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Background: Previous studies suggest a link between diet-derived circulating 
antioxidants and epilepsy, but the causal relationship is unclear. This study aims 
to investigate the causal effect of these antioxidants on epilepsy.

Methods: To assess the causal link between dietary antioxidants and epilepsy 
risk, we conducted a two-sample Mendelian randomization (MR) analysis. This 
involved examining antioxidants such as zinc, selenium, α- and γ-tocopherol, 
vitamin A (retinol), vitamin C (ascorbate), and vitamin E (α-tocopherol). We utilized 
instrumental variables (IVs) which were genetic variations highly associated 
with these commonly used antioxidants. Exposure data were sourced from a 
comprehensive genome-wide association study (GWAS). We aggregated data 
from the International League Against Epilepsy (ILAE) Consortium sample, which 
included various types of epilepsy, as an outcome variable. Finally, we applied 
the inverse variance weighting method and conducted sensitivity analyses for 
further validation.

Results: Based on the primary MR estimates and subsequent sensitivity analyses, 
the inverse variance weighting (IVW) method revealed that a genetically 
predicted increase in zinc per standard deviation was positively associated 
with three types of epilepsy. This includes all types of epilepsy (OR  =  1.06, 95% 
CI: 1.02–1.11, p  =  0.008), generalized epilepsy (OR  =  1.13, 95% CI: 1.01–1.25, 
p  =  0.030), and focal epilepsy (documented hippocampal sclerosis) (OR  =  1.01, 
95% CI: 1.00–1.02, p  =  0.025). However, there is no evidence indicating that 
other antioxidants obtained from the diet affect the increase of epilepsy either 
positively or negatively.

Conclusion: Our research indicates that the risk of developing epilepsy may 
be directly linked to the genetic prediction of zinc, whereas no such association 
was found for other antioxidants.
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1 Introduction

Epilepsy is a brain disorder defined by at least two unprovoked seizures over 24 h apart, 
one unprovoked seizure with a high recurrence risk, or an epilepsy syndrome diagnosis; it is 
considered resolved in individuals who have been seizure-free for 10 years and off medication 
for the last 5 years (1). As the most widespread severe chronic neurological condition, epilepsy 
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affects 70 million people worldwide and has significant cognitive, 
social, psychological, and economic impacts (2, 3). Despite the 
availability of many new ASDs, the outcomes for newly treated 
epilepsy and the likelihood of drug resistance remain largely 
unchanged from earlier studies (4). Therefore, further investigation 
into the underlying mechanisms is urgently needed to develop new 
therapeutic approaches. Clinical and experimental studies indicate 
that oxidative stress is both a cause and a consequence of epilepsy 
progression (5, 6). The onset of epilepsy is linked to oxidative stress 
and the overproduction of reactive oxygen species (ROS) (7–9). 
Epileptic seizures induce oxidative stress, leading to further neuronal 
damage and triggering a chain reaction of subsequent seizures (10), 
with both factors interacting and influencing each other. 
Unfortunately, there is currently no effective medication available to 
reduce neuronal death by modulating oxidative stress and thereby 
improve epilepsy.

Many compounds with antioxidant properties have been 
extensively researched for their antiepileptogenic therapeutic 
potential, given the role of antioxidant defense systems in neutralizing 
the increased generation of reactive oxygen species (ROS) during 
seizures (11–13). Antioxidants found in dietary supplements (14, 15), 
such as vitamins E and C, vitamin A, carotenoids, zinc and selenium, 
attract special attention due to their accessibility and ease of intake 
modification. However, the impact of these diet-derived circulating 
antioxidants on epilepsy remains controversial. While some reports 
suggest these antioxidants are safe and without adverse effects, others 
indicate potential impacts on the central nervous system and an 
increased risk of seizures associated with their use (14, 16–18). Despite 
the global popularity of dietary supplements, including among 
patients with epilepsy (ranging from 10 to 56%) (14, 15, 19–21), 
evidence supporting their beneficial effects in epilepsy remains lacking.

The existing results are generally inconsistent, leading to 
uncertainty about the association between diet-derived circulating 
antioxidants and the risk of epilepsy. Current studies are primarily in 
early research stages, such as animal experiments, and there is limited 
clinical evidence. To address these limitations and improve the study 
design, Mendelian randomization (MR) analysis was incorporated 
(22). Genetic variation was used as an instrumental variable (IV) to 
establish robust causal inferences regarding the relationship between 
levels of common diet-derived antioxidants and the occurrence of 
epilepsy. This methodology helps minimize biases from confounding 
factors and reverse causality. By using genetic variations as proxies for 
antioxidant levels, this approach may facilitate a deeper understanding 
of preventive strategies for epilepsy and related conditions.

2 Methods

2.1 Study design

Figure 1 provides a schematic overview of the current investigation. 
We first obtained relevant genetic variations from extensive genome-
wide association studies (GWASs) for carotene, zinc, selenium, vitamin 
A (retinol), vitamin C (ascorbate), and vitamin E (α-tocopherol). 
Summary data related to epilepsy were taken from the GWAS Catalog. 
Using several sensitivity analyses and a two-sample MR study, 
we assessed the causal links between diet-derived antioxidants and 
epilepsy (23). The MR analysis relies on three key assumptions: (1) the 

genetic variants must be associated with the exposure, (2) the genetic 
variants must influence the outcome through the exposure, and (3) the 
genetic variants must be independent of all confounding factors. Each 
original study received informed consent and ethical approval, and all 
data used in this investigation are publicly available.

2.2 Selection of genetic instrumental 
variables

The present study considered seven primary dietary-derived 
antioxidants: vitamin A (retinol), vitamin C (ascorbate) (24), 
vitamin E (α-tocopherol) (24), vitamin E (γ-tocopherol) (24), 
carotene, zinc (25), and selenium (25). Based on extensive GWASs, 
single-nucleotide polymorphisms (SNPs) associated with these 
diet-derived antioxidants were identified as instrumental variables 
(IVs), using the following criteria: p < 5 × 10–6, linkage 
disequilibrium (LD) with r2 < 0.001, and LD distance >10,000 kb. 
An F-statistic exceeding 10 signified a robust association between 
the IVs and antioxidants, with the strength of this correlation 
evaluated between SNPs and diet-derived antioxidants. The specific 
SNPs linked to antioxidants are detailed in Supplementary Table S1.

2.3 Outcome data sets

Through a meta-analysis (N case = 15,212, N control = 29,677) 
conducted by the International League Against Epilepsy Consortium 
on Complex Epilepsies(ILAE) in 2018 (26), we  obtained GWAS 
summary statistics for epilepsy. Seizures and epileptic disorders were 
diagnosed following the International League Against Epilepsy (ILAE)’s 
classification and nomenclature rules. Harmonization techniques were 
used to align SNP effect sizes and remove strand mismatches. Summary 
statistics are available in Table  1. To our knowledge, there was no 
sample overlap between the outcome and exposure GWASs.

2.4 Statistical analysis

2.4.1 Two-sample Mendelian randomization 
analysis

In the primary MR analysis, inverse-variance weighted (IVW) 
regression was utilized, assuming no flawed genetic instruments such 
as directional pleiotropy (27). A fixed-effect IVW meta-analysis of the 
Wald ratios was performed, calculating the gene-outcome (log odds 
ratio) divided by the gene-exposure correlations for each instrumental 
variable, to derive the mean impact estimate from each outcome 
database individually (28). The results are presented as odds ratios 
(ORs), indicating the impact of antioxidants on epilepsy risk, either 
based on standard deviation (for retinol, carotene, zinc, and selenium) 
or natural log-transformed levels (for ascorbate, α-tocopherol, and 
γ-tocopherol). These ORs evaluate the causal relationship between the 
exposure and the outcome, assuming the MR assumptions are met.

2.4.2 Sensitivity analysis
To assess heterogeneity and horizontal pleiotropy, this study used 

Egger regression intercepts (29) and Cochrane’s Q test (30) for 
sensitivity analysis. Cochrane’s Q test evaluated heterogeneity among 
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instrumental factors, while potential horizontal pleiotropy was 
examined using MR-Egger intercept tests. Additionally, a leave-
one-out test was conducted by iteratively removing each SNP and 
re-estimating the MR data. Considering consistency across all MR 

approaches, the IVW method was chosen as the primary estimate for 
causal effects based on these analyses.

The study and analysis were performed using R-version 4.3.2, 
utilizing the MR and “TwoSampleMR packages” (31, 32).

FIGURE 1

Overview of the study design (A), Study design. (B), Data Sources of Exposures, Outcomes, and MR analyses. SNPs for dietary antioxidants (vitamin A, 
vitamin C, vitamin E, carotene, zinc, and selenium) were identified as genetic instrumental variables. Summary statistics for epilepsy associations were 
obtained from GWAS Catalog. For each exposure, MR analyses (primary analysis using inverse-variance weighted (IVW), weighted median, MR-Egger 
regression, and sensitivity analyses using Cochrane’s test, Egger intercept, and leave-one-out test) were performed. GWAS, genome-wide association 
study; SNP, single-nucleotide polymorphism; MR, Mendelian randomization.
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3 Results

3.1 Exposure and outcome

Table  1 displays the characteristics of participants in the 
epilepsy and antioxidants datasets. Specifics on SNPs linked to 
vitamin A (retinol), vitamin C (ascorbate), vitamin E 
(α-tocopherol), vitamin E (γ-tocopherol), carotene, zinc, and 
selenium are provided in Supplementary Table S1. A total of 59 

SNPs were included as IVs for each of the seven antioxidants. The 
F-statistic for each genetic tool used in this investigation 
exceeded 10.

3.2 Main findings

Table 2 displays the results of the MR analysis investigating the 
impact of zinc on epilepsy. The findings suggest a causal relationship 

TABLE 1 Characteristics of diet-derived antioxidants and epilepsy datasets.

Trait Year Author Population SNP Unit Sample 
Size

PMID Dataset

Exposure (circulating antioxidants metabolites)

Vitamin A (retinol) 2018 Ben Elsworth European 9 SD 62,991 NA ukb-b-17406

Vitamin C 

(ascorbate)
2014 Shin European

10 log10-transformed 

metabolites 

concentration

2,085 24816252 met-a-348

Vitamin E 

(α-tocopherol)
2014 Shin European

5 log10-transformed 

metabolites 

concentration

7,725 24816252 met-a-340

Vitamin E 

(γ-tocopherol)
2014 Shin European

7 log10-transformed 

metabolites 

concentration

6,226 24816252 met-a-571

Carotene 2018 Ben Elsworth European 16 SD 64,979 NA ukb-b-16202

Zinc 2013 Evans European 8 SD 2,603 23720494 ieu-a-1079

Selenium 2013 Evans European 6 SD 2,603 23720494 ieu-a-1077

Outcomes 
(epilepsy)

Year Author Population
Cases

controls
Sample 

Size
PMID Dataset

All epilepsy 2018 Abou-Khalil B Mixed 15,212 29,677 44,889 30531953 ieu-b-8

Generalized 

epilepsy
2018 Abou-Khalil B Mixed

3,769
29,677 33,446 30531953 ieu-b-9

Focal epilepsy 2018 Abou-Khalil B Mixed 9,671 29,677 39,348 30531953 ieu-b-10

JME 2018 Abou-Khalil B Mixed 1,181 29,677 30,858 30531953 ieu-b-17

JAE 2018 Abou-Khalil B Mixed 415 29,677 30,092 30531953 ieu-b-12

CAE 2018 Abou-Khalil B Mixed 793 29,677 30,470 30531953 ieu-b-13

Focal epilepsy 

(documented 

hippocampal 

sclerosis)

2018 Abou-Khalil B Mixed

803

29,677 30,480 30531953 ieu-b-14

Focal epilepsy 

(documented lesion 

negative)

2018 Abou-Khalil B Mixed

2,716

29,677 32,393 30531953 ieu-b-11

Focal epilepsy 

(documented lesion 

other than 

hippocampal 

sclerosis)

2018 Abou-Khalil B Mixed

3,070

29,677 32,747 30531953 ieu-b-15

Generalized 

epilepsy with tonic–

clonic seizures

2018 Abou-Khalil B Mixed

228

29,677 29,905 30531953 ieu-b-16

SNP, single-nucleotide polymorphism.
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TABLE 2 Two-sample Mendelian randomization estimations showing the effects of diet-derived antioxidants on the risk of epilepsy and the estimations 
of heterogeneity and horizontal pleiotropy for results.

Two sample Mendelian randomization Heterogeneity Pleiotropy

Outcome Exposure Method OR (95% 
CI)

p-value Q-statistic p-value Egger 
Intercept

p-value

All epilepsy Zinc

Inverse variance 

weighted

1.06 (1.02–

1.11)
0.01*

4.27 0.37

Weighted 

median

1.07 (1.01–

1.14)
0.02*

MR Egger
1.06 (0.86–

1.32)
0.61

4.27 0.23 0 0.99

Generalized 

epilepsy
Zinc

Inverse variance 

weighted

1.12 (1.01–

1.25)
0.03*

7.77 0.10

Weighted 

median

1.06 (0.96–

1.18)
0.27

MR Egger
1.03 (0.63–

1.68)
0.92

7.44 0.06 0.02 0.74

Focal epilepsy Zinc

Inverse variance 

weighted

1.04 (0.98–

1.09)
0.17

2.74 0.60

Weighted 

median

1.04 (0.98–

1.11)
0.23

MR Egger
1.04 (0.84–

1.29)
0.75

2.74 0.43 0 0.99

JME Zinc

Inverse variance 

weighted

1.00 (0.98–

1.01)
0.52

8.11 0.15

Weighted 

median

0.99 (0.98–

1.00)
0.13

MR Egger
0.97 (0.93–

1.00)
0.14

4.7 0.32 0.01 0.16

JAE Zinc

Inverse variance 

weighted
1.00(1.00–1.01) 0.10

1.71 0.89

Weighted 

median

1.01 (1.00–

1.01)
0.12

MR Egger
1.00 (0.98–

1.03)
0.69

1.71 0.79 0 0.98

CAE Zinc

Inverse variance 

weighted

1.01 (1.00–

1.02)
0.12

6.16 0.29

Weighted 

median

1.01 (0.99–

1.02)
0.32

MR Egger
0.99 (0.96–

1.02)
0.61

4.86 0.30 0 0.36

Focal epilepsy 

(documented 

hippocampal 

sclerosis)

Zinc

Inverse variance 

weighted

1.01 (1.00–

1.02)
0.03*

6.70 0.24

Weighted 

median

1.01 (1.00–

1.02)
0.01*

MR Egger
1.03 (1.01–

1.06)
0.07

3.58 0.47 0 0.15

Focal epilepsy 

(documented 

lesion negative)

Zinc
Inverse variance 

weighted

1.01 (1.00–

1.03)
0.06

6.73 0.24

(Continued)
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between genetically determined blood zinc levels and three distinct 
types of epilepsy. This association is observed across all epilepsy types 
(OR = 1.06, 95% CI: 1.02–1.11, p = 0.008), generalized epilepsy 
(OR = 1.13, 95% CI: 1.01–1.25, p = 0.030), and focal epilepsy 
(documented hippocampal sclerosis) (OR = 1.01, 95% CI: 1.00–1.02, 
p = 0.025). Elevated blood zinc levels are linked to an increased risk of 
these three seizure types. Subsequently, we investigated the association 
between each of the seven diet-related antioxidants and their 
respective links to epilepsy overall and its subtypes, including all types, 
generalized, and focal epilepsy (with documented hippocampal 
sclerosis), as depicted in Figures 2–4. Furthermore, we examined the 
relationship between vitamin A (retinol), vitamin C (ascorbic acid), 
vitamin E (α-tocopherol), vitamin E (γ-tocopherol), carotenoids, and 
selenium levels in relation to overall epilepsy and various subtypes, as 
indicated in Supplementary Tables S2–S7. However, we  did not 
observe a significant association between these antioxidants and 
epilepsy. Little evidence was found to support causal effects of other 
diet-derived antioxidants on epilepsy.

3.3 Sensitivity analysis

Cochrane’s Q test revealed heterogeneity in vitamin A (retinol) 
across all types of epilepsy and focal epilepsy (refer to 
Supplementary Table S5). Significant heterogeneity was observed in 
vitamin C (ascorbate) for generalized epilepsy and Juvenile Myoclonic 
Epilepsy (JME) (p < 0.05 in IVW and MR-Egger regression) (refer to 
Supplementary Table S4). Vitamin E (α-tocopherol) exhibited 
significant heterogeneity across all types of epilepsy, generalized 
epilepsy, focal epilepsy, and focal epilepsy (documented lesion other 
than hippocampal sclerosis) (p < 0.05  in IVW and MR-Egger 
regression) (refer to Supplementary Table S2). Vitamin E 
(γ-tocopherol) showed heterogeneity in generalized epilepsy and 

Juvenile Absence Epilepsy (JAE) (refer to Supplementary Table S3). 
Selenium demonstrated heterogeneity in focal epilepsy (documented 
hippocampal sclerosis) (refer to Supplementary Table S7). 
Additionally, MR-Egger regression revealed no signs of directional 
pleiotropy for any outcomes. After excluding outliers, MR-Egger 
exhibited pleiotropic p-values >0.05 (refer to Supplementary Tables 
S2–S7).

4 Discussion

In our study, we  conducted a two-sample MR analysis to 
investigate the relationship between diet-derived antioxidants and 
epilepsy occurrence. Our findings revealed a clear association between 
genetically increased levels of circulating zinc and epilepsy. However, 
we  did not find significant correlations between epilepsy and 
genetically elevated levels of other common antioxidants, including 
circulating ascorbate, α-tocopherol, γ-tocopherol, carotene, retinol, 
and selenium.

Epilepsy, a neurological disorder characterized by a persistent 
tendency to experience seizures (33), can lead to neuronal death and 
promote further seizures (34–36). Processes involved in 
epileptogenesis include changes in neuroinflammation, synapses, 
neurotransmitters, receptors, oxidative stress, mitochondrial 
dysfunction, cytokine signaling, and apoptosis (37–39). Oxidative 
stress plays a crucial role in epilepsy development, with emerging 
research increasingly supporting a connection between epilepsy and 
heightened production of reactive oxygen species (ROS) production. 
Seizures can trigger the production of reactive oxygen/nitrogen 
species (ROS/RNS), leading to oxidative stress and cellular damage 
(40, 41). At the same time, the production of reactive substances or 
impaired activity of the antioxidant system underlies various forms 
of epilepsy, thus increasing the risk of recurrent seizures (42, 43). 

TABLE 2 (Continued)

Two sample Mendelian randomization Heterogeneity Pleiotropy

Outcome Exposure Method OR (95% 
CI)

p-value Q-statistic p-value Egger 
Intercept

p-value

Weighted 

median

1.02 (1.00–

1.04)
0.048*

MR Egger
1.04 (0.98–

1.10)
0.26

5.72 0.22 0 0.45

Focal epilepsy 

(documented 

lesion other than 

hippocampal 

sclerosis)

Zinc

Inverse variance 

weighted

1.00 (0.99–

1.02)
0.60

2.93 0.71

Weighted 

median

1.00 (0.98–

1.02)
1.00

MR Egger
1.00 (0.96–

1.05)
0.84

2.92 0.57 0 0.95

Generalized 

epilepsy with 

tonic-clonic 

seizures

Zinc

Inverse variance 

weighted

1.00 (1.00–

1.00)
0.82

3.38 0.64

Weighted 

median

1.00 (0.99–

1.01)
0.92

MR Egger
1.00 (0.98–

1.01)
0.95

3.37 0.50 0 0.90

OR, odds ratio; CI, confidence interval. *p-value <0.05.
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Both clinical and experimental studies suggest that oxidative stress 
plays a dual role as both a cause and consequence in the progression 
of epilepsy (5, 6). Elevated levels of oxidative stress biomarkers are 

associated with various models of epilepsy (44). Therefore, inhibiting 
the production of oxidative stress is expected to be a therapeutic 
window of opportunity for seizure prevention.

FIGURE 2

The association between genetically determined diet-derived antioxidants and the risk of all types of epilepsy. Estimated ORs (odds ratio) for the effect 
of per unit increase in vitamin A (retinol), vitamin C (ascorbate), vitamin E (α-tocopherol), vitamin E (γ-tocopherol), carotene, zinc, and selenium on all 
types of epilepsy from an inverse-variance weighted (IVW) analysis. *p-value <0.05.

FIGURE 3

The association between genetically determined diet-derived antioxidants and the risk of generalized epilepsy. Estimated ORs (odds ratio) for the effect 
of per unit increase in vitamin A (retinol), vitamin C (ascorbate), vitamin E (α-tocopherol), vitamin E (γ-tocopherol), carotene, zinc, and selenium on 
generalized epilepsy from an inverse-variance weighted (IVW) analysis. *p-value <0.05.
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Numerous studies have explored the therapeutic potential of 
antioxidant compounds in managing epilepsy. Dietary interventions 
can modify underlying physiological processes and positively impact 
clinical outcomes. Historically, dietary modifications have been 
investigated as potential treatments for epilepsy. Research has 
identified several nutrients with anti-inflammatory or antioxidant 
properties, such as vitamin A, vitamin C, omega-3 fatty acids, 
polyphenols, and carotenoids (45–50). Vitamin E helps to remove 
ROS from the body and protects lipids and proteins from oxidative 
damage (51, 52). It has potential as a continuous adjuvant treatment 
for refractory epilepsy (53, 54). Antioxidant defense mechanisms also 
involve Zinc (Zn2+) (55) and Selenium (Se2+) (56). Unfortunately, only 
a few antioxidant-containing therapeutic interventions have been 
thoroughly studied as supplementary therapy for epilepsy patients, 
and these studies only partially succeeded in evaluating their 
prospective benefits. High-quality data from direct clinical research 
on the application of antioxidants in epileptic patients are scarce.

Our study found that higher blood zinc levels increased the risk of 
seizures in specific epilepsy subtypes, including all types of epilepsy, 
generalized epilepsy, and focal epilepsy (documented hippocampal 
sclerosis). Previous studies suggest that zinc exhibits a biphasic response in 
the central nervous system, with both neurotoxic and neuroprotective 
effects depending on its concentration (57, 58). In epilepsy, zinc shows both 
pro and anti-convulsant effects (58–60). For patients with these three 
seizure types, it is crucial to monitor and manage their blood zinc levels to 
reduce the risk of zinc-induced seizures. Maintaining zinc homeostasis 
appears to contribute to its anti-epileptic effect (61). Moderate zinc levels, 
when combined with traditional anti-epileptic drugs, acts synergistically 
(62). Thus, supplementing with moderate amounts of zinc to maintain 
balanced levels may be  effective (61). However, standardized zinc 

supplement intake and optimal blood zinc concentrations have yet to 
be established. This will be a focus of our future research. Meanwhile, our 
findings suggest that most other diet-derived circulating antioxidants, 
including ascorbate, α-tocopherol, γ-tocopherol, carotene, retinol, and 
selenium, are unlikely to have a causal association with the risk of epilepsy.

4.1 Study strengths

Our study design effectively mitigated residual confounding, 
addressed issues of reverse causality, and strengthened causal inferences 
regarding the associations between exposure and epilepsy. Despite a 
limited number of robust genetic instruments, the study demonstrated 
a strong capacity for investigating causality due to the minimal overlap 
between exposure and outcome data. The current literature on the 
efficacy of diet-derived antioxidants in epilepsy treatment is notably 
limited. Our MR analysis elucidated the enduring impact of elevated 
levels of diet-derived antioxidants, accounting for long-term risks 
unaffected by dietary supplementation. Notably, MR, unlike randomized 
controlled trials (RCTs), does not require direct subject exposure to 
antioxidants, allowing it to be  implemented at any time without 
extensive time and resource demands. This approach also mitigates the 
potential for subjecting individuals to unnecessary risks and harms (63).

4.2 Study limitations

First, Cochran’s Q values in the MR analysis indicated heterogeneity 
for some exposures. Second, due to the statistical limitations of the 
published data we used, we were unable to test for a nonlinear causal 

FIGURE 4

The association between genetically determined diet-derived antioxidants and the risk of focal epilepsy (documented hippocampal sclerosis). 
Estimated ORs (odds ratio) for the effect of per unit increase in vitamin A (retinol), vitamin C (ascorbate), vitamin E (α-tocopherol), vitamin E 
(γ-tocopherol), carotene, zinc, and selenium on focal epilepsy (documented hippocampal sclerosis) from an inverse-variance weighted (IVW) analysis. 
*p-value <0.05.
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association between antioxidant levels and epilepsy. Third, although some 
findings did not show a causal association with epilepsy, we cannot entirely 
exclude the possibility that the effect size was too small for detection. 
Finally, we restricted our analysis to individuals of European ancestry only.

5 Conclusion

This study establishes a significant foundation for evaluating the 
correlation between dietary-derived circulating antioxidants and 
epilepsy. Our study revealed that higher blood zinc levels were associated 
with an increased risk of seizures in specific epilepsy subtypes. However, 
we found no evidence supporting the effects of dietary-derived vitamin 
A, vitamin C, vitamin E and selenium on epilepsy risk in the general 
population. Our future research will focus on further exploring the 
relationship between zinc levels and seizure risk in epilepsy.
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