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Purpose: Machine learning (ML) models were constructed according to non-
contrast computed tomography (NCCT) images as well as clinical and laboratory 
information to assess risk stratification for the occurrence of hemorrhagic 
transformation (HT) in acute ischemic stroke (AIS) patients.

Methods: A retrospective cohort was constructed with 180 AIS patients who 
were diagnosed at two centers between January 2019 and October 2023 and 
were followed for HT outcomes. Patients were analyzed for clinical risk factors 
for developing HT, infarct texture features were extracted from NCCT images, 
and the radiomics score (Rad-score) was calculated. Then, five ML models were 
established and evaluated, and the optimal ML algorithm was used to construct 
the clinical, radiomics, and clinical-radiomics models. Receiver operating 
characteristic (ROC) curves were used to compare the performance of the three 
models in predicting HT.

Results: Based on the outcomes of the AIS patients, 104 developed HT, and the 
remaining 76 had no HT. The HT group consisted of 27 hemorrhagic infarction 
(HI) and 77 parenchymal-hemorrhage (PH). Patients with HT had a greater 
neutrophil-to-lymphocyte ratio (NLR), baseline National Institutes of Health 
Stroke Scale (NIHSS) score, infarct volume, and Rad-score and lower Alberta 
stroke program early CT score (ASPECTS) (all p  <  0.01) than patients without HT. 
The best ML algorithm for building the model was logistic regression. In the 
training and validation cohorts, the AUC values for the clinical, radiomics, and 
clinical-radiomics models for predicting HT were 0.829 and 0.876, 0.813 and 
0.898, and 0.876 and 0.957, respectively. In subgroup analyses with different 
treatment modalities, different infarct sizes, and different stroke time windows, 
the assessment accuracy of the clinical-radiomics model was not statistically 
meaningful (all p  >  0.05), with an overall accuracy of 79.5%. Moreover, this model 
performed reliably in predicting the PH and HI subcategories, with accuracies of 
82.9 and 92.9%, respectively.

Conclusion: ML models based on clinical and NCCT radiomics characteristics 
can be used for early risk evaluation of HT development in AIS patients and show 
great potential for clinical precision in treatment and prognostic assessment.
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1 Introduction

Hemorrhagic transformation (HT) is a significant adverse prognosis 
of acute ischemic stroke (AIS) (1), and AIS is a frequent critical 
cerebrovascular disease in clinical practice (2). HT is a hemorrhage 
resulting from the reestablishment of vascular perfusion in the ischemic 
area after a cerebral infarction. HT is categorized by clinical deterioration 
and imaging: (1) asymptomatic HT and symptomatic HT according to the 
presence or absence of clinical exacerbation or a National Institutes of 
Health Stroke Scale (NIHSS) score ≥4 (3), and (2) parenchymal 
hemorrhage (PH) and hemorrhagic infarction (HI) according to the 
European Cooperative Acute Stroke Study-II (ECASS II) (4). HT can 
occur in AIS patients after perfusion therapy, including endovascular 
therapy (EVT) and intravenous thrombolysis (IVT), or it can occur 
naturally during the course of the disease in non-reperfusion-treated 
patients (5). However, once HT occurs, regardless of the type of HT, the 
clinical prognosis and functional outcomes are worse (6–8). Therefore, if 
the risk of developing HT can be predicted early and accurately, clinicians 
can make optimal treatment decisions and perform more aggressive 
clinical assessments and monitoring to prevent early clinical deterioration.

Previous studies have shown that clinical-biological indicators 
(9–12), imaging data (13–16), and clinical features combined with 
imaging markers (17, 18), such as the NIHSS score, neutrophil-to-
lymphocyte ratio (NLR), and hyperdense middle cerebral artery sign 
(HMCAS), have good predictive performance for HT. Recently, 
radiomics analysis has emerged as a new technology to assist precision 
medicine, provide more information about textures that cannot 
be observed visually, and address the heterogeneity of lesions (19). A 
recent study (20) alone revealed that radiomic features show promise 
in quantifying blood-brain barrier disruption. Machine learning (ML), 
as an important branch of artificial intelligence (AI) that uses various 
algorithms to focus on learning and training complex data and 
hyperparameter optimization to build ideal classification, prediction, 
and evaluation models, is now widely used in the medical field. Several 
studies have shown that ML can feasibly predict HT (11, 16, 17, 21, 22).

In addition, non-contrast computed tomography (NCCT) 
remains the imaging test of choice for early identification of ischemic 
stroke (23) because it is simpler and faster. Therefore, in this study, 
we  wished to validate the correlation between the initial NCCT 
radiomic features of infarcted brain tissues and the occurrence of HT, 
while we evaluated multiple ML algorithms based on the clinical and 
radiomic characteristics retained after screening and selected the 
optimal ML algorithm to construct the HT prediction models.

2 Materials and methods

2.1 Patient acquisition and clinical data 
collection

The research protocol was authorized by the ethics committee of 
the institution, and the requirement for informed consent was waived.

We retrospectively enrolled AIS patients who were diagnosed 
at two centers between January 2019 and October 2023. The 
inclusion criteria were as follows: (1) stroke patients who had a 
clear time from symptom onset to the initial non-contrast-
enhanced head CT examination of less than 24 h (for patients with 
wakefulness stroke, we estimated the midpoint between waking 
and sleeping time as the time of stroke onset); (2) patients with 
AIS due to anterior circulation large artery occlusion; (3) patients 
whose image gray values were adjusted, and the CT image could 
identify patients with infarct region boundaries; otherwise, 
diffusion-weighted imaging (DWI) or follow-up CT within 6 h 
was required to match the infarct region to the infarct zone on the 
initial CT image (18); and (4) CT/magnetic resonance imaging 
(MRI) follow-up of more than 7 days if HT did not occur within 
7 days. Patients with hemorrhagic cerebral infarction on 
admission, brain tumors, poor quality CT images, or severe 
missing data were excluded. Ultimately, we included 180 patients 
(Figure 1).

The clinical data collected included sex, age, smoking status, 
drinking status, diabetes status, hypertension status, dyslipidemia 
status, atrial fibrillation status, coagulopathy status, heart failure 
status, NLR, stroke onset time, baseline NIHSS score (NIHSSbaseline), 
and treatment modalities. Clinical data and images were obtained 
through medical records and a picture archiving communication 
system (PACS), respectively. We used k-nearest neighbors (KNN) to 
estimate and supplement some of the missing clinical data to ensure 
the quality and stability of the data.

2.2 Imaging acquisition and analysis

Supplementary Table S1 describes in detail the CT scanner 
models, scanning parameters, and scanning positions used in 
this study.

CT images were analyzed individually by two neurological 
radiologists with 5 years of experience: (1) massive stroke 
characterized by an infarcted area of more than 1/3 of the area 
supplied by the middle cerebral artery; (2) HMCAS referred to the 
increased wall density of the middle cerebral artery on the side of 
the infarct; (3) the Alberta stroke program early CT score 
(ASPECTS) was based on the NCCT images to score the ischemic 
changes of the middle cerebral artery blood supply area in 10 areas 
of the two levels. Each affected area was subtracted by 1 point, the 
normal brain CT was 10 points; and (4) HT determined by the 
presence of hyperdense lesions on follow-up CT images that lasted 
for more than 2 days or abnormal hyper-density remaining despite 
removal of residual iodine agent by virtual non-contrast (VNC) 
of IQon spectroscopy or hemorrhagic signals on follow-up MR 
images. Agreement between the diagnoses of the two radiologists 
was judged by kappa analysis, as detailed in Supplementary Table S2. 
Any discrepancies were resolved by consensus.
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FIGURE 1

Flow chart of this study design.
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2.3 Radiomics analysis

After the CT images were anonymized, they were imported in 
Digital Imaging and Communications in Medicine (DICOM) format 
into 3D-Slicer software (https://www.slicer.org; version 5.5.0) (24). A 
single radiologist performed the relevant imaging histological 
characterization, as shown below.

First, the 3D region of interest (ROI) was sketched manually along 
the contours of the infarcted lesion (Figure 2). If the contours of the 
lesion cannot be clearly visualized at the first CT examination, the 
boundary can be drawn with the aid of diffusion-weighted images 
taken over a short period of time or a second follow-up CT. And the 
volume of ROIs was measured through this software. Second, to 
reduce the potential effects of scanner and sweep parameters, 
we  normalized all the ROIs by resampling them via linear 
interpolation, fixing the image gray values, and smoothing the images 
via a Gaussian filter. Finally, four major categories of features were 
extracted for each ROI in this study using the “Radiomics Module” in 
3D-Slicer software: first-order statistical features, texture features, 
morphological features and wavelet features. To ensure the stability of 
the radiomic features, the above procedure was repeated after 1 month 
by the same doctor, who randomly selected 90 (1/2) patients from all 
patients. The intraclass correlation coefficient (ICC) was then 
calculated based on the radiomics features acquired by the same 
physician in the ROI sketches drawn before and after two times. Stable 
features with ICCs above 0.75 were retained, and all the features were 
normalized using a standard deviation normalization (Z-score) 
approach.

2.4 Feature selection

First, for clinical laboratory data and radiomics features, 
we  screened features for between-group differences by univariate 
analysis in the training cohort. Then, the least absolute shrinkage and 
selection operator (LASSO) method was used to removal uncorrelated 
or redundant radiomic features, and the radiomics features that 
yielded the optimal predictive efficacy were selected by 5-fold cross-
validation. Finally, the logistic regression (LR) classifier algorithm 
was applied to construct radiomics labels, and the weighting 

coefficients were summed to calculate the radiomics score 
(Rad-score).

2.5 Evaluating the best ML algorithm for 
building models

Based on the principle of random sampling in an 8:2 manner, 180 
AIS patients were split into a training cohort (n = 144, 81 patients with 
HT) and a validation cohort (n = 36, 23 patients with HT). Under the 
clinical features (p < 0.05) and Rad-score obtained from the screening 
of the above methods, five ML algorithms KNN, support vector 
machine (SVM), decision tree, extreme gradient boosting (XGB), and 
LR were developed, and the optimal ML algorithm was determined 
by comparing their effects to construct a predictive model for HT 
(Figure 3 and Table 1).

2.6 Model construction and evaluation

After determining the optimal ML algorithm, the filtered radiomic 
features were combined with clinical features to construct the final 
joint model. In addition, both clinical (constructed by integrating 
clinical laboratory and traditional imaging features) and radiomics 
models were constructed for easy comparison. The validation cohort 
was used to verify the performance of the three models. The area 
under the receiver operating characteristic curve (AUC) of the 
constructed predictive models was tested for discrimination by using 
receiver operating characteristic (ROC) curves, with an AUC closer 
to 1 suggesting better discrimination of the model; calibration curves 
were plotted, with a slope closer to 1 suggesting better calibration; 
clinical applicability was tested by using decision curve analysis 
(DCA), with a larger area under the decision curve suggesting better 
clinical applicability of the model; and the DeLong test was used to 
compare the AUC between the models.

2.7 Statistical analysis

The mean ± standard deviation (SD) indicated that the data 
conformed to a normal distribution, the medians (25% quartile, 75% 

FIGURE 2

Typical example of ROI segmentation. (A,B) Segmented infarcted lesion (green area) on the axial slice of CT images. (C) 3D-ROI.
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FIGURE 3

ROC curves of five machine learning models for HT prediction in the training cohort (A) and validation cohort (B).

TABLE 1 Performance comparison of five machine learning models for HT prediction.

Model Group AUC (95% 
CI)

Accuracy Sensitivity Specificity PPV NPV

KNN

Training
0.770 (0.701, 

0.839)
0.767 0.827 0.704 0.747 0.794

Validation
0.771 (0.631, 

0.911)
0.750 0.889 0.611 0.696 0.846

SVM

Training
0.873 (0.817, 

0.928)
0.795 0.791 0.800 0.868 0.698

Validation
0.953 (0.892, 

1.000)
0.806 0.833 0.750 0.870 0.692

Tree

Training
0.850 (0.790, 

0.910)
0.829 0.825 0.831 0.788 0.862

Validation
0.858 (0.752, 

0.964)
0.806 0.846 0.783 0.688 0.900

XGB

Training
0.792 (0.721, 

0.862)
0.780 0.746 0.807 0.746 0.807

Validation
0.856 (0.748, 

0.964)
0.806 0.846 0.783 0.688 0.900

LR

Training
0.876 (0.822, 

0.931)
0.795 0.798 0.790 0.855 0.714

Validation
0.957 (0.899, 

1.000)
0.861 0.950 0.750 0.826 0.923

HT, hemorrhagic transformation; KNN, k-nearest neighbors; SVM, support vector machine; Tree, decision tree; XGB, extreme gradient boosting; LR, logistic regression; AUC, area under the 
receiver operating characteristic curve; CI, confidence interval; PPV, positive prediction value; NPV, negative prediction value.
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quartile) indicated that the data did not conform to a normal 
distribution, and frequencies and constitutive ratios (%) indicated 
categorical data. Clinical characteristics were assessed using an 
independent samples t-test and a variance test. Intergroup 
comparisons of the radiomic features were performed using the 
independent samples t-test. The data were analyzed and graphed using 
R software (version 4.3.1), Python (version 3.9) and SPSS (version 
26.0). p < 0.05 (two-sided) indicated a significant difference.

3 Results

3.1 Patients’ clinical features

This study included 180 patients (training cohort 144, test cohort 
36) from two centers—95 males, 85 females, and patients aged 
42–94 years with a median age of 70.51 years (62.00, 79.25). Among 
them, 104 patients developed HT (76 with PH and 28 with HI), and 
76 patients had no HT. All the data were not significantly different 
between the training and validation cohorts (p > 0.05) (Table 2).

Clinical and imaging characteristics with component differences 
associated with HT were screened by univariate analysis in the 
training cohort (Table 3). We found that the NLR, baseline NIHSS 
score, infarct volume and Rad-score were greater and the ASPECTS 
was lower in the HT group than in the no-HT group (all p < 0.01).

3.2 Radiomics score

A total of 851 radiomics features were calculated from the initial 
CT images of each patient. (1) A total of 706 features were obtained 
after ICC screening, (2) 182 features were screened via t-tests, and (3) 
six features highly correlated with HT were screened by the LASSO 
regression downscaling method and 5-fold cross-validation 
(Figures 4A,B). The six features were analyzed using LR and Rad-score 
was calculated as shown in equation.

 f x xi i( ) = ∑ +β β0

βi  was the coefficient of each feature, xi was the specific feature, 
and β0 was the constant (Supplementary Table S3). Figures 4C,D 
shows the Rad-score of each patient in both cohorts for further 
analysis. The results indicated that Rad-scores were greater and 
significantly different in HT patients than in non-HT patients (mean 
0.693 vs. −0.266, p < 0.001).

3.3 Performances of the models

This study revealed that the LR algorithm performed the most 
well. Therefore, this study established multiple logistic regression 
prediction models according to the histologic and clinical features 
obtained from the above screening, namely, the clinical model, the 
radiomics model, and the clinical-radiomics fusion model. In the 
training and validation cohorts, the AUCs were 0.829 (95% CI 0.762–
0.896) and 0.876 (95% CI 0.759–0.994) for the clinical model and 
0.813 (95% CI 0.742–0.884) and 0.898 (95% CI 0.776–1.000) for the 

radiomics model, respectively, and the AUCs of the clinical-radiomics 
model were 0.876 (95% CI 0.822–0.931) and 0.957 (95% CI 0.899–
1.000), respectively (Figures 5A,B).

Table  4 compares the results of the three models, and 
Supplementary Figure S1 shows the DeLong test results. The results 
indicated that although the difference in predictive ability between the 
three models was not significant in the training and validation cohorts 
(p > 0.05), the predictive ability of the clinical-radiomics model 
improved in both cohorts when clinical and radiological histological 
features were analyzed together.

In addition, the calibration curves showed high concordance 
between the predicted and actual risk for the clinical-radiomics 
models in both cohorts (Figures 6A,B). The DCA curves indicated 
that the clinical-radiomics fusion model had a greater net clinical 
benefit advantage than the single model (Figures 6C,D).

Finally, we  transformed the multifactorial logistic regression 
model built using the Rad-score in conjunction with clinical 
characteristics into a visualized nomogram, which made the predictive 
model readable and facilitated the assessment of patients (Figure 7).

This study further analyzed and discussed the expression ability 
of the clinical-radiomics model in different subgroups. The model 
predicted HT with an accuracy of 77.3–93.1% for stroke patients 
receiving different treatment modalities (Figure 8A). The accuracy of 
the model in predicting HT was 86.6 and 74.7% for patients with 
massive stroke and non-massive stroke, respectively (Figure 8B). In 
addition, the model predicted HT in patients within 4.5 h and over 
4.5 h after stroke onset with accuracies of 80.5 and 81.6%, respectively 
(Figure  8C). We  found that none of the model predictions were 
significantly different in the different subgroup analyses (all p > 0.05). 
Furthermore, this clinical-radiomics model performed reliably in 
predicting the PH and HI subcategories, with accuracies of 82.9 and 
92.9%, respectively. In short, the model predicted HT well, with 
accuracies of 79.5 and 95.0% in the training and validation cohorts, 
respectively (Figure 8D).

4 Discussion

HT is a significant adverse prognostic factor for AIS and 
determines patients’ therapeutic decisions and functional prognosis. 
Therefore, in this study, we  explored the risk factors for HT by 
combining clinical laboratory indices and imaging images of stroke 
patients, constructed imaging biomarkers for predicting HT, and 
finally developed and validated a reliable predictive model for HT.

As in previous studies, this study revealed that four clinical 
characteristics, the NLR (12, 25, 26), baseline NIHSS score (27–29), 
infarct volume (30–32), and ASPECTS (33, 34), were significant risk 
factors strongly associated with HT. Neutrophils are important 
indicators of inflammation, which is an important factor in secondary 
brain injury after stroke (35, 36). At the same time, the systemic 
immunosuppression that occurs after stroke causes a decrease in 
lymphocytes (37), the relative decrease in lymphocytes in response to 
acute physiological stress promotes an increase in inflammatory 
cytokines, which exacerbates ischemic injury (38, 39). Therefore, a 
high NLR reflects the degree of brain damage after stroke and is 
important for predicting HT. Increasing values of the NIHSS score, 
which is used as an index to assess neurologic damage in stroke 
patients, tend to indicate more severe blood-brain barrier disruption. 
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TABLE 2 Characteristics of patients in the training and validation cohorts.

Variables All (n =  180) Training cohort (n =  144) Validation cohort (n =  36) p

Sex 0.724

Female 85 (47.22%) 73 (50.69%) 12 (33.33%)

Male 95 (52.78%) 71 (49.31%) 24 (66.67%)

Age group, year 0.853

≤50 10 (5.56%) 8 (5.56%) 2 (5.56%)

50–60 28 (15.56%) 23 (15.97%) 5 (13.89%)

60–70 49 (27.22%) 40 (27.78%) 9 (25.0%)

70–80 55 (30.56%) 45 (31.25%) 10 (27.78%)

>80 38 (21.11%) 28 (19.44%) 10 (27.78%)

Age, year 70.51 (62.0, 79.25) 70.13 (62.0, 79.0) 72.03 (64.0, 81.25) 0.395

Smoking 0.691

No 126 (70.0%) 101 (70.14%) 25 (69.44%)

Yes 54 (30.0%) 43 (29.86%) 11 (30.56%)

Drinking 0.159

No 131 (72.78%) 107 (74.31%) 24 (66.67%)

Yes 49 (27.22%) 37 (25.69%) 12 (33.33%)

Diabetes 1.000

No 139 (77.22%) 115 (79.86%) 24 (66.67%)

Yes 41 (22.78%) 29 (20.14%) 12 (33.33%)

Hypertension 0.767

No 59 (32.78%) 45 (31.25%) 14 (38.89%)

Yes 121 (67.22%) 99 (68.75%) 22 (61.11%)

Hyperlipidemia 1.000

No 113 (62.78%) 92 (63.89%) 21 (58.33%)

Yes 67 (37.22%) 52 (36.11%) 15 (41.67%)

Atrial fibrillation 0.540

No 91 (50.56%) 67 (46.53%) 24 (66.67%)

Yes 89 (49.44%) 77 (53.47%) 12 (33.33%)

Coagulopathy 0.406

No 131 (72.78%) 106 (73.61%) 25 (69.44%)

Yes 49 (27.22%) 38 (26.39%) 11 (30.56%)

Heart failure 1.000

No 79 (43.89%) 63 (43.75%) 16 (44.44%)

Yes 101 (56.11%) 81 (56.25%) 20 (55.56%)

NLR 8.13 (3.83, 9.97) 8.47 (3.92, 10.2) 6.8 (3.37, 7.42) 0.207

Stroke onset Time, h 7.88 (3.0, 10.0) 8.11 (3.0, 10.0) 6.93 (3.0, 9.0) 0.358

NIHSSbaseline 14.48 (11.0, 18.0) 14.58 (11.0, 18.0) 14.08 (9.75, 18.0) 0.670

Treatment modalities 0.243

Non-reperfusion 97 (53.89%) 78 (54.17%) 19 (52.78%)

IVT 36 (20.0%) 25 (17.36%) 11 (30.56%)

EVT 29 (16.11%) 24 (16.67%) 5 (13.89%)

IVT with EVT 18 (10.0%) 17 (11.81%) 1 (2.78%)

Massive stroke 0.562

No 83 (46.11%) 66 (45.83%) 17 (47.22%)

(Continued)
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FIGURE 4

(A,B) Screening of radiomics features. (C,D) Waterfall plots of the Rad-score in the training and validation cohorts. Red is set to HT, blue is set to  
non-HT.

TABLE 2 (Continued)

Variables All (n =  180) Training cohort (n =  144) Validation cohort (n =  36) p

Yes 97 (53.89%) 78 (54.17%) 19 (52.78%)

HMCAS 0.848

No 100 (55.56%) 78 (54.17%) 22 (61.11%)

Yes 80 (44.44%) 66 (45.83%) 14 (38.89%)

ASPECTS 4.47 (2.0, 7.0) 4.46 (2.0, 7.0) 4.5 (2.0, 7.25) 0.941

Infraction volume, cm3 116.92 (37.97, 165.16) 118.1 (40.78, 164.06) 112.23 (28.73, 171.44) 0.758

Measurement data are expressed as median (25% quartile, 75% quartile); categorical data are expressed in number (%); NLR, neutrophil-to-lymphocyte ratio; NIHSSbaseline, Baseline National 
Institutes of Health Stroke Scale score; IVT, intravenous thrombolysis; EVT, endovascular therapy; HMCAS: hyperdense middle cerebral artery sign; ASPECTS, Alberta stroke program early 
CT score.
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TABLE 3 Univariate analysis of characteristics in the training cohort.

Variables HT (n =  81) (56.25%) No-HT (n =  63) (43.75%) p

Sex 0.710

Female 40 (49.38%) 33 (52.38%)

Male 41 (50.62%) 30 (47.62%)

Age group, year 0.592

<50 4 (4.94%) 4 (6.35%)

50–60 15 (18.52%) 8 (12.7%)

60–70 18 (22.22%) 22 (34.92%)

70–80 26 (32.1%) 19 (30.16%)

>80 18 (22.22%) 10 (15.87%)

Age, year 70.51 (62.0, 79.0) 69.65 (62.0, 79.0) 0.667

Smoking 0.584

No 55 (67.9%) 46 (73.02%)

Yes 26 (32.1%) 17 (26.98%)

Drinking 1.000

No 58 (71.6%) 49 (77.78%)

Yes 23 (28.4%) 14 (22.22%)

Diabetes 1.000

No 65 (80.25%) 50 (79.37%)

Yes 16 (19.75%) 13 (20.63%)

Hypertension 0.377

No 25 (30.86%) 20 (31.75%)

Yes 56 (69.14%) 43 (68.25%)

Hyperlipidemia 0.141

No 55 (67.9%) 37 (58.73%)

Yes 26 (32.1%) 26 (41.27%)

Atrial fibrillation 1.000

No 34 (41.98%) 33 (52.38%)

Yes 47 (58.02%) 30 (47.62%)

Coagulopathy 0.123

No 58 (71.6%) 48 (76.19%)

Yes 23 (28.4%) 15 (23.81%)

Heart failure 0.451

No 29 (35.8%) 34 (53.97%)

Yes 52 (64.2%) 29 (46.03%)

NLR 9.78 (4.76, 11.3) 6.77 (3.51, 9.32) 0.011*

Stroke onset Time, h 8.04 (4.0, 10.0) 8.2 (3.0, 10.0) 0.896

NIHSSbaseline 16.28 (13.0, 19.0) 12.39 (9.0, 15.5) <0.001*

Treatment modalities 0.218

Non-reperfusion 45 (55.56%) 33 (52.38%)

IVT 12 (14.81%) 13 (20.63%)

EVT 10 (12.35%) 14 (22.22%)

IVT with EVT 14 (17.28%) 3 (4.76%)

Massive cerebral stroke 0.103

No 21 (25.93%) 45 (71.43%)

(Continued)
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FIGURE 5

ROC curves of the clinical model, radiomics model, and clinical-radiomics model for HT prediction constructed in the training cohort (A) and 
validation cohort (B).

TABLE 4 Performance of the clinical model, radiomics model, clinical-radiomics model for HT prediction.

Model Group AUC (95% 
CI)

Accuracy Sensitivity Specificity PPV NPV

Clinical model

Training
0.829 (0.762, 

0.896)
0.771 0.786 0.750 0.815 0.714

Validation
0.876 (0.759, 

0.994)
0.806 0.900 0.688 0.783 0.846

Radiomics model

Training
0.813 (0.742, 

0.884)
0.755 0.764 0.741 0.819 0.672

Validation
0.898 (0.776, 

1.000)
0.865 0.910 0.800 0.870 0.857

Clinical-

radiomics model

Training
0.876 (0.822, 

0.931)
0.795 0.798 0.790 0.855 0.714

Validation
0.957 (0.899, 

1.000)
0.861 0.950 0.750 0.826 0.923

HT, hemorrhagic transformation; AUC, area under the receiver operating characteristic curve; CI, confidence interval; PPV, positive prediction value; NPV, negative prediction value.

TABLE 3 (Continued)

Variables HT (n =  81) (56.25%) No-HT (n =  63) (43.75%) p

Yes 60 (74.07%) 18 (28.57%)

HMCAS 0.853

No 32 (39.51%) 46 (73.02%)

Yes 49 (60.49%) 17 (26.98%)

ASPECTS 3.1 (1.0, 5.0) 6.21 (5.0, 8.0) <0.001*

Infraction volume, cm3 158.71 (88.71, 213.0) 65.88 (17.0, 106.71) <0.001*

*p < 0.05; measurement data are expressed as median (25% quartile, 75% quartile); categorical data are expressed in number (%); NLR, neutrophil-to-lymphocyte ratio; NIHSSbaseline, Baseline 
National Institutes of Health Stroke Scale score; IVT, intravenous thrombolysis; EVT, endovascular therapy; HMCAS: hyperdense middle cerebral artery sign; ASPECTS, Alberta stroke 
program early CT score.
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Consistent with previous findings (27–29), our study suggested that 
higher baseline NIHSS scores are associated with a greater risk of 
HT. In addition, this study revealed that larger infarct volumes and 
lower ASPECTS were more likely to lead to HT because massive 
stroke can lead to more severe cytotoxic edema due to ischemia and 
hypoxia, exacerbating the breakdown of the blood-brain barrier (30, 
31). Therefore, if the admission of a patient with AIS reveals a low 
ASPECTS and a large infarct volume, the physician needs to be alerted 
to the possibility of a high risk of HT in this patient when laboratory 
results are unavailable.

Radiomics features are more focused on internal differences within 
the infarct area than are clinical laboratory markers reflecting systemic 
systems and imaging markers simply reflecting the extent of the infarct. 
Thus, in the present study, the radiomic features of the infarcted area of 
the first CT on admission were also obtained. Six optimal radiomic 
features were ultimately included through screening, including one 

gray-level dependence matrix (GLDM) feature reflecting the small 
correlation of lower gray values in the infarct region, two shape features 
describing the size and flatness of the cerebral infarcts, one gray-level 
run length matrix (GLRLM) feature reflecting the running variance of 
the image, and two GLRLM features measuring the distribution of the 
long stroke. Finally, the radiomics model constructed by combining 
these features predicted HT well (AUC = 0.898 for the validation cohort). 
The DCA curves indicate that clinical models (constructed by 
integrating clinical laboratory and traditional imaging features) and 
radiomics models have essentially the same benefits in clinical 
applications. This finding suggested that radiomics features can be used 
to effectively and adequately assess the status of blood-brain barrier 
damage by indirectly identifying microscopic differences within the 
infarct zone from changes in image voxels alone while ignoring global 
immune status and imaging changes visualized by the naked eye (40). It 
is worth noting that in order to reduce the differences in imaging 

FIGURE 6

(A,B) Calibration curves of the clinical-radiomics model in the training and validation cohorts. (C,D) DCA curves of the clinical model, radiomics model, 
and clinical-radiomics model in the training and validation cohorts.
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between different devices, and considering the clinical applicability of 
the model, all images were standardized in this study, and these 
operations may have a certain impact on the extraction of radiomics 
features. Therefore, when using the model, ensuring that all input images 
are uniformly preprocessed can fully utilize the best effect of the model.

In contrast to previous studies that constructed models to predict 
HT based only on clinical or radiomic characteristics, this study 
constructed a clinical-radiomics model that demonstrated strong 
predictive performance in the validation cohort (AUC of 0.957, 95% 
accuracy), while the DCA curves indicated that the model had a greater 
net clinical benefit advantage in HT prediction than did the clinical and 
radiomics models. In addition, the model showed greater potential for 
subgroup prediction with different treatment methods, different infarct 
sizes, and different stroke time windows, as well as for HT classification 
prediction, reflecting the greater stability and robustness of the model 
in different environments. Moreover, only a few studies (15, 41) have 
focused on the risk of HT in AIS patients not receiving recanalization 
therapy, who account for the majority of AIS patients. In fact, the need 
to develop individualized treatment for patients who cannot receive 

recanalization therapy is also increasing. Therefore, the present study 
simultaneously included stroke patients who received different 
treatment modalities, such as IVT, EVT, bridging therapy, and 
non-reperfusion therapy, constructing a model with a wider range of 
applicability. Finally, visualizing the model with a nomogram also 
makes the application easier and can quickly assist neurologists in 
comprehensively assessing patients’ HT risk and customizing 
personalized treatment plans, resulting in a greater rate of patient benefit.

However, there are several limitations. First, although the study was 
a two-center study, the sample size was small, and the study was 
retrospective. Second, the limitations of CT image resolution can lead 
to errors in sketching the boundary of the infarct lesion. Moreover, 
some patients with hyperacute AIS for whom the infarction boundary 
could not be determined on the first CT images and for whom follow-up 
CT/MRI images were not acquired within 6 h were not included in the 
study. Therefore, the reproducibility and clinical feasibility of this study 
were somewhat limited. Finally, because some laboratory data were 
incomplete, we did not include some important predictors associated 
with HT, such as matrix metalloproteinase (MMP) (42). There was also 

FIGURE 7

The clinical-radiomics nomogram for predicting HT after stroke.
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some information that was not analyzed in detail, such as coagulation 
function, which was not divided into fibrin degradation products 
(FDPs) and D-dimer. In future studies, big data support, multicenter 
validation, multidisciplinary collaboration, and prospective evaluation 
may help us gradually move closer to the goal of precision medicine.

5 Conclusion

In conclusion, the ML model constructed on the basis of initial 
NCCT images and clinical characteristics of AIS patients is valuable 
for early clinical screening of high-risk groups prone to HT and for 
the development of individualized and precise prevention and 
treatment measures.
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Glossary

AIS Acute ischemic stroke

HT Hemorrhagic transformation

HI Hemorrhagic infarction

PH Parenchymal hemorrhage

NIHSS National Institutes of Health Stroke Scale

NIHSSbaseline Baseline NIHSS score

ECASS II European Cooperative Acute Stroke Study-II

EVT Endovascular therapy

IVT Intravenous thrombolysis

NLR Neutrophil-to-lymphocyte ratio

HMCAS Hyperdense middle cerebral artery sign

ML Machine learning

AI Artificial intelligence

NCCT Non-contrast computed tomography

DWI Diffusion-weighted imaging

MRI Magnetic resonance imaging

KNN k-nearest neighbors

ASPECTS Alberta stroke program early CT score

Rad-score Radiomics score

ROI Region of interest

ICC Intraclass correlation coefficient

LASSO Least absolute shrinkage and selection operator

LR Logistic regression

SVM Support vector machine

XGB Extreme gradient boosting

ROC Receiver operating characteristic

AUC Area under the receiver operating characteristic curve

ACC Accuracy

CI Confidence interval

PPV Positive prediction value

NPV Negative prediction value

DCA Decision curve analysis

GLDM Gray-level dependence matrix

GLRLM Gray-level run length matrix

MMP Matrix metalloproteinase

FDPs Fibrin degradation products
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