inflammatory response and eventually promote the abnormal 
accumulation of α-synuclein in the brain to induce PD (44). 
Immunohistochemical analysis of colon tissues from 8 patients with 
IBD (4 cases of Crohn’s disease and 4 cases of ulcerative colitis) and 4 
controls showed that the level of α-synuclein in the non-inflammatory 
area of Crohn’s disease was 2.07 times higher that of the control group, 
and the level of α-synuclein in the inflammatory area was 2.35 times 
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higher that of the control group (45). Kishimoto et al. fed drinking 
water containing 0.5% dextran sodium sulfate to A53T gene-mutant 
mice for inducing colitis. The results showed that the experimental 
group had earlier movement disorders, abnormal accumulation of 
α-synuclein and degeneration of dopaminergic neurons compared 
with the control mice (46). Abnormal accumulation of Lewy bodies 
in the enteric nervous system (ENS) has been detected in the early 
stage of PD, and ENS dysfunction may promote the development of 
gastrointestinal symptoms in PD patients (47). The ENS is the origin 
and entrance of pathological changes in PD, and spreads to the central 
nervous system through vagus nerve transmission, leading to further 
substantia nigra lesions. Enteric glial cells (EGCs), as the most 
abundant cells of ENS, are closely related to the intestinal microbiota 
(48) and respond to microbial invasion. Related studies have found 
that bacterial lipopolysaccharide (LPS) and IL-6 can activate EGC by 
binding to PRR on the membrane of EGC cells, trigger TLR4/NF-κB 
and other proinflammatory signaling pathways and the formation of 
NLRP3 inflammasome, and promote intestinal immune inflammation 
to clear pathogens (49, 50). EGC can exert immunosuppressive and 
anti-inflammatory effects by releasing GDNF and BDNF. After the 
release of GDNF, it can bind to RET on type 3 lymphocytes (ILC3), 
thereby activating ILC3 and promoting the release of anti-
inflammatory factor IL-22 and the expression of repair genes in 
intestinal epithelial cells, thus protecting the inflammatory epithelium 
of colon (51). The released BDNF reduced the expression of nitric 
oxide synthase and pro-inflammatory factor IL-6 induced by LPS in 
mice by down-regulating the TLR4 receptor on EGC, and alleviated 
intestinal inflammation (52). Drokhlyansky et al. (53) applied single-
cell sequencing to the analysis of human and mouse ENS and found 
that genes expressed in the intermuscular and mucosal EGCs were 
significantly different, and found that several PD risk genes were 
enriched in the ENS, among which NRXN1 and ANK2 were enriched 
in the EGC, indicating that the dysfunction of EGC may aggravate 
CNS disease. EGC reactive hyperplasia and its specific glial markers 
are found in the colon tissues of PD patients, and they appear in the 
early stage of PD (54). Therefore, EGC obtained by gastrointestinal 
mucosal biopsy and analyzed may be superior to α-syn in predicting 
early PD. In the latest study by Perez-Pardo et  al. (55) 
immunofluorescence staining of fixed sections of the colon of dead 
mice also found that the expression of EGC-derived glial fibrillary 
acidic protein (GFAP) and α-syn was increased simultaneously, 
suggesting that EGC may also play a role in the pathological formation 
of intestinal α-syn. It has also been shown that α-syn can ascend to the 
central nervous system via the enteric glia Cx43 hemicchannel 
(through which glial-glial syncytial cells are connected as a pathway 
for intercellular communication between the gastrointestinal tract and 
the central nervous system) or the vagus nerve (56). It was further 
found that EGC also plays a role in the ascent of α-syn to the central 
nervous system. EGC in PD may be pathological activated, which may 
promote α-syn misfolding in ENS by participating in intestinal 
immune inflammation and help α-syn spread to the brain. In turn, 
α-syn may also act as an effector molecule to further promote the 
pathological activation of EGC. Therefore, chronic inflammation links 
these two diseases, providing potential targets for future therapeutic 
strategies. Future studies should focus on the specific mechanisms 
linking IBD and PD, especially the role of α-synuclein. In addition, 
strategies to intervene in intestinal inflammation should be explored 
to reduce the risk of PD or delay its progression.

3.3 Brain–gut axis: gut microbes and SCFAs

The “gut–brain axis” theory is based on experimental evidence 
indicating the link between the gut environment and the central 
nervous system. The theory proposes a connection between the 
emotional and cognitive centers of the brain with peripheral gut 
functions (57). The disruption of gut microbiota is closely related to 
autism, neurodegenerative diseases and emotional disorders (stress, 
depression, anxiety) (58). The composition of gut microbiota is 
affected by diet and environment, and the use of antibiotics is one of 
the important reasons for destroying the stability of gut microbiota 
(59). A rodent study showed that low-dose penicillin administered late 
during pregnancy and early after birth had long-term effects on mouse 
offspring, including altered gut microbiome composition, increased 
cytokine expression in the frontal cortex, altered blood–brain barrier 
integrity, and behavioral measures, with the mice showing anxitty-like 
behavior (60). Through metagenomic sequencing, Yang et al. found 
that a variety of phages and bacteria in the gut of patients with major 
depression were changed, among which the reduced abundance of 
Blautia and Eubacterium was significantly associated with depressive 
symptoms (61). In addition, a meta-analysis showed that Bacteroides, 
Paranobacillus, and Barnesiella were enriched in patients with 
depression, while Firmicutes, Spirospiraceae (UCG 003, UCG 002), 
and Bacteroides vulgaris were significantly depleted (62). More 
important, Kelly et al. (63) found that transplantation of “depressive 
microbiota” into germ-free mice induced depressive-like behaviors 
and features, including anhedonia and states of hopelessness. 
Therefore, by understanding the bidirectional communication system 
of the gut-brain axis, we can gain deeper insight into how changes in 
the gut microbiota affect brain function, which in turn affects 
individual emotional and behavioral performance. According to this 
theory, PD may be a consequence of intestinal dysbiosis or intestinal 
barrier dysfunction or both, which is caused by an unknown pathogen 
in the gastrointestinal tract. The main pathological manifestation of 
PD is Lewy body (LB), which is caused by the misfolding and 
aggregation of α-synuclein (α-syn) (64). Many studies have verified 
the “gut-brain axis” hypothesis that α-syn can spread from the 
gastrointestinal tract to the brain through the vagus nerve (65, 66). 
Kim and colleagues found that α-syn injected in the duodenum and 
pylorus of mice migrated through the vagus nerve to the substantia 
nigra, locus locus locus, olfactory bulb, cerebellum, and other brain 
regions to accumulate and precipitate, causing PD-related motor 
disorders and non-motor symptoms (65). A recent study (67) found 
that α-syn can promote the transmission of each other from the gut to 
the brain by interacting with Tau protein, triggering the loss of 
substantia nigra dopaminergic neurons. Furthermore, some 
researchers have used glucose probes to study the intestinal 
permeability of PD patients and found that the intestinal epithelial 
barrier in PD patients has similar dysfunction as that in patients with 
enteritis (68). A study using baboons as a model, published in Brain, 
found that α-syn not only travels from the gut to the brain, but also 
travels backwards (69). In recent years, studies have continuously 
revealed that psychological factors play an important role in the 
course of organic diseases (such as IBD) through the role of brain-gut 
axis (70). Psychological factors aggravate IBD by increasing intestinal 
permeability, changing intestinal flora and enhancing immune 
response mediated by brain-gut axis (71). Intestinal inflammation can 
cause psychological diseases. In recent years, animal studies have 
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found that intestinal inflammation in mice with colitis can lead to 
increased serum C-reactive protein and cortisol levels, and lead to 
inflammation represented by increased cyclooxygenase-2 levels in the 
limbic system of the brain through the hypothalamic–pituitary–
adrenal axis (HPA). Heightened reactivity and decreased brain-
derived neurotrophic factor (BDNF), which is thought to be directly 
linked to psychological disorders such as anxiety (72). Therefore, 
pathological α-syn caused by intestinal barrier dysfunction moves 
from the intestine to the brain and induces PD, and PD patients are 
often accompanied by different degrees of gastrointestinal symptoms, 
which needs more basic and clinical research evidence to confirm.

PD and IBD are characterized by intestinal microbial dysbiosis (73, 
74). The proportion of pro-inflammatory bacteria, such as 
Proteobacteria, increases, whereas the abundance of some beneficial 
bacteria (SCFA producers) decreases in the gut of patients with 
PD. This imbalance of microbiota may lead to impaired intestinal 
barrier function and increased intestinal permeability, allowing more 
pathogens and inflammatory molecules to enter the blood circulation. 
Ultimately, this affects brain function, promotes neuroinflammation, 
and induces abnormal aggregation of α-synuclein in PD (73). A decline 
in the production of SCFAs by bacteria, such as Faecalibacterium and 
Roseburia, in patients with IBD, which are essential for maintaining the 
health of the intestinal mucosa and suppressing inflammatory 
responses (75). The abundance of pro-inflammatory bacteria of the 
Enterobacteriaceae family is increased in patients with PD and 
IBD. The abundance of SCFA-producing bacteria, such as 
Prevotellaceae (Bacteroidota), Lachnospiraceae (including Roseburia; 
Firmicutes), and Faecalibacterium is decreased in these patients. While 
Verrucomicrobia, Verrucomicrobiaceae, the abundance of anti-
inflammatory bacteria, including Akkermansia, Lactobacillaceae, and 
Actinobacteria (including Bifidobacterium) was heterogeneous. Anti-
inflammatory bacteria, such as Akkermansia, Lactobacillaceae, and 
Bifidobacterium, can grow in an inflammatory environment, and their 
abundance increases later than the “intestinal inflammation” process 
of PD and IBD (76–78). Lactobacillus and Bifidobacterium can 
modulate the host’s immune response, enhancing gut health by 
improving mucosal barrier function and reducing inflammation. This 
is partly achieved through the production of short-chain fatty acids 
(SCFAs) like acetate, propionate, and butyrate, which have anti-
inflammatory properties. These bacteria contribute to the 
strengthening of the gut barrier, preventing the translocation of 
harmful bacteria and endotoxins into the host’s circulatory system. 
This barrier function is crucial for preventing infections and 
maintaining immune homeostasis (79, 80).

Metabolites of gut microbiota, such as SCFAs, show similar 
changes in patients with PD and IBD. SCFAs are a group of saturated 
fatty acids with carbon atom number ≤ 6, including acetic acid, 
propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric 
acid, caproic acid, and isocaproic acid. They are mainly produced by 
intestinal microorganisms in the colon by fermentation of the dietary 
fiber (81). Mechanistic studies in animal models have shown that 
butyrate has beneficial effects in maintaining the integrity of the 
gastrointestinal mucosal barrier, quenching oxygen at the epithelial 
interface and acting as an immunomodulatory agent. Propionate has 
been reported to induce satiation by regulating the production of 
anorexigenic hormones and intestinal gluconeogenesis, while also 
affecting glucose metabolism. Butyrate has been suggested to 
be  associated with anti-cancer and anti-inflammatory effects, but 

direct evidence for this is lacking (82). In addition, it has been found 
that the use of butyrate in animal models of Parkinson’s disease can 
improve dyskinesia and dopamine deficiency (83), while propionate 
seems to be negatively correlated with the Unified Parkinson’s Disease 
Rating Scale III (84). Shin et al. detected SCFAs in PD patients and 
found that the concentrations of acetic acid, propionic acid and 
butyric acid in feces decreased, while the concentrations of acetic acid 
and propionic acid in plasma increased in PD patients. The severity of 
the disease was negatively correlated with the concentrations of SCFAs 
in feces (except propionic acid), and positively correlated with the 
concentrations of acetic acid, propionic acid and valeric acid in plasma 
(84). SCFAs are involved in the occurrence of PD by affecting the 
integrity of the blood–brain barrier, the function of microglia, 
neuronal autophagy and apoptosis, the integrity of the intestinal 
barrier, and intestinal inflammation (85). SCFAs play an 
immunomodulatory role in IBD by participating in regulating the 
differentiation of innate and adaptive immune cells and the function 
of related cells (86). Chen et al. reported that SCFA concentration 
decreases in the feces of patients with PD, whereas it increases in 
blood, urine, and saliva. This phenomenon may be related to the effect 
of SCFAs on intestinal mucosal permeability (87). A meta-analysis of 
12 studies involving 572 patients with IBD and 282 healthy controls 
showed that fecal concentrations of acetic acid, propionic acid, butyric 
acid, and valeric acid decreased in patients with IBD. However, 
subgroup analysis showed that the changes in fecal SCFAs in patients 
with Crohn’s disease were different from those in patients with 
ulcerative colitis. Acetic acid, valeric acid, and total SCFAs showed a 
downward trend in patients with ulcerative colitis, whereas acetic acid, 
butyric acid, and valeric acid showed a downward trend in patients 
with Crohn’s disease. In addition, subgroup analysis found that the 
concentration of butyrate in patients with ulcerative colitis changed at 
different disease stages; it was lower than that in healthy controls in 
the active stage and higher in the remission stage (88). Future research 
should focus on the specific role of gut microbiota and their 
metabolites in the pathogenesis of PD and IBD. Therapeutic strategies 
should target regulating the composition of gut microbiota and 
increasing the production of beneficial SCFAs. The researchers should 
focus on the specific effects of SCFAs on intestinal mucosal 
permeability and central nervous system inflammation.

4 Treatment of PD and IBD

4.1 Medicine

Commonly used drugs for the treatment of IBD include 
non-biological and biological agents. Classical non-biological agents 
include aminosalicylic acid, thiopurines, and hormones. Biological 
agents include anti-TNF, interleukin, and other cytokines, and drugs 
acting on specific inflammation-related pathways (89–91). A 2023 
meta-analysis of six studies with data on the use of medications for 
IBD showed a protective effect of medications for IBD on the onset of 
PD (RR = 0.88) (92). 5-aminosalicylic acid (5-ASA) and anti-TNF 
drugs are commonly used for the treatment of IBD. In a cross-
sectional study of 144,018 patients with IBD, the risk of PD was lower 
in those who received anti-TNF drugs than in those who did not 
(IRR = 0.22; p = 0.03) (93). Ríos et al. conducted a study on 20,208,682 
patients and found that people under 65 years of age were less likely to 
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receive anti-PD medication while using 5-ASA than those not using 
5-ASA (OR = 0.28; p = 0.0103) (94). The above findings support the 
idea that drugs for IBD may indirectly slow the course of PD or reduce 
the risk of its development by reducing the inflammatory response. 
The studies on the specific mechanisms underlying the protective 
effects of IBD drugs on PD, including clinical trials to validate the 
potential utility of these drugs in patients with PD, may lead to more 
promising treatment prospects for patients with IBD and PD. The 
literature suggests that treatment with L-dopa-carbidopa enteric-
coated gel (LCIG), which is a commonly used treatment for advanced 
PD, may indirectly help improve the prevalent GI symptoms in PD 
patients. Continuous infusion of LCIG is designed to minimize 
fluctuations in plasma drug concentrations, which not only optimizes 
motor symptom control but may also help stabilize GI function by 
providing more stable dopamine stimulation (95). MR Analysis of PD 
and IBD suggested that the CXCR4 gene is a potential drug target. The 
gene encodes the chemokine receptor CXCR4, and flavonoids may 
become potential therapeutic drugs for PD and IBD by inhibiting the 
CXCR4 protein (96). Therefore, new therapies for PD and IBD can 
be developed by finding the gene targets of drugs.

4.2 Fecal microbiota transplantation and 
probiotic treatment

FMT and probiotic therapy are two novel approaches for the 
treatment of gut-related diseases. Both these approaches have been 
evaluated for the treatment of PD and IBD. These two approaches 
modulate the gut microbiome and show potential therapeutic value in 
regulating intestinal inflammation and gut–brain axis interactions. 
FMT can ameliorate the intestinal microbial imbalance in the mouse 
model of PD, increase the levels of striatal dopamine and 
5-hydroxytryptamine, and play a neuroprotective role by inhibiting 
neuroinflammation (97). FMT can ameliorate motor symptoms (e.g., 
tremors and bradykinesia) and non-motor symptoms (such as 
constipation, anxiety, depression, and sleep disorders) of patients with 
PD to a certain extent (98, 99). However, FMT is considered a 
controversial treatment for patients with IBD. Although FMT helps 
relieve the symptoms of patients with IBD in some small clinical 
studies, patients become prone to adverse reactions, such as infection 
and fever (100, 101). In contrast, probiotics are more clinically useful 
in adjusting intestinal microecology.

According to the definition of the World Health Organization and 
the Food and Agriculture Organization of the United Nations, probiotics 
are a group of living microorganisms (102) that can provide health 
benefits to the host when ingested in appropriate amounts. Probiotics 
can live and reproduce in the intestinal tract, and have a variety of 
functions, including maintaining intestinal health, enhancing immunity, 
promoting nutrient absorption, and alleviating gastrointestinal 
symptoms. Among them, probiotics perform well in the maintenance of 
intestinal health. It maintains intestinal health by inhibiting the growth 
of harmful bacteria, increasing the stability of intestinal mucosal barrier, 
and promoting intestinal peristalsis (103). Probiotics have recognized 
antioxidant, anti-inflammatory, and neuroprotective effects, which can 
regulate central nervous system activity by targeting a variety of cellular 
and molecular processes, such as oxidative stress, inflammatory and 
anti-inflammatory pathways, and apoptosis (104). Sun et  al. (105) 
showed that probiotic lactis Probio-M8 synergeted with traditional drug 

treatment regimens for Parkinson’s disease to enhance the clinical 
efficacy of PD treatment, while changing the host’s gut microbiome, gut 
microbial metabolic potential, and serum metabolites. Zhao et al. (106) 
showed that rotenone-induced PD mouse model damaged the intestinal 
barrier, leading to the leakage of pathogenic LPS and LBP, which 
activated the SN and TLR4 signaling pathway in the colon. Fecal 
microbiota transplantation intervention could protect rotenone-induced 
PD mouse model by improving the imbalance of intestinal microbiome. 
Inhibition of the LPS-TLR4 signaling pathway in the gut and brain may 
play an important role. One study found that long-term use of probiotics 
produced marked neuroprotective effects on dopaminergic neurons and 
improved motor deficits in a mouse model of genetic PD (107). The 
probiotic E. coli Nissle1917 is as effective as standard 5-ASA therapy in 
slowing the progression of ulcerative colitis (108). Daily supplementation 
of probiotics improved gait, balance function, and motor coordination 
in a mouse model of PD, and long-term administration of probiotics has 
a neuroprotective effect on dopamine neurons (109). The results of 
randomized double-blind controlled trials have indicated that probiotics 
can help relieve non-motor symptoms, such as constipation, abdominal 
pain, and bloating, as well as the total Unified Parkinson’s Disease Rating 
Scale score in patients with PD (110). Although FMT is controversial in 
the treatment of IBD and may be associated with some risks, it has 
shown the possibility of alleviating motor and non-motor symptoms in 
patients with PD. Probiotic therapy, a safer and more clinically accessible 
treatment, has shown promise in slowing the progression of ulcerative 
colitis and protecting dopamine neurons in PD models. Future studies 
are needed to explore the mechanisms of action of FMT and probiotic 
therapy in the treatment of PD and IBD, especially how they modulate 
the intestinal microbial community for optimal therapeutic effects. In 
addition, more clinical trials are necessary to evaluate the safety, efficacy, 
and long-term effects of these treatments, especially in patients with PD 
and IBD at different stages and types.

5 Conclusion and prospects

The seemingly different diseases, PD and IBD, have many 
similarities in epidemiological characteristics, pathophysiological 
mechanisms, and treatment approaches. Therapeutic strategies for 
IBD, such as anti-inflammatory and immunomodulatory approaches, 
are potentially protective against PD progression. In addition, 
modulation of gut microbiota, including interventions through diet, 
probiotics, or emerging drug targets such as CXCR4, can be used for 
the treatment of both diseases. The assessment of PD and IBD should 
adopt a holistic approach, investigating the interrelationship between 
these two conditions, and deciphering how their interactions influence 
disease onset and progression. Future research endeavors should focus 
on elucidating the precise mechanisms underpinning these 
associations and developing innovative therapeutic approaches to 
enhance the quality of life for individuals afflicted with these disorders.
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