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Cumulative evidence suggests that ATP-sensitive potassium (KATP) channels act as a key regulator of cerebral blood flow (CBF). This implication seems to be complicated, since KATP channels are expressed in several vascular-related structures such as smooth muscle cells, endothelial cells and pericytes. In this systematic review, we searched PubMed and EMBASE for preclinical and clinical studies addressing the involvement of KATP channels in CBF regulation. A total of 216 studies were screened by title and abstract. Of these, 45 preclinical and 6 clinical studies were included. Preclinical data showed that KATP channel openers (KCOs) caused dilation of several cerebral arteries including pial arteries, the middle cerebral artery and basilar artery, and KATP channel inhibitor (KCI) glibenclamide, reversed the dilation. Glibenclamide affected neither the baseline CBF nor the baseline vascular tone. Endothelium removal from cerebral arterioles resulted in an impaired response to KCO/KCI. Clinical studies showed that KCOs dilated cerebral arteries and increased CBF, however, glibenclamide failed to attenuate these vascular changes. Endothelial KATP channels played a major role in CBF regulation. More studies investigating the role of KATP channels in CBF-related structures are needed to further elucidate their actual role in cerebral hemodynamics in humans.

Systematic review registration: Prospero: CRD42023339278 (preclinical data) and CRD42022339152 (clinical data).
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Introduction

Cerebral hemodynamics including cerebral blood flow (CBF) and cerebral vascular tone are vital parameters contributing to brain homeostasis (1). Dysregulation of cerebrovascular hemodynamics is involved in the pathogenesis of several neurological disorders such as stroke and migraine (2, 3). The molecular mechanisms involved in the modulation of cerebral hemodynamics are complex and not entirely comprehended.

Evidence from preclinical and clinical studies implicates ATP-sensitive potassium (KATP) channels in the regulation of CBF and the cerebral vascular tone (4–6). KATP channels are vastly expressed at several structures of the vasculature such as arteries, penetrating arterioles and the complex mesh of capillaries. Specifically, KATP channels are present in smooth muscle cells (SMCs), endothelial cells (ECs) and pericytes (7–12) (Figure 1). KATP channels link the cellular metabolic state to the plasmalemma’s electrophysiology. They are activated during ischemia and hypoxia, causing potassium efflux, hyperpolarization and subsequently vasodilation (17–19) (Figure 2).
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FIGURE 1
 Pial artery, penetrating arteriole and capillary. The pial arterial vasculature (also known as pial collaterals or leptomeningeal anastomoses) consists of smaller arteries and arterioles that connects the three major supplying the arteries of the cerebrum: the anterior cerebral artery, the middle cerebral artery and the posterior cerebral artery (13). The pial arteries are intracranial arteries on the surface of the brain within the pia-arachnoid (leptomeninges) or glia limitans (the outmost layer of the cortex composed of glial end-feet), surrounded by cerebrospinal fluid (14) and give rise to smaller penetrating arterioles (15). An important difference in vessel architecture which might influence the CBF regulation is the number of SMC layers: penetrating arterioles contain one layer of smooth muscle while smaller pial arteries contains two to three layers of smooth muscle (16). Since KATP channels are expressed in SMC, it is expected that these channels have a higher impact in pial arteries. To date, no studies did compare the effect of KCO/KCI between these types of vessels. CBF, cerebral blood flow; KATP, ATP-sensitive potassium; KCI; KATP channel inhibitor KCO; KATP channel opener; SMC, smooth muscle cell.
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FIGURE 2
 Signaling pathway and opening of KATP channels in vascular SMC. Numerous endogenous vasodilators activate KATP channels in SMC through adenylate cyclase and PKA phosphorylation. While endogenous vasoconstrictors inhibit KATP channels in SMC through DAG and PKC phosphorylation. Activation of KATP leads to hyperpolarization and closing of voltage-operated Ca2+ channels (VOCC), followed by relaxation of SMC and increased blood flow (17). CGRP, calcitonin gene-related peptide; DAG, diacylglycerol; Gs, G-protein-coupled receptor alpha s; Gi/q, G-protein-coupled receptor alpha i/q; sGC, soluble guanylate cyclase; KATP, ATP-sensitive potassium; NO, nitric oxide; PACAP, pituitary adenylate cyclase activating polypeptide; PKA, protein kinase A; PKC, protein kinase C; PKG, protein kinase G; SMC, smooth muscle cell; VOCC, voltage-operated Ca2+ channels.


The intricate mechanisms underpinning the involvement of KATP channels in the regulation of cerebral hemodynamics have not been systematically reviewed. Here, we systemically review preclinical and clinical studies addressing the expression of KATP channel in the cerebral vasculature, and their involvement in CBF regulation and cerebral vasodilation.



Methods

We searched PubMed and EMBASE for articles assessing the role of KATP channel in the cerebral vasculature. The search was conducted on 29 January 2024, and the search string was (“KATP channels” [MeSH Terms] OR “KATP channel” [All Fields] OR “ATP sensitive potassium channel” [All Fields] OR “KATP channel expression” [All Fields] OR “KATP channel knockout” [All Fields] OR “ATP sensitive potassium channel expression” [All Fields] OR “ATP sensitive potassium channel knockout” [All Fields] AND “cerebral blood flow” [MeSH Terms] OR “cerebral blood flow” [All Fields] OR “brain blood flow” [All Fields] OR “blood flow, brain” [All Fields] OR “cerebral circulation” [All Fields] OR “cerebral circulations” [All Fields] OR “flow, brain blood” [All Fields] OR “circulation, cerebrovascular” [All Fields] OR “cerebrovascular circulation” [All Fields]).


Selection criteria and study inclusion

An a priori systematic review protocol was developed. The full protocol can be obtained from the corresponding author upon reasonable request. Two study protocols were registered in Prospero [ID-numbers: CRD42023339278 (preclinical data) and CRD42022339152 (clinical data)]. We followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guidelines and the recommendations from the Cochrane Collaboration (20). The population, intervention, comparison, outcome, and study design (PICOS) approach was chosen as follows: study design, sample characteristics of the sample, intervention, comparator and outcomes.

After removing duplicates, two investigators (HASD and LK) independently screened articles, first by title and abstract and then full text to confirm eligibility for this review. The references of the included studies were also screened. Any disagreements between the investigators were resolved through discussion. If the conflict remained, a third investigator (MMK) made the final decision. Studies were restricted to English language and both preclinical and clinical studies investigating KATP channel opener (KCO) or KATP channel inhibitor (KCI; Table 1) and their effects on CBF and the diameter of cerebal arteries were included. Reviews, meta-analysis, conference proceedings and case reports were excluded. For each included study, the following data were extracted: article information (title, authors, and journal), study design, characteristics of the sample intervention, technique, substances used, and outcomes. No formal meta-analysis was planned.



TABLE 1 An overview of KCOs and KCIs included in the studies.
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Results

The database search identified 294 citations of which 78 were duplicates. A total of 216 studies were screened by title and abstract and 91 were full text screened. Of these, 51 studies were included, 45 preclinical (35 studies in vivo, seven studies ex vivo, two studies in vivo and ex vivo and one study in vivo and in vitro) and six clinical studies (Figure 3). Preclinical and clinical data are summarized in Tables 2, 3, respectively.
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FIGURE 3
 Flowchart of search strategy.




TABLE 2 Summary of preclinical studies.
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TABLE 3 Summary of clinical studies.
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Summary of preclinical studies

KATP channels are expressed in SMCs (50, 54), ECs (11, 52–54), and pericytes (11, 43, 51, 58, 62). In-vivo studies showed that KATP channel openers (KCOs) dilated pial arteries and pial arterioles measured using a video microscaler through a cranial window in cats (4), rats (35), and pigs/piglets (5, 22–25, 28, 31). The basilar artery was also dilated upon administration of KCOs in rats (44, 45). CBF measured by laser-Doppler flowmeter through a cranial window over the region supplied by the middle cerebral artery (MCA) was increased upon administration of KCOs in mice (46–48). Using patch-clamp electrophysiology, ex-vivo studies showed that application of KCOs led to hyperpolarization of pericytes in mice (11) and rats (58), which was inhibited by KATP channel inhibitor (KCI), glibenclamide. In rats, endothelium removal from cerebral arterioles resulted in decreased dilation in response to administration of KCOs (52) and reduced the vasoconstrictive effect of glibenclamide (53). The majority of preclinical studies showed that glibenclamide reduced the increase in CBF upon KCO administration without altering the baseline CBF nor the baseline vascular tone (11, 28, 29, 31, 34, 35, 40, 53, 54).



Summary of clinical studies

KCOs have been used in clinical trials for the treatment of angina pectoris, asthma and hypertension. The most common adverse event mentioned during treatment with KCOs was headache (3, 68, 69).

Clinical studies assessed the effect of KATP channels in cerebral hemodynamic in healthy participants and individuals with migraine using magnetic resonance (MR) angiography and transcranial Doppler. Intravenous infusion of KCO, levcromakalim increased CBF and dilated the MCA, the middle meningeal artery (MMA) and the superficial temporal artery (STA) (3, 6, 70). Glibenclamide did not affect the baseline diameter of intra- and extracerebral arteries (6). In contrast to preclinical studies, glibenclamide failed to attenuate the vasodilation induced by levcromakalim (6) or by other potent endogenous vasodilators including the calcitonin gene-related peptide (CGRP) (67, 71) and the pituitary adenylate cyclase-activating polypeptide (PACAP-38) (64).




Discussion

The aim of the present study is to systematically review the involvement of KATP channels in the cerebral vasculature and the contribution of these channels in cerebrovascular hemodynamics. The main findings are that KATP channels are expressed in cerebral vascular SMCs, ECs and pericytes and play a key role in the regulation of CBF across species (7–12, 72).

The KATP channel is a hetero-octameric complex consisting of four regulatory sulfonylurea receptor (SUR1, SUR2A or SUR2B) subunits and four pore-forming K+ inwardly rectifying (Kir6.1 or Kir6.2) subunits (73). Different compositions of KATP channel subunits lead to unique functions in distinct tissues (74, 75) (Table 4). KATP channels, depending on their different subunit composition, are expressed in vascular SMCs and neurons. Of note, in this systematic review, a frequently used KCO, levcromakalim, has a high affinity to the Kir6.1/SUR2B subunit in the vessels (76), while glibenclamide, a non-specific KCI, has a higher affinity to the Kir6.2/SUR1 subunit which is not present in vessels (77).



TABLE 4 Distribution of KATP channels.
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Expression of KATP channels

KATP channels are expressed in SMCs, ECs and pericytes. The latter are contractile cells found on the abluminal surface of the endothelial wall of capillaries (78). Two ex-vivo studies using patch-clamp electrophysiology to measure whole cell currents in brain pericytes showed that activation of KATP channels led to hyperpolarization of pericytes, and this effect was inhibited by glibenclamide (11, 58). KATP channels expressed in the endothelium of cerebral arteries might be a key component in the regulation of CBF. Endothelium removal of cerebral arterioles significantly affected the response to KATP channel modulators (52, 53). Endothelium produces numerous vasoactive mediators, including nitric oxide (NO) that influences CBF (10). Impaired endothelial function associated with hypertension (40), diabetes mellitus (35, 52), and aging (45, 46) reduced the impact of KCOs/KCIs. These findings indicate that KATP channel-induced vasodilation is endothelium-dependent. However, Janigro et al. (54) demonstrated that KCOs caused a pronounced vascular SMC-mediated and a lesser endothelium-dependent vasodilation in rats.



KATP channels and cerebral hemodynamics

Administration of synthetic KCOs (Table 1) increased the CBF measured through cranial window using a laser-Doppler flowmeter (11, 40, 44, 46, 48). Whereas, glibenclamide and other synthetic KCIs inhibited the effect induced by KCOs (40, 46, 48). The majority of the preclinical studies showed that glibenclamide did not affect the baseline CBF and the vascular tone measured by laser-Doppler flowmeter (11, 40) except one study which reported that glibenclamide injected in the cisterna magna lowered baseline CBF (38). CBF is dependent on cerebral perfusion pressure (CPP) and cerebrovascular resistance (CVR). The diameter of small arteries and pial arterioles contributes to CVR. In particular, dilation of pial arterioles might increase CBF while constriction of these vessels could decrease CBF (1).

KCOs dilated pial arteries (5, 22–25, 79), pial arterioles (4, 28, 31, 35, 61), the basilar artery (44, 45), and the MCA (50, 52). Here, glibenclamide and other synthetic KCIs reversed this dilation (4, 28, 31, 35, 43–45, 61). Glibenclamide did not affect the baseline diameter of these vessels in vivo (28, 29, 31, 34, 35) or ex vivo (53, 54). However, in one study, glibenclamide induced constriction of isolated MMAs in the absence of other vasoactive stimuli but did not alter the diameter of cerebral arteries (59).

Inhalation of anesthetics such as isoflurane/sevoflurane or hypoxia caused dilation of cerebral pial arterioles which was inhibited by glibenclamide (32). Adenosine induced dilation of cerebral arterioles in pigs (29) and hyperpolarized retinal pericytes in mice and rats (11, 58) and capillary ECs in mice (11), and administration of glibenclamide inhibited the effects of adenosine. CGRP in vivo and in vitro induced dilation of dural and pial arteries. Glibenclamide attenuated the effect of CGRP in vivo, but not in vitro (60). In healthy participants, glibenclamide had no effect on CGRP-induced headache (67).

Clinical studies demonstrated that levcromakalim dilated the MMA, the MCA and the STA in healthy humans (6) and individuals with migraine (3). In contrast to the preclinical studies, glibenclamide failed to attenuate the vascular changes induced by levcromakalim (6), PACAP-38 (64), CGRP (67) or hypercapnia (65). Of note, adenosine, CGRP and PACAP-38 are potent endogenous vasodilators which activate KATP channels indirectly through adenylate cyclase and protein kinase A phosphorylation (80–82). One study, however, reported that hypoxia increased the anterior circulation of the brain and this effect was attenuated by KATP channel blockage with glibenclamide (66). The lack of effect of glibenclamide in clinical studies could be attributed to differences in administration routes, metabolic rate and/or tissue expression of KATP channels across species. Basic mathematical modeling of pharmacokinetics and receptor potencies showed that the dose of glibenclamide used in clinical studies had receptor occupancy of 26% at the migraine relevant KATP channel subtype Kir6.1/SUR2B (83).




Limitations and future perspective

The major limitations for the preclinical studies are differences in methodological approaches including subjects, designs, concentrations and formulations of different types of KCOs and KCIs, potentially affecting the reported results (Table 2). Shortcomings of clinical trials assessing the hemodynamics role of KATP channel are (1) the use of low dose of glibenclamide, (2) including individuals from all age groups, and (3) not evaluating the long-term effect of KCOs or KCIs on cerebral hemodynamics and how endothelial dysfunction interferes with this effect. An additional question is whether KATP channels are involved in cerebral angiogenesis.

The KATP channel emerges to be a potential target for numerous pathological conditions such as migraine and ischemic stroke. Recent studies showed that KATP channel activation caused headache and migraine (3), indicating that KCIs might be a novel therapeutic approach for the treatment of headache and migraine. The fact that targeting KATP channels did not affect the baseline hemodynamic state, at least based on preclinical studies, is applicable to avoid serious adverse events. Activation of KATP channels increased CBF after cerebral ischemia in mice (51). More experiments are needed to reveal if KCOs have a clinically meaningful effect on cerebral hypoperfusion during ischemic stroke.

Other findings with direct clinical significance are that glibenclamide attenuated peripheral arterial dilation but failed to affect cerebral hemodynamics indicating an unique biochemical difference between KATP expressed in cerebral circulation and those expressed in peripheral arteries.

Several scenarios might underlie this difference, including expression of different SUR and Kir6 isoforms, different expression levels, post-translational modifications that render cerebral vascular KATP channels less sensitive to KCIs and/or existence of other cerebral regulatory mechanisms with higher impact. Western blotting and quantitative PCR could be used to compare the isoforms, expression within cerebral and peripheral arteries. Patch-clamp electrophysiology on isolated SMCs or ECs from the cerebral and peripheral arteries can assess the functional properties and thereby drug sensitivity.

These studies might allow a possible treatment avenue for individuals with hypertension without altering cerebral hemodynamics. Several clinical studies applied KCO to treat hypertension (68, 84–86). However, a common adverse event was headache, most likely due to changes in cephalic hemodynamics. Yet, more selective agonists are needed to avoid adverse events. The next step is the development of a selective KCO to avoid headache when treating hypertension. An agonist with high affinity to the Kir6.1 isoform of KATP channels could be an applicable candidate.



Conclusion

Preclinical and clinical data from this systematic review demonstrated that KATP channels are implicated in the regulation of cerebral hemodynamic. The main findings are that KATP channels are expressed in cerebral vascular SMCs, ECs and pericytes. KCO increased CBF and dilated cerebral arteries in both preclinical and clinical data. Glibenclamide did not change baseline CBF and cerebral diameter in preclinical studies and did not attenuate the vasodilation induced by KCOs in clinical studies.
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througha cranisl windows over the

parcal cortex.

Dismeters ofpisl areioes were
messured using video microscaler
through  cranial vindons oer the

parical cortex.

Diameters ofpal areioes were-
messured wsing video micrometer
through  cranisl vindows oer the

parcal

Systemic (nbalation)and topical
administraton of soflurane and
sevolurane

Dismeters ofpisl areioes were
messured witha Vickers image sliting
devicethrough acranil window over the
porical cortex.

Dismeters of cerebralaterioles were
messured wsing video microscope
hrougha cranial window over the
paretal cortex.

Diameters ofpal areioes were
messured sing vl microscopy

through  cranisl vindovs.

Diameters ofpal arteioes were-
measured wsinga video image-sharing
device through acranil windaow over the

pareal cortex.

Infusionofgibenclamide inciserna
magna

B was determined by utoradiographic

Ischemia o bypoxia bunted
iationof il arteis induced
by comalali,

Mastoparan,a perusis o

senstive G protin, nduced pial
artery dilaton which was luted
by cosdministered
hbendmide

Cromakalim induced ditionof
pialartris which was bunted
e
newborn pigsand at et 4h post

foratlesst 721 post FPL i

EPLinthe joenile pigs.
respectively.

Ky channe foncton was
impaired 13 grete extent nd
foralongertimeperiod n the
newborn . thejovenile pig.
Cromakalim and CGRP induced
ilationof il arteis

Under non-FP,co-
administraton of exogenaus
HSP.27 bunted dilton o
cromabalm and CGRE However,
co-administaton f exogenous
HSP.70 ptentiaed diation o
cromabalim and CGRP

EPlincesed the concetrtion
oFHSP.27incercbrospinal lid
and decrased theconcentaton
ofHSP7.

Cromakalim dised il arteies,
bt was impaired afee P, more
i malesthan i fenales.

Afer comabalim,phenylephrine
preventd reductions n
censbrovasodiationn females,
but reduced the dilton n males.
Under non brain ijoy
vasopressin co-administerd vith
cromakalm, diminihed dilton
ofpa areries nduced by
cromakaln,

Cromakalm induced pal seery
lation was atenuated fllowing
i

EPLimpared il small artery
ilation i response o

cromakalm,

Inbaled NO preented lossof pial.
arerydilton in responsc o
cromaaln,

Hypocapnic alkalosis induced
o of pialaeiles
hat was bocked b gyburide,
ydoxylysine or LINNA,

Alhe drugs did ot cause
sgniicantchanges in baseine
dameer

Pinacidil o bypercapnia cavsed
lationof il arteiles.
Gilbenclmide blockd the
ilation o pinscidil and
Iypercpais

However, hbenclmide slone
had o efecon bascline
dameters.

Ischemia did not e iation o
Cercrsl arerioes o srcrisl:
hyposia nd to adenosine
Dilton of cersbrlarteioles to
arterial hypercapnia vas reduced
by ischemia.

Glbenclmide reduced ditions
ofcerebralatriles toadenasine
bt did ot change baseline
dameers.

T caused dilton of pisl
arerioes,an effct which wis.
completcly blocked by
ibendamide.

BT increased H production by
thebrain vi ysttbionine

yase actvation

Aprbalininduced dition of sl
arerioes However, LNAME.
stenustd his distion.
Glbendamide did otalter
baseline dismetr
Inbalaionortopica application
ofcithersoluane o sevolurane
induced diation o il ateriles
and gibencamide aenuated the
aiaion.

Pinacidiland cromalim dilsed
il atrioles which was
inbibied by lyburide

Aprkalim diated cerebrsl
artcrices thatwas simila nadult
and ol s,

Glbendimide blocked the
cercbral vasoditorresponses o
suloraphane.

Glbendmide did ot change the
baseline diametesof pal
arerices,

Aprkalim produced dose relted
ilation o ialaterile in non:
diabtic s but produced
consticton oand minimal
lation of pialareiles
disbtic s,

“The dilaon of pisl arteriles in
non-diabeti s was sbolished
by ghbenclmide

Glbendmide did ot change the
bascine dsmeters o pal
arteies,

Glbendmide ad no significant
efecton CBE innormoglycemic

Glbenclmide blocked the

) rine (IAP) method (7).

Infusionofghbenclmide incisterna
magn.

B s determined by sutosdiographic
[CIAP method (7).

Infusionofgibenclmide incisterna

magr,

B of the forebrain, cercbell and.
brain s were cleulted by the
indicstor fsctiontion method with
variale syringe flow, s weigh .
Coadministtion of ¥ 26763
(inteacarond nfsion)and glbenchmide

(ineasenous infusion)

B were measured wsingasr-Doppler
fowmetry througha cranalwindow ovr
the parietal cortes.
Micrinjecton of tolbutamide and
libenclmide o rosalverobteral
medulla (RVL)

FCBE were messured withaaser-
Dopplerlowmete through s crnil
windowover the paritalcores.
Laser-Dopple lonmetey

messured corical and thlsmic bood
v heough acranial window ave the
ensory cortexand i the medial partof
the thalams.

Noxiousstmulation withan instrument
(544 stmulaton),where scatic nerve was
dectrically stimulated.

Insiso 4D o photon microscopy
messure th egultion ofmicrovscular

v i somatossory cortex.

Percyes rsponses to contactile and
vasodiltory signals
were measured ith imaged dameter
hanges of penciating arterioles,
‘apillaies nd precapilay sphinctes.
Dismeters of basia artery and lage and
‘small branches romthe baslar artry
were mesured wing  video analyer
hrough  cranisl windows over the
sental brsin s,
B o the ventral brsn stem were
messured by lserDopples flowmetry

Dismeters ofthe basilar sty andts
brancheswere measured theough a
crunisl vindons avr the ventrs brsi
tem usinga microscope equipped witha
TV-camera coupled 03 video monitor

FCBE were messured usng lserDoppler
fowmetry througha cranialwindow ovr
the regionsupplied by th e MCA.

B were measured wsinglasr-Doppler
owmetry o the surfceof hinersll
overthe egion supplied by MCA.

B were measured singlaser Doppler

fovemecrthrough s cranial window aver
the egion supplied by lft MCA.

Trombotic acclsion ofthe distal MCA
s produced photochemicaly.

FCBE were messured by s Doppler
fowmetry througha cranial window.
Aer 3days,the brain was disected into
lices nd nfrct vlume of sachrt s
calulatedas the product of he infrct
times the 2 thickness of each

A intact MCA was disctedfrom the
brain and the crebral artrioles were
epaated fromthe parenchyma.

SMCs wer solted from basiae artry
and

potch-clp rcordings vereperformed.

MCA occlusion (MCAO) were
perfomed

Laser speckle maging o llminate the
pisl microccolstion.

s wereslced and placedina
collgen ¢l contacion sy o
demonstst cultred pericyts

MCA ws discctd,and ndothelim
were emoved.

MCA dismeter s measured with s
video dimension byt

Cerebral arteioes from MCA were
Canmlted and dsmetes were measured

withanverted micoscope.

“The endothelomfromthe atriles were
removed

Cerebral srteioes were sparsted rom
the parenchyma.

Thearteioles were cannulted with

extra-ornvaluminal appicton of

drugs while measuring vesel diameter
hanges sing video aalyer

Totestifthe vasodiation was medited
by endothelsl NOS ctvat

were preseted with NOS nbitors

Vessels

LNNA or Nemonomethyl-Laginine
s

Dismeters ofntctcersbrlatrioles
were measured by  video-microscopy

Ateices werepretsated with
prosaghndin F2g.

Brsin s removed,liced and placed i3
perusion chamiber

Dismeters ofntactcerebral prenchymal
artcricles were mesured wing
computerized video-micoscopy.
Arerioes wereprtseted with
prosughandin F2g:

Basiarartery vas disected.

“Tension xperimens.

“Theartery was precontactd by ET-1

Putch-clp electrophysiology to
monitor the whol.cellscurrnts ofntsct.
percyesocsted on micro-vesscls.
islted from retins

Membrane potential measurement

Pathclap eectrophysilogy to
messure whol el cutent n solsted
capillay ECs,perictesand SMCs rom
cereral llatries.

Mermbrane potental measurements rom
capillary ECs and pericytes o
pressurzedretin preparatons
(ophalmic artry).

B messurementusng laserDoppler
ovwmetry througha cranalwindow over
the somatosensorycortes.

Exvin, diameters ofntctcerebral
areresand MMA were messred using
avideo detctorina myograph chamber.
Smooth muscle membrane potental s
messured for both MMA and cercbrsl

nvivotwo-photon imaging of meningesl
blood veses througha craial window.

Dismeters of dural nd il sreies were
messured using video-ansyze through

 cranial windowe o theparcal skl

FCBE were measuredover the parital
bone and piaateris by lser-Doppler

J—

Dismeters ofcrebralateriles were
measured using  video micrometer
hrougha cranial vindows over the

parcal cortex.

Dismeters ofpisl reries were messured
through  cranisl windovs.

Membrane potental measurementson
capilry percyis.

“The model of SAH inolved endenscolse
puncureof the ICA usinga .0 flament,
produced mild o moderate SAH,
asocited withlow mortlity.

B were measured singLaser Dappler
fovemeeraffied o th skoll.

Shortly afee indocing SAH (<15min),
lbendlmide wasadministed
oading doseof 10y,
ntraperioncaly and then 05 L
infusion subcutancouly).

s ybridization was wed o detect
MIRNA for AbeS which encodes SURI

i CBF in bype
in dosedependent manne.

Glbendlmide tended tolower
bascine CBE
obules,cerebellrcortes, ontine.

the carebllar

nucei and spnal igeminal
nucus,

Hyposiainduced a greater
incease n CBF i the forbran,
cereellm and brsin stem than
hemodiution

Glbendlmide st
atenustd the incesse of CBF-
during yposia but ot
hemodiution

Infusion of 26763 incressed
B which was inibied by
ibencamide.

However, gibenclmide did ot
ltrthe bseline CBE.
Theresponse 0 Y26763 was
sgnificanty impaired in
bypertensiv .

Tolbutamide and glbendmide
o RVL incressed <CBF and
fcllse sevstonsof 1CBE
induced by hypoxa

Noriousstimulstion incessed
both corticaland thalamic lood
v which s atenuated by
shbenchmide

Pinacidlnduced dilaon of
penctraing atrioles, capillris
and precapilary sphincters.
PNU-37883abolished this
vasoditor et

Capllay blood lw was.
regulted primarily by percyics
and precapilar spincters.

During hypotenson,
evcromakalm induced diltion
ofthe diametersof altheee
vesels,

Glbendmide impired the
ilatorresponse of smll
arterices but did ot mpaired
the dilton of arg arterols or
the basa arery:
Leveromakalim and Y2676
incessed the dismete of the
basiaratey and ts ranches
‘which was sbalished by
spplcationofghbenclmide n
both adultandsged s

“The dilator responses o the
branches butnot the basir

artery,were smaller n aged s

Dissoxide ncresed eCBEin
young.middieaged and old wild
ypemice s wll s young
WTAD mice

Disaovid response 10 rCBF was
reducedn midde aged and old.
WTAD mice

“The clfct of disovide s
sbolished by ghbencianicde.
Dissoxide ncresed eCBEin
S¥TgAD mice

1 mglkg nicorsndil incessed CBE
‘while blood presure and
hesrtrateremsined wnalerd.
“Tnis effc was inhibited by co-
administaton of cther
hbendmide or L NAME.
However,nicorandi a hg
doses (5 and 10mhg) decreased
(B by decresing lood

presare.

“The nfaret volume was smallein
26763 trested group thann the
contrlgroup.

26763 did not affct CB before
and e the occlusion
However,the benefcal efctof
26763 may be due o divect
action o neuron nsesd fs
T——

Bacl, and glibenclmide reduced
lations incerbral seeioes and
in the baslar atry induced by
pinacdi.

Tptakalim signifcanly promoted
recoveryof CBF s cercbral
ischemis, epeusion and
inbibited pericytes contraction.
Furthermore, ipiskalim improved
cercrsl microcirculation,

Pinacidilandlveromakalim
ilated MCA from both contol
and dibetc .

However MCA from disetic rats
were lesssnsitve o the drogs.
Diltons to K openers were
reduced by endothelium remol
Ackdosisinduced diations of the
cercral areices which was
inhibited by ethe BaClor
shbenchmide

Glbendmide did otlerthe
baseline diametersof ercbrsl
areries,

“Thedilon was sgniicanty
stenuated afee endothelal
impaiement.

Koy openers icorandilor
pinacdiinduced
censbrovasodition by diretly
acing on vascular SMCand by
causing ECs o release NO.
Extrluminal aplication o
icorandilor pinacidl cased a
more pronounced lbenclmide-

sensive vasodiation than

appledintraluminally.
Glbendmide sppled et
ests- or nesluminalydidnot

afctbacline vesl diameter,

Levcromakalm induced dilton
ofthe erebral parenchymal
arterioes which wassbolshed by
libendamideoridocine bt
notby B,

Mild bypercapnia
(€0, =50mmtg) and
everomakalim induced

sgniicant dilion in the cesebral
parenchymal sterices, which
was compltly ablished by
ibendamide.

Levcromabalm or SNAP indced
concentrtions-dependent
istionsunder both sandard and
hyposic onditon

Under yposic conditions,
vasodiation induced by
everomaalm was ot
sgnicanty affeced,which s
more pronounced n SNAP-
induced dilaions
Glbendlmideatenustd
evcromakalm-induced
wasodition.

Hypespolaiston ofretnal
periytesis due o the actvation
Of K channcs by adenasine o
pinacdil anefctwhich was
blocked by ghbenclamide.

Pinacidiladenosine or CADO,
respectively, nressed CBE.
Pinacidil adenosine or CADO,
respecively, incapiliy ECs and
pericytes cansed membrane
potental yperpolaizaton,an
et that s reversed by
lbenclmide and PNU-37783.
Glbenclmide did ot afct

membrane currents, membrane
potentisl r CBE n theabsence
OF Ky channc operners.
Adenosine fled o incresse CBE
in both ECsand periytes specfic

Kir.1 domiant negative mice

Small Ky curentin SMCs
islated from cithr brsin sl
areries o parenchymalareiles,
Cromabalim nduced agrster
vasodiltoreffct of MMAS
compared o cerebral arteres.
Glbendlmide and PNU-37883A
induced comstriction o clated
MM ot did ot aler crebrl
srtery diametes.
I MMA glibenclamide cased 3
membrane potentil
depalaizationin smooth musce
ery
smooth musce, membrane

However,incerbral.

potentlwas o signifcanty
diferen i the presenceor
absenceofgbenclamide.

‘CGRR GIN and transcranial
decrical stimlston induced
lation ofdurl and pialatris,
invivoand i vitr.

Invivo glbendamide atenuaed
CGRP-nduced dursl artry
lation and transcranisl lectrical
stimlaton-induced pial and
duralartery dilation.
Glbendmide had no efect on
piordural vasodlation induced
byGTN

v, glibendamide did ot
sgniicanty nhibit the
asodiltion induced by GTN and
CORR rspeciely,

Aprkalim induced dilaton of
cercral areiceswhich was
inhibited by glbencamide
Glbenclmidesone had no et
o basclne diameer,

Barium sppliedto the corticsl

surace prior o pinacdi cection
ona percyc bocked Kir21
channe and abolihed the
increse indilton fartioles
and capilary lood flow.
Crtical esponses 0 SAH
inflmmation and a increse n
barrier permeabily,were
sgnificanty aenuated by block
of SURI by glbendamidea
slective SURI ibibitor.

Immunchisochemistry for SURI
Showed minimallabeling
ninjored contols compred to
2haferSAH inthe

inferomedil cortex

Ischeniaorhyposia impaired
Kurchannel medised
cercbovssodiation,

G proein actvation dicied
cercrovasodition throvgh
nteacton with Ko

channels.

‘Newborn pigs were more
sensiive totraumatc viscolse

infury than the il pigs.

HSP27and HSP 70
contributd o modsltion o
K channel induced psl artery
dition.

Phenylpheinepreented
impsiment of K channl-
medisted crebrovsodiltion
s FPLin female.

Vasopressin blunied K
channel medintod

cercrovasodition afer FPL.

Inhaled NO prevented
impimentof crebral
autoregulation afer traumatc
rain nury through
protcton of K channel
function.

Inibition of K, channe in
pilarteriles inhibied the
sasoconstricton from
ypocapaic allalois

Hypercapniaatvaed Kuo
channls eading o cerbral
iltionof arerices.

Cerbral diation o hypoxia
and adenosine was
maintained e icheni.

HS medised the vasodiltor
ellectof T i the crebral
crcltion vina mechanism
hatinvolsed sctivaton of
K channels invasclar
swc.

Aprikalim induced diationof
pilartcriols s medised
parly by NO.

Dilaion o piaarerioles
sppeared tobeactivated by
K channels.

Kurchannels played ol in
the vsodilton f pisl
areiles,

Activaton of Ky channels
were resrved during ging.

Sulforaphane induced
cercral vasodiation was
dependenton K. chanel

Ko channcsregulted
cercbral arteioesand were
impited during dishetes
mellus.

Karchannelwas an
importan component of the
mechansms ofthe CBE
response o hypoglycemi.

K channelcoud play role
i the tonc egulton of
baseline CBE

Korchannels did ot
contribue toincresing CBE
during hemodiution.

Inraascala P wasan
important reglator of
cerbra vascular tone,

Kurchannel could contebute
o the egulston of CBE.

Karchanelwas diminished

i hyperensive s,

K channels coud mediate
byporic exctation of xygen-
sensing RVL eurons,

(B was adjusted during
morious stimlston, and this
regulation involved actvation
Of K, channc.

K channels was found in
percytes and precapillary
sphincees nd had a ey role
for blood lw contol.

Karchannels playedan
esental rle n the rgulation
Of CBE tothe brainsem

during bypotension, medisted
by compensstory dition of
smll reres,but no lrgee

Noregional hetrogenciyin
asoditor response inadul
ts 0 K channel opencrs
whereas diaor response of
thelage areries due t0
activaton of Ky, channcl s

impained i agd s,

The age.exscerbted
impament of the 1CBE
response o diazoide was
asociated 1o progession o
AP pathologyin AD brins.

Diszoide canbes
therapeutc potentl drug
the ecatment of AD.

K channelwas nolved in

B regulation.

Activaton of Ky channel
appearedto

be neuroprotective infocsl
cerbral ichemis,

SMC wereactivated bya Ko
channels.

Itk couldimprove
microvasculr disurbance by
nbibiing pericyte
contracton afe ischemic:
ke,

Disbetes mellus esled n s
diminished esporse o Ky
channel apeners.

Acdosis simulated Ky
channels esling i dition
ofcrebal arterols

Karagonist cavsed a
pronounced vascular SMC.
medisted and s lsser NO nd
endathelim-dependent
sasodiation.

Lidocaine could impair
benefcial vasoditor
responses medisted via K

channels.

Kuo channesplayed a rucal
rlein vasoditor esponses
produced by mild
bypercapnia

SNAP was  more ffective
sasoditor than
levcromakalim duing

byporia.

Regulation of Ky channcls
allowed adenosine o serve s
avasoactivesgndl in the
retinal microvssclaure.

Karchannelshadan
important role in capillary
ECsand percyes i the
regulation ofCOF.

Ko channelactiviy
contributed o the regulation
OFMMA bt no cercrsl

artery diamete

Glbendamide i iso bt ot
i nhibited CGRP-
nduced vasodition

Kurchannels could
beinwohed inthe migesine
enerting effectof CGRE.

Dilation o cerral rercls
i response 0 hyporia were
medisted by acivation o Koy

channels.

Brsincapiley percytes
controlled lood flow though
Karchannelactbvity.

SURI wasmpartant n the
pathophysicogy of SAH.

AD, Alheimers disase,CBF sl iood low; B, egonalcrebral ood low; CGRY,clconi e et pepide EC;endshelial el 1, ndothln; PP i prcuson i njry HSP. st shockprosi KATP, ATP sensive prasm: KCH:
i e i e L i Lo Lo i b e i £ e i i e e
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To investigate the
effects of
leveromakalim and
glibenclamide on
global CBF (CBF)
andon
circumference of
extracranial and

intracranial arteries.

To investigate
whether
glibenclamide
attenuates pituitary
adenylate cyclase-
activating
polypeptide-38
(PACAP-38)-
induced headache
and vascular
changes.

To investigate
whether
glibenclamide alters
the cerebral and
ocular vasodilator
response to

hypercapia.

To investigate
whether Ky
channels blockade
affects the increase
in CBF during
hypoxia.

To investigate
whether opening of
Ky channels
causes migraine

attack.

To investigate the
effect of

glibenclamide on

headache and

vascular changes.

Levcromakalim (1 mg)

Glibenclamide (10mg)

PACAP-38 (10 pmol/kg/min).

Glibenclamide (10mg).

Glibenclamide (5 mg).

Glibenclamide (5mg)

Leveromakalim (0.05 mg/min).

CGRP (15 pig/min).

Glibenclamide (10mg).

Study design  Study
population
(n)

Double-blind, Healthy participants

placebo-controlled,  (2=15)

three-way crossover

design.

Double-blind, Healthy participants

randomized, (n=20)

placebo-controlled

and. Crossover

design.

Controlled, Healthy participants

randomized, (n=10)

double-blind, two-

way crossover study

NR Healthy participants
(n=9)

Randomized, Migraine patients.
double-blind, without aura
placebo-controlled,  (2=16)

crossover study

Randomized, Healthy participants
double-blind, (n=20)

placebo-controlled,

crossover study

Randomization of the participants into 3
different study days, separated by at least

1 week.

Day 1: Oral glibenclamide followed by

leveromakalim infusion.

Day 2: Oral glibenclamide followed by
placebo (isotonic saline) infusion.

Day 3: Oral placebo (multivitamin pill)
followed by placebo (isotonic saline)

infusion.

‘The participants underwent 5 MRI
sessions: (time points: =20, 60, 120, 160
and 200min). Administration of oral
glibenclamide/placebo infusion at 0 min

and administration of leveromakalim/

placebo infusion over 20 min at 140 min
of the timeline of the study.

Ateach MRI-session, MR angiography
and phase-contrast mapping were
performed.

MR angiography to measure vessels:
MCA, MMA and STA

Phase-contrast mapping to measure
gCBE.

Randomization of the participants into 2
different study days, separated by at least
Lweek.

Intravenous infusion of PACAP-38 over

20 min, immediately followed by cither

oral glibenclamide or placebo.
Mean velocity of blood flow in MCA

(Vianyica) were measured using

transcranial Doppler.

Participants received cither oral
glibenclamide and intravenous placebo
or oral placebo and intravenous insulin.
Pulsatile choroidal blood flow was
assessed through laser interferometric

measurements of fundus pulsation on

Vinnca and the ophthalmic artery were
measured using Doppler sonography.
Afier induction of hypoxia, oral

glibenclamide was administered,

Blood flow of internal carotid artery and
Vertebral artery were conducted via

Doppler Ultrasound.

Randomization of the participants into 2
different study days, separated by at least
1 week.

Intravenous infusion of either
leveromakalim or placebo (isotonic
saline).

Vaeunyica Were measured using a

transcranial Doppler.

Randomization of participants into 2
different study days, separated by at least
Lweek.

Intravenous infusion of CGRP 2h afier
oral pretreatment with either placebo
(calcium supplement tablet) or
glibenclamide.

Facial flushing was measured by speckle
contrast imager.

MCA blood flow velocity (Viycy) were
measured using a transcranial Doppler.
Diameters of STA and radial artery were
measured using an ultrasonography

(Dermascan).

CBE cerebral blood flow; gCBE, global cerebral blood flow; CGRP, calctonin gene-related peptide, KATP, ATP-sensitive potassium; MRI, magnetic resonance imaging; MCA, middle cerebral
artery; MMA, middle meningeal artery; NR, not reported; PACAP, pituitary adenylate cyclase activating polypeptide; STA, superficial temporal artery; Vov.cx, mean velocity of blood flow in

MCA.

Leveromakalim increased
global gCBE with 14% and

dilated the cerebral arteries.

Glibenclamide did not alter the

cerebral hemodynamics.

PACAP-38 decreased Vieunicn:

Postreatment with
glibenclamide failed to

attenuate vascular changes.

Hypercapnia caused a
significant increase in fundus
pulsation amplitude and
Vincansica. However,
glibenclamide had no effect on
hypercapnia-induced

hemodynamic responses.

Hypoxia induced increase in
the anterior circulation and
were attenuated under Ky

channel blockage.

Leveromakalim increased
diameter of STA but had no

significant effect on radial

artery diameter or Vcnica-

Glibenclamide had no effect on
CGRP-induced headache and
vascular changes (decrease in
Vaew increase in facial skin
blood flow and dilation of STA

and radial artery, respectively).

Kyp channels
played an important
role in cerebral

hemodynamics,

PACAP-38 induced
vascular changes

‘might be mediated
by the SUR2B Ky

channel.

Hypercapnia-
induced
vasodilation in
cerebral and ocular
vessels were not
mediated by
activation of Ky

channels.

Activation of Ky

channels modulated
vascular tone in the
anterior circulation

of the brain.

Kirw channels had
no significant on

Vineanaica:

CGRP-induced
responses could
be mediated by
SUR2B Ky

channel.
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Ky ATP-sensitive potassium; Kir, K+ inwardly rectifying; SUR, sulfonylurea receptor.
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