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Introduction: The rate of neurodegeneration in multiple sclerosis (MS) is

an important biomarker for disease progression but can be challenging to

quantify. The brain age gap, which quantifies the di�erence between a patient’s

chronological and their estimated biological brain age, might be a valuable

biomarker of neurodegeneration in patients with MS. Thus, the aim of this study

was to investigate the value of an image-based prediction of the brain age gap

using a deep learning model and compare brain age gap values between healthy

individuals and patients with MS.

Methods: A multi-center dataset consisting of 5,294 T1-weighted magnetic

resonance images of the brain from healthy individuals aged between 19 and 89

years was used to train a convolutional neural network (CNN) for biological brain

age prediction. The trained model was then used to calculate the brain age gap

in 195 patients with relapsing remitting MS (20–60 years). Additionally, saliency

maps were generated for healthy subjects and patients with MS to identify brain

regions that were deemed important for the brain age prediction task by the

CNN.

Results: Overall, the application of the CNN revealed accelerated brain aging

with a larger brain age gap for patients with MS with a mean of 6.98 ± 7.18

years in comparison to healthy test set subjects (0.23 ± 4.64 years). The brain

age gap for MS patients was weakly to moderately correlated with age at

disease onset (ρ = −0.299, p < 0.0001), EDSS score (ρ = 0.206, p = 0.004),

disease duration (ρ = 0.162, p = 0.024), lesion volume (ρ = 0.630, p < 0.0001),

and brain parenchymal fraction (ρ = −0.718, p < 0.0001). The saliency maps

indicated significant di�erences in the lateral ventricle (p < 0.0001), insula (p

< 0.0001), third ventricle (p < 0.0001), and fourth ventricle (p = 0.0001) in

the right hemisphere. In the left hemisphere, the inferior lateral ventricle (p

< 0.0001) and the third ventricle (p < 0.0001) showed significant di�erences.

Furthermore, the Dice similarity coe�cient showed the highest overlap of salient

regions between the MS patients and the oldest healthy subjects, indicating that

neurodegeneration is accelerated in this patient cohort.

Discussion: In conclusion, the results of this study show that the brain age gap is

a valuable surrogate biomarker to measure disease progression in patients with

multiple sclerosis.
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1 Introduction

Multiple sclerosis (MS) is a chronic demyelinating disease of the
central nervous system. It is characterized by areas of inflammation,
demyelination, and axonal loss in the central nervous system.
White matter (WM) lesions have been considered a hallmark of
MS and are typically visualized and quantified using T2-weighted
magnetic resonance imaging (MRI) tomonitor disease progression.
However, only weak correlations of T2 lesion volume with clinical
impairment have been found so far (1). This has stimulated further
efforts to identify quantitative imaging measures to better monitor
pathological processes and progression of MS with relevance for
clinical presentation but also for treatment effect analyses. Within
this context, it is increasingly recognized that a more widespread
and subtle form of inflammation and degeneration occurs within
the normal-appearing white matter but also within the cortex
and subcortical gray matter (2, 3). Currently approved drugs have
been shown to significantly reduce the frequency of attacks of
the relapsing MS forms and number and volume of lesions but
have shown limited efficacy preventing transition to the progressive
phase and neurodegeneration (4). Thus, the rate and stage of
neurodegeneration rather than the lesion load is becoming more
important when evaluating new drugs.

The rather subtle inflammation and degeneration in the normal
appearing white matter and gray matter can cause significant
brain atrophy, which can be observed even in the earliest stages
of the disease (5). Cerebral atrophy is a common feature of
many neurological diseases and is typically associated with the
loss of neurons and their connections (synapses). Atrophy can
be localized to specific brain regions or occur as a global process
affecting all or most brain areas. It is typically associated with
specific or broad and irreversible neurological and cognitive
impairments. Whole-brain atrophy has emerged as a clinically
relevant biomarker for progression analysis in many diseases,
including MS (6, 7). Within this context, multiple studies have
shown that brain atrophy is better correlated with neurological
and cognitive impairment compared to the lesion number and
volume (8, 9). Thus, in addition to reducing inflammation,
preventing neurodegeneration has become an important treatment
target. Due to this, brain volume measurements are used more
frequently in recent randomized clinical trials to evaluate the
effect of treatment approaches to reduce atrophy. Global and
regional brain volumes can be measured in vivo, for example, using
high-resolution T1-weighted MRI datasets employing automatic
image analysis methods (10). A common approach to segment
different structural or functional brain regions is to use an
atlas-based approach, in which an atlas with a known brain
parcellation is registered non-linearly to a specific subject dataset.
After registration, the structural or functional atlas brain regions
can be transformed to the patient anatomy. Simple volume
quantification derived from cross-sectional data, however, cannot
be used to determine the current atrophy stage or rate directly,
since atrophy refers to a volumetric change due to cell loss
over time.

Moreover, changes in brain volume do not only occur due
to MS, as normal aging, lifestyle factors, genetic predisposition,
and other pathophysiological diseases also affect brain volumes
and lead to atrophy (11). As a result, atrophy trends are seen

across one’s lifespan, but can show considerable inter-subject
variability (12).

The so-called brain age gap (BAG) may be a sensitive,
comprehensive, and therefore better alternative to calculating
regional brain volumes for obtaining an understanding of the
general brain health and cumulative effect of diseases like MS (13).
The BAG denotes the difference between the chronological age
and the biological age predicted using machine learning methods
based on brain imaging data. Typically, machine learning models
for brain age prediction are trained using high-resolution T1-
weighted MRI datasets directly or tabulated imaging data from a
large number of healthy subjects covering the full age spectrum.
Within this context, it has already been reported that the biological
brain age of patients with MS is considerably older compared to
their true chronological age when using a brain age prediction
machine learning model based on extreme gradient boosting (14,
15), ordinary least squares regression (16), or Gaussian processes
regression (17, 18). However, most previously described studies
that investigated the BAG inMS patients only employed traditional
machine learning models based on tabulated or numerical data
extracted from images. More recently, studies have investigated the
effect of MS on brain age prediction using MRI datasets as direct
input for a deep learning model based on convolutional neural
networks (CNNs) (18–20). However, none of these studies used
explainable artificial intelligence (AI) methods to identify which
areas of the images actually contribute to the increased BAG and
thus may be important targets for the development of new drugs
and treatments.

Therefore, this study aimed to predict the brain age gap in an
MS population by training an explainable deep learning model on
a large multi-cohort database of T1-weighted MRI datasets from
healthy subjects. Saliency maps were then generated and used to
identify the most important brain regions that contribute to the
prediction of the biological brain age for healthy subjects and MS
patients. Finally, the Dice coefficient was calculated to compare the
saliency maps between different age groups.

2 Materials and methods

2.1 Datasets

For this research study, cross-sectional T1-weighted MRI scans
from healthy subjects were retrieved from different databases
acquired in various centers around the world. More precisely, five
databases containing a total of 5,324 MRI scans from healthy adults
(2,914 females, 2,410 males), aged 19–89 years, were used in this
work, including the Study of Health in Pomerania (SHIP) (23),
Information eXtraction from Images (IXI),1 Southwest University
Adult Lifespan Dataset (SALD) (24), Dallas Lifespan Brain Study
(DLBS),2 and Open Access Series of Imaging Studies (OASIS-
3) (25). For these studies, all subjects were classified as healthy
based on varying criteria, e.g., no neurodegenerative or neurological
diseases, no brain pathologies, and normal cognitive function (26).
For the MS dataset, MRI scans of 201 patients with relapsing

1 https://brain-development.org/ixi-dataset/

2 http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html
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remitting multiple sclerosis (RRMS) (148 females, 53 males), aged
20–60 years were available and used in this work. The inclusion
criteria for the healthy subjects and the MS patients can be found in
Table 1. The MRI scans and associated demographic data of the MS
patients were originally acquired in the Pilot Trial of Domperidone
in RRMS (clinicaltrials.gov identifier NCT02493049). Participants
also consented to participate in an observational study that
permitted use of their images, demographic, and clinical data for
this analysis (The Clinical Impact of MS: University of Calgary
Ethics ID REB 14-1926). The demographics and scanning details
of all included data can be found in Table 2.

2.2 Data preprocessing

All T1-weighted MRI datasets were preprocessed using
the publicly available Advanced Normalization Tools (ANTs)
software.3 For bias field correction, the N4-bias algorithm was
applied in a first step (27). Next, each MRI scan was spatially
normalized to the MNI brain atlas using an affine registration,
which preserves the specific local brain morphology for each

3 http://stnava.github.io/ANTs/

TABLE 1 Inclusion criteria of the datasets included in this work.

Database Inclusion criteria

SHIP No known pathologies in T1 scans

No awareness of the presence of any neurodegenerative
disease

IXI All subjects were healthy without any known disease

SALD No known psychiatric or neurological disorders

DLBS All participants underwent cognitive testing and were rated as
having normal cognitive function (mini-mental state exam
score of 26 or above)

OASIS-3 All participants underwent cognitive testing and had a clinical
dementia rating scale score of 0 at the time of imaging

RRMS Patients recruited in MS Clinic in Alberta, Canada

Main inclusion criteria:
• Confirmed MS according to the McDonald criteria (21)
• Confirmed diagnosis of RRMS according to Lublin et al. (22)
• On treatment with disease-modifying therapy for at least 6

months

subject (28). Using a binary mask, all datasets were skull-stripped
to remove any non-brain tissue from the imaging data, which is
not of interest and can negatively affect the subsequent analyses
if not removed. For this, the binary mask available in atlas space
was non-linearly transformed. This non-linear transformation was
calculated for each subject by mapping the MNI brain atlas to each
MRI scan. After skull-stripping, the intensities of the brain image
were rescaled to a zero mean, to ensure that the intensity range
of each image is comparable, even across studies (29). Finally, all
MRI scans were cropped as much as possible without removing
any brain information. By removing all unnecessary background
voxels across the population, the size of the transformed images
was reduced from 182 × 218 × 182 voxels to 162 × 198 × 164
voxels, thereby considerably reducing computational costs in the
following steps.

After applying all preprocessing steps, the final datasets were
visually inspected, and subjects were excluded when skull stripping
failed, when a motion artifact was present, or when registration
results were not deemed suitable.

2.3 Prediction of biological brain age

The prediction of the biological brain age was performed by
training a CNN model, with a healthy training set as input, for
whom we assumed that the biological brain age is equal to the
chronological age. The model used for this purpose in this work
is based on the Simple Fully Convolutional Network (SFCN)
described by Peng et al. and the CNN architecture presented in
Mouches et al. (29, 30). The complete model used in this work
consists of seven blocks (Figure 1). The first five blocks all contain a
3-dimensional 3× 3× 3 convolutional layer, a batch normalization
layer, a 2 × 2 × 2 max pooling layer, and ReLu activation function
(30, 31). These blocks contain 32, 64, 128, 256, 256, and 64 filters.
After that, a block was added containing a 3-dimensional 1 × 1
× 1 convolutional layer, a batch normalization layer, and a ReLu
activation function with 64 filters. The final block of the model
contains an average pooling layer, a dropout of 0.5, and a dense
layer with a linear activation to return the predicted brain age as
the final output value.

All included healthy subjects were split into training, validation,
and testing sets in the ratio of 75/22.5/2.5%. The allocation of
the subjects to the three sets was conducted with age and sex
as stratification criteria, to generate similar distributions of the

TABLE 2 Demographics and scanning details of the datasets included in this work.

Database No. of patients Sex (M/F) Age range Mean age + SD Type of scanner Resolution (mm)

SHIP 3,215 1,555/1,660 21–89 52.55± 13.71 Siemens 1.5T 1.0× 1.0× 1.0

IXI 560 250/310 20–86 48.62± 16.50 Philips 1.5T & 3T
GE 1.5T

0.9375× 0.9375× 1.2
0.9375× 0.9375× 1.2

SALD 494 187/307 19–80 45.18± 17.44 Siemens 3T 1.0× 1.0× 1.0

DLBS 314 117/197 21–89 54.53± 20.05 Philips 3T 1.0× 1.0× 1.0

OASIS-3 741 301/440 45–89 68.04± 8.90 Siemens 1.5T & 3T 1.0× 1.0× 1.25

RRMS 201 53/148 20–60 44.40± 8.88 GE 3T 1.0× 1.0× 1.0
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FIGURE 1

The architecture of the CNN for predicting brain age using

3-dimensional T1-weighted MRI scans as input and returning the

biological brain age in years as output.

included data for each set. To reduce the risk of overfitting
of the model, data augmentation was ranomly applied to 50%
of the training data using ±5 voxel random translations (29).
The final model was trained with 300 epochs, making use of
the Adam optimizer with a learning rate of 0.001, a weight
decay of 0.0003, and a batch size of 8, which was also used by
Mouches et al. (29). During the training process, the validation
set was used to determine the best mean absolute error (MAE),
used for optimizing the weights for the final model. The
remaining 2.5% of the data from healthy subjects was used as a
small test set to perform an accuracy evaluation by calculating
the MAE.

2.4 Brain age gap estimation in MS patients

After the CNN model was trained and the optimal weights
were found using the data from the healthy subjects, the model
was used to predict the biological brain age of all available MS
patients (not used at any point for the model development). Next,
the difference between the chronological and the biological brain
age was computed (i.e., brain age gap) for each subject.

2.5 Saliency maps

To identify the most predictive regions for this brain age
prediction task, the SmoothGrad method was used to create
gradient-based saliency maps for the healthy individuals used in
the test set as well as for all available patients with MS (32).
The SmoothGrad method creates the saliency map by assigning
a certain importance to each voxel of an MRI image. Next, each
saliency map was transformed non-linearly to the MNI brain atlas
and then linearly mapped to an intensity range of [0, 255].

For a quantitative comparison of the final saliency maps
between the healthy individuals and MS patients, noise was
removed from the saliency maps (33). This was achieved by
thresholding out the bottom 5% of voxel intensity values. For each
raw saliency map, a weighted saliency score was computed for
each brain region as defined in the CerebrA atlas (28). This score
was calculated as described by Stanley et al. (33) by computing
a saliency score as the percentage of non-zero intensity voxels
for each brain region. Since higher intensity values reflect more
important regions, the saliency score is corrected by multiplication
with a weighting factor. This factor was calculated by computing
the average intensity value in each brain region for each saliency
map and scaling these mean intensities to a range of [0, 1] using
min-max scaling. The higher the saliency score, themore important
the region is assumed to be for an individual in predicting brain age.

As a final evaluation, the Dice similarity coefficient was
calculated to measure the overlap between the binary saliency map
of the healthy subjects and those of the patients with MS for the
four age groups. For each of the age groups 30–39, 40–49, and
50–59, the saliency maps of twenty randomly selected subjects (10
males and 10 females) were averaged. Due to the low number of
individuals within the age group below 30, only 10 subjects could
be included consisting of five males and five females. After each
thresholded saliency map was transformed into a binary map, the
Dice coefficient was calculated for each comparison.

2.6 Statistics

Basic brain volume measurements were computed for each
patient with MS for the purpose of correlation analyses. Therefore,
the Sequence Adaptive Multimodal SEGmentation (SAMSEG) tool
from the FreeSurfer package (V.7.4.1) was used (34). This tool
enables the quantification of the overall lesion volume (in ml) as
well as the volume of regional brain volumes (in ml). The global
white matter volume was calculated by combining the regional
cerebral white matter volumes. Likewise, the global cortical gray
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TABLE 3 Patient characteristics of multiple sclerosis cohort.

Variable Median [1st–3rd quartile]

Age (years) 45.00 [38.00–51.20]

Age at onset (years) 31.90 [26.60–38.45]

EDSS score 2.00 [1.50–3.00]

Disease duration (years) 10.20 [5.30–17.25]

Treatment duration (years) 2.20 [1.10–3.30]

Lesion volume (ml) 1.05 [0.19–3.31]

Normalized lesion volume (%) 7.80e-04 [1.34e-04–2.25e-03]

Cerebral white matter volume (ml) 387.96 [360.31–421.82]

Normalized cerebral white matter
volume (%)

0.257 [0.248–0.266]

Cortical gray matter volume (ml) 462.70 [429.34–497.87]

Normalized cortical gray matter
volume (%)

0.307 [0.299–0.316]

Subcortical gray matter volume
(ml)

51.53 [48.61–55.04]

Normalized subcortical gray
matter volume (%)

0.034 [0.033–0.036]

Total gray matter volume (ml) 609.77 [571.76–655.75]

Normalized total gray matter
volume (%)

0.406 [0.394–0.420]

Brain parenchymal fraction 0.68 [0.66–0.70]

Disease-modifying
therapy (DMT)

Name Count

Aubagio 7

Avonex 3

Betaseron 3

Copaxone 37

Gilenya 62

Minocycline 4

Plegridy 3

Rebif 14

Tecfidera 68

matter volume was calculated by combining all cortical gray matter
volumes, while the global sub-cortical gray matter volume was
calculated by combining all corresponding regional deep gray
matter brain volumes. These brain volumes were normalized by
dividing them by the estimated intracranial volume (eTIV). Finally,
the brain parenchymal fraction (BPF) was calculated as the sum of
the white matter volume and the total gray matter volume (cortical
and subcortical gray matter) and was divided by the eTIV.

Statistical analyses were conducted using R (version 4.3.1).
The Mann–Whitney U-test was used to determine statistically
significant clinical variables that affect the brain age gap in MS
patients. Furthermore, Spearman’s correlation coefficient (ρ) was
calculated to discover any link between clinical variables and
global brain volume variables and the BAG in the MS cohort.
Additionally, a partial correlation was calculated to determine the

TABLE 4 Model accuracy for biological brain age prediction of healthy

test subjects and MS patients.

Dataset Mean absolute error
(SD)

Mean BAG (SD)

Healthy 3.67 (2.83) 0.23 (4.64)

MS 7.98 (6.03) 6.98 (7.18)

TABLE 5 Model performance for biological brain age prediction of

healthy test subjects per database.

Database No. of
subjects

Mean absolute error
(SD)

SHIP 160 3.62 (2.71)

IXI 27 3.90 (3.14)

SALD 22 3.57 (3.34)

DLBS 17 3.70 (3.67)

OASIS-3 36 3.80 (2.46)

degree of association between the BAG as the dependent variable
and clinical and global brain volume variables as independent
variables while controlling for chronological age and sex with the
exception of the age at onset variable only being controlled for
sex. Statistically significant differences in salient regions between
healthy individuals and MS patients were computed using the
Mann–Whitney U-test. Because there were 102 brain regions
analyzed between the two groups, correction for multiple testing
was applied to compensate for rejecting the null hypotheses by
chance. This was done using the Bonferroni correction (35). For
all tests, statistical significance was considered for α < 0.05.

3 Results

3.1 Data inclusion

After preprocessing the datasets, a total of 30 healthy subjects
were excluded because of deformations or incorrect skull-stripping
or registration results. Additionally, six scans from patients with
MS had to be removed because of inaccurate skull-stripping or
severe motion artifacts. As a result, a final number of 5,294 healthy
subjects (2,899 females, 2,395 males) and 195 patients withMS (146
females, 49 males) were included in this work. A detailed overview
of the clinical characteristics and global brain volume variables of
the MS dataset can be found in Table 3.

3.2 Prediction of biological brain age

Table 4 shows the mean absolute error (MAE) and the BAG of
the trained model when tested using data from the held out healthy
subject test set and all patients with MS. Overall, the brain age
prediction model achieved an MAE of 3.67 years for the healthy
subjects, which is within the range of reported values in previous
research (26, 29). For the five different studies individually, a
comparable MAE range of 3.57–3.90 years was achieved, as shown
in Table 5. For the MS patients, the MAE was found to be

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2024.1423485
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Romme et al. 10.3389/fneur.2024.1423485

FIGURE 2

Bland-Altman plots of the model tested on (top) healthy subjects

and (bottom) MS patients. The plots compare the true and predicted

age by visualizing the mean true age in years (x-axis) and brain age

gap in years (y-axis) between the true and predicted age.

considerably higher compared to the healthy data (MAE = 7.98
years), indicating that the biological brain age for MS patients
differs more from their chronological age than it does for the
healthy subjects. More precisely, applying the trained model to
patients with MS led to a mean BAG of 6.98 years (SD = 7.18)
compared to 0.23 years (SD = 4.64) for healthy subjects.

Figure 2 shows the Bland-Altman plots visualizing the
performance of the trained deep learning model on the dataset
from healthy subjects (Figure 2 top) and MS patients (Figure 2
bottom). The Bland-Altman plot displays the mean of the
true chronological and predicted age on the x-axis and the actual
difference between these two ages on the y-axis. The plot for theMS
subjects indicates a wider 95% confidence interval of the data with
a distribution toward a higher difference (–7.05; 21.01) compared
to the healthy subjects (–8.84; 9.31), indicating that the predictions
of the brain age for patients with MS were predominantly older
than their true age with a larger variability. Figure 3 shows the
distribution of the BAG in years for the MS cohort. In total, eleven
patients showed a BAG below zero, indicating a younger-appearing
brain. Table 6 shows the characteristics of the MS patients with a
younger-appearing brain and those from the MS patient cohort
with a BAG equal to or above zero. This overview shows that the
chronological age, the age at disease onset, and EDSS score are
significantly different between these two groups.

The univariate correlation analysis comparing the BAG of
the whole MS cohort shows weak to moderate but significant
correlations with age at disease onset (ρ = –0.315, p < 0.0001),
normalized lesion volume (ρ = 0.586, p < 0.0001), normalized
cerebral WM volume (ρ = –0.512, p < 0.0001), normalized cortical

FIGURE 3

Distribution of brain age gap in years for the MS cohort.

TABLE 6 Clinical characteristics of MS patients with a BAG <0 and those

of MS patients with a BAG above or equal to zero (≥0) are shown as the

median and the interquartile range (IQR), calculated as the third quartile

minus the first quartile.

Variable BAG <0
median
[IQR]

BAG ≥0
median
[IQR]

p-value

Chronological brain age 49 [6.5] 43 [14] 0.003

Age at disease onset 37.8 [11.6] 31.3 [11.9] 0.005

EDSS score 1.5 [1] 2 [1.5] 0.006

Disease duration 9.6 [12.2] 10.3 [12] 0.908

Treatment duration 2 [1.6] 2.2 [2.2] 0.473

The rightmost column shows the p-value of the Mann–Whitney U-test used to calculate

statistical differences between the two groups.

GM volume (ρ = –0.436, p < 0.0001), normalized subcortical GM
volume (ρ = –0.479, p < 0.0001), normalized total GM volume
(ρ = –0.468, p < 0.0001), and BPF (ρ = –0.559, p < 0.0001;
see Table 7). No statistically significant correlations were found
between the BAG and any other clinical variable investigated.
The partial correlation analysis revealed a significant correlation
between the BAG and the age at disease onset (ρ = –0.299, p <

0.0001) when controlled for sex. For the other clinical variables,
significant correlations were found for EDSS score (ρ = 0.206,
p = 0.004) and disease duration (ρ = 0.162, p = 0.024) when
controlled for chronological age and sex. All global brain volume
variables investigated were significantly correlated with BAG when
controlled for chronological age and sex; normalized lesion volume
(ρ = 0.630, p < 0.0001), normalized cerebral WM volume (ρ = –
0.516, p < 0.0001), normalized cortical GM volume (ρ = –0.647,
p < 0.0001), normalized subcortical GM volume (ρ = –0.534, p <

0.0001), normalized total GM volume (ρ = –0.713, p< 0.0001), and
BPF (ρ = –0.718, p < 0.0001).

3.3 Saliency maps

Figure 4 shows an axial and a coronal slice of T1-weighted
MRI brain images and corresponding saliency maps of two selected
healthy subjects and two selected MS patients used for brain age
prediction. The predicted biological brain age is close to the original

Frontiers inNeurology 06 frontiersin.org

https://doi.org/10.3389/fneur.2024.1423485
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Romme et al. 10.3389/fneur.2024.1423485

TABLE 7 Univariate and partial correlation using Spearman’s rank correlation coe�cient (ρ) between the brain age gap and clinical characteristics and

global brain volume variables for the MS cohort.

Univariate Partial

Variable ρ p-value ρ p-value

Age at disease onset –0.315 <0.0001 –0.299a <0.0001

EDSS score 0.140 0.051 0.206b 0.004

Disease duration 0.029 0.691 0.162b 0.024

Treatment duration 0.003 0.961 0.011b 0.875

Normalized lesion volume 0.586 <0.0001 0.630b <0.0001

Normalized cerebral white matter volume –0.512 <0.0001 –0.516b <0.0001

Normalized cortical gray matter volume –0.436 <0.0001 –0.647b <0.0001

Normalized subcortical gray matter volume –0.479 <0.0001 –0.534b <0.0001

Normalized total gray matter volume –0.468 <0.0001 –0.713b <0.0001

Brain parenchymal fraction –0.559 <0.0001 –0.718b <0.0001

aCorrected for effect of sex.
bCorrected for effect of chronological age and sex.

FIGURE 4

Age-specific T1-weighted MRI with and without saliency maps from an axial and a coronal view of two healthy subjects and two MS patients. The red

arrow indicates a patient-specific region with brain atrophy caused by neurodegeneration.
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FIGURE 5

A lesion is visible as a black hole on the left. The corresponding saliency map is shown in the right image (same color scale as Figure 4).

chronological age for the healthy subjects and for the MS patient
with a predicted age of 38.1. The MS patient shown on the right
has a chronological age of 37 but is predicted to be the same
age as the older healthy subject with an age of 54. The saliency
maps indicate that the trained model focuses on the brain regions
corresponding to the ventricles, particularly the lateral ventricles.
The gyri are also deemed important by the CNN model for each
subject, with the region around the right temporal gyrus showing
high saliency values. There are also several sulci that are highlighted
in the saliency maps.

The top regions in these maps are defined by the highest
weighted saliency scores. Comparing the saliency map of the MS
patient, who is estimated to be 17 years older than their true
age, with the other saliency maps, it becomes apparent that the
saliencymap ismore comparable to the 54-year-old healthy subject.
This similarity is also observed in the size of the ventricles, as
seen in the T1-weighted MRI slices. In addition, a region that
is not found in the other saliency maps but is present in the
age-overestimated patient with MS is the region indicated by the
red arrow, corresponding to a region of the brain that is highly
affected by neurodegeneration. Figure 5 shows a sagittal slice of
the MS patient that is predicted to be almost as old as their true
age. A black hole is visible on this slice, which corresponds to a
chronic lesion. Although this lesion is highlighted in the saliency
map, the importance is rather small and has no large effect on the
prediction of the model as its biological brain age is close to its
chronological age.

The Mann–Whitney U-test was used to compare the weighted
saliency scores for each brain region between all healthy subjects
and MS patients between the chronological ages of twenty and
sixty. To account for multiple testing, a finding was considered
significantly different with α = 0.05/102 (p < 0.00049). The 10
most important brain regions for the prediction model, according
to the average magnitude of the saliency scores of the healthy
testing group, are presented in Table 8. A complete overview
of the significance values of all brain regions can be found in
Supplementary Table 1. Table 8 shows that the most important
regions for the biological brain age prediction task are significantly
different between the healthy group and MS group, except for
the left lateral ventricle (p = 0.001), left caudate (p = 0.002),
and the left side of the fourth ventricle (p = 0.136). The most

TABLE 8 p-values of Mann–Whitney U-test with multiple testing

correction for saliency map comparison of the 10 most important regions

for brain age prediction.

Region Bonferroni
corrected p-value (p

< 0.00049)

Lateral ventricle R <0.0001

Insula R <0.0001

Inferior lateral ventricle L <0.0001

Third ventricle R <0.0001

Third ventricle L <0.0001

Transverse temporal R <0.0001

Fourth ventricle R 0.00014

Lateral ventricle L 0.00112

Caudate L 0.00201

Fourth ventricle L 0.13566

A p-value < 0.00049 indicates statistical significance (in bold).

significantly different region found is the lateral ventricle in the
right hemisphere. Figure 6 shows the age dependence of these 10
brain regions for both healthy subjects andMS patients, subdivided
into four age groups (<30, 30–40, 40–50, 50–60). This analysis
demonstrated higher scores for the majority of these regions for the
older age subgroups of both healthy and MS, with a lower overall
score for the MS subgroups, except from the fourth ventricle.

The overlap of a saliency map from healthy subjects and one
from the MS patients can be calculated by the Dice similarity
metric, in which a value of one reflects perfect overlap. This
coefficient was determined by comparing the averaged and
binarized saliency map of each healthy subgroup and MS subgroup
and is plotted in Figure 7. Overall, the Dice similarity coefficients
range from 0.83 to 0.93, with the lowest overlap found between
the saliency maps of the younger healthy subgroups and the older
subgroups of MS. The highest Dice coefficient, reflecting the largest
overlap, was found between the 40–49 and 50–59 age groups of
healthy subjects and the 30–39 age group of patients with MS.
Calculation of the overlap between an MS subgroup and an older
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FIGURE 6

Age dependence of the 10 most important brain regions for brain age prediction for each age subgroup of healthy subjects and MS patients.

FIGURE 7

Dice coe�cient for the overlap of each averaged saliency map of

the age groups of healthy and MS.

healthy subgroup resulted in a higher Dice coefficient compared to
the overlap with the healthy subgroup of the same age range. The
oldest two healthy subgroups led to the highest Dice coefficients for
all MS subgroups.

4 Discussion

In this study, a deep learning model was trained to predict the
biological brain age based on structural T1-weighted brain MRI
datasets and applied to patients with MS to gain insights into the
structural differences of the brain in this patient cohort compared
to healthy individuals using explainable AI methods. Training the
model on a large number of healthy subjects and testing the trained

network on both healthy subjects and MS patients revealed a
higher variability between the true and predicted brain age in MS
patients than in healthy subjects. The brain age gap was only weakly
to moderately correlated with other clinical or global volumetric
brain measurements. In addition, the most predictive brain regions
responsible for individual brain age predictions were identified by
saliency maps. An additional comparison was made by calculating
the overlap of the average saliency maps between different age
groups. By carrying out these steps on both the patients with MS
and the healthy subjects, clinically feasible differences between the
two groups were found to exist.

The average brain age gap of 6.98 ± 7.18 years found for the
MS patients is considerably higher than the brain age gap found
for healthy subjects (0.23 ± 4.64 years). These findings suggest
that our proposed brain age prediction model could be used as a
biomarker for revealing accelerated brain aging in the group of MS
patients and is in agreement with previous deep learning research
investigating the biological brain age in MS (18–20). For example,
Schulz et al. (19) computed an MAE of 6.18 ± 4.83 when applying
the DeepBrainNet model for brain age prediction in a cohort of
MS patients. The predicted BAG was 10.08 ± 8.99 for MS patients
and 3.95 ± 6.82 for healthy subjects (19). The CNN model used in
that study was pre-trained on 11,729 healthy subjects and used the
median age of all predictions across eachMRI-slice as the predicted
brain age, which is a significant difference from the CNN model
developed in this work, which uses the full 3D spatial information
(19). Moreover, their dataset also included secondary-progressive

MS patients, which may contribute to the increased brain age gap

as this group was also predicted older in a study by Cole et al. (36).
Within the study ofWei et al. (20), a BAG of 13.09± 14.7 was found

for the MS subjects when using a SFCN with a BAG of 0.8± 6.2 for
the healthy controls. A potential reason for this discrepancy can

be the use of a more advanced patient cohort (20). However, none

of the previous studies used explainable AI methods to investigate

what brain regions differ between the patient cohort and healthy

subjects and may be new treatment targets of interest.
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The comparison between the MS patients with a younger-
appearing brain (BAG < 0) and all other MS patients showed a
statistical difference for some clinical variables. It was found that
the group with a BAG below zero was older (p = 0.003) and
developed MS at a later age (p = 0.005). Furthermore, this group
also had a slightly better EDSS (p = 0.006). The associations between
a younger-appearing brain and the age at onset and EDSS were
also reported by Brier et al. (18). However, when computing the
correlation coefficient between the BAG and clinical variables in the
whole MS cohort, the EDSS score was not significantly correlated
with BAG (ρ = 0.140, p = 0.051). In contrast, Wei et al. (20) did find
a significant correlation between EDSS worsening and BAG, but
with a median EDSS score of 3.5 [3] for their RRMS group, which is
higher than the EDSS score of theMS cohort used in our study (2.00
[1.50]). Nevertheless, the association became significant (ρ = 0.206,
p = 0.004) when the partial correlation between EDSS score and
BAG was calculated with correction for the effect of chronological
age and sex. Moreover, the partial correlation did show a weak,
but significant, correlation between the age at disease onset and
the BAG (ρ = –0.299, p < 0.0001) when corrected for sex and
between the disease duration and the BAG (ρ = 0.162, p = 0.024)
when corrected for chronological age and sex. This is in line with
a study of Cole et al. (36) that described a relation between higher
BAG values and a higher EDSS score, a longer disease duration,
and a younger age at diagnosis. Furthermore, the partial correlation
also revealed significant but only moderate correlations for the
normalized lesion volume (ρ = 0.630, p < 0.0001), cerebral WM
volume (ρ = –0.516, p < 0.0001), cortical GM volume (ρ = –0.647,
p < 0.0001), subcortical GM volume (ρ = –0.534, p < 0.0001),
total GM volume (ρ = –0.713, p < 0.0001), and brain parenchymal
fraction (ρ = –0.718, p < 0.0001). While this indicates moderate
correlations between the brain age gap and an increase in lesion
volume and a decrease in BPF, which is related to brain atrophy, it
also suggests that the brain age gap is a composite score that takes
into account various MS pathologies, including the lesion load and
global and local atrophy patterns. Overall, these results suggest that
the BAG is indeed suitable as a disease biomarker beyond simple
brain volumes and lesion loads.

The saliency maps for healthy and MS subjects revealed that
the model trained on a healthy aging baseline focuses especially on
brain regions affected by atrophy. This is supported by findings of
the Dice coefficient showing that the saliency maps of the oldest
groups of healthy subjects, who experienced more normal brain
atrophy, had the biggest overlap with the saliency maps of the
MS subjects (12). Even the MS subjects with the youngest age
range had a bigger overlap with older healthy subjects compared
to healthy subjects in the same age range. When investigating the
most important regions used for the prediction of the biological
brain age, it was found that these were located around the lateral
ventricles and the third and fourth ventricle. Of these regions, the
third ventricle showed a significant difference in saliency score
between the test subjects and the patient cohort, as did the lateral
ventricle in the right hemisphere and the inferior lateral ventricle in
the left hemisphere. Other important regions that were significantly
different between the groups were the right insula and the right
transverse temporal gyri. The importance of the ventricles and the
involvement of the right temporal lobe in healthy aging is in line

with the findings of Scahill et al. (37). The focus on the ventricles of
MS patients as well is in agreement with the finding of significant
atrophy around the ventricles in RRMS patients (38). Another
study found a positive increase in lateral and third ventricle size
(39). Interestingly, Simon et al. showed greater enlargement of these
ventricles during longitudinal assessment when patients entered
the study with enhancing lesions (39). The fourth ventricle was
also found to be an important region for healthy brain aging,
but did not appear to differ significantly between the MS patients
and the healthy cohort. One explanation for this finding might
be the inclusion of only RRMS patients, whereas the right fourth
ventricle was previously found to be a region of significant atrophy
in patients with secondary-progressive MS (38). Nonetheless,
the fourth ventricle was more important for each age group
in the MS cohort, with higher saliency scores compared to the
corresponding healthy age group. The saliency maps in our study
also indicate a significant difference in importance of the right
insula between the healthy and MS subjects, which is a region that
was also indicated in previous studies, where the left insula showed
significant atrophy in MS patients (38). Nevertheless, our study
did find statistical differences for both, the left and right insula
(see Supplementary Table 1), but with the left insula being less
important for the brain age prediction task. Although the saliency
maps showed similar foci of the model in comparison with other
studies and revealed regions with significant importance scores for
MS patients, it is not possible to make a statement about the exact
causes that result in a bigger brain age gap for these MS patients.
Therefore, a future task is to identify in which way the differences
between the brain regions affect the predictions of healthy subjects
and MS patients in more detail. With this, brain age predictions
may be explainable for each individual.

Overall, the biological brain age prediction model that was
trained and evaluated in this study achieved an MAE of 3.73 years.
Previously reported MAEs range from 2.9 to 5 years for healthy
brain age prediction using conventional machine learning methods
(20). Although our MAE value is within the range of conventional
methods, it is not as low as some of the more recent deep learning-
based models. However, there are considerable differences in the
data used to test and train those networks as well as a few notable
technical differences. For example, the data used in Peng et al. (30)
and Wei et al. (20) had a much narrower age range and used a
single imaging protocol. Interestingly, our current study used a
more robust dataset that included multiple databases compared
to a study of Mouches et al. that used only the SHIP database as
input, which was also used in this work. Of all SHIP data, only
a sample size of 2,074 was used in that study because subjects
had to have both good quality T1-weighted and time-of-flight
angiography images. This subset of subjects resulted in a slightly
worse MAE of 4.01 years (29). When using the same selection of
databases and a similar algorithm, an MAE of 3.79 years was found
by Wilms et al. (26). Since they used a different pre-processing
pipeline, which included the HD-BET algorithm for skull-stripping
(40) and the SRI24 template for image registration (41), it may be
argued that the pre-processing pipeline does not have a significant
effect on the final accuracy of the model. Further limitations that
should be acknowledged were the use of five different databases
to train the brain age prediction model, which all assumed to
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include neurologically healthy subjects, although different criteria
were used for the definition. Also, the five databases acquired the
data using different MRI scanners, which can affect the prediction
and may lead to bias (42). However, our study demonstrated a
comparable mean absolute error for each database, and previous
research has found high reliability between scanners. Therefore,
the use of multiple scanners can increase generalizability and make
this approach more robust (36). Next, the majority of the healthy
subjects were part of the SHIP database, which may result in a
bias in the brain age prediction model. Moreover, the prediction of
brain age can also be affected by other health issues and lifestyles,
like smoking, blood pressure, and the use of alcohol (43). As these
factors may contribute to the outcome of the baseline of the model
but also to the individual predictions of both healthy subjects and
MS patients, a correction could be added to the prediction of the
BAG in future research. Additionally, the BAG was not corrected
for possible over- and underestimations that can occur for the
most extreme age ranges (16). Furthermore, it may be interesting
to investigate how highly elevated BAGs differ in any parameter
that could have a protective effect. Another issue that needs to
be addressed is the rather small sample size of our MS cohort
(n = 195). Nevertheless, our sample size is comparable to the
study of Wei et al. (20) (n = 200) who used an SFCN as well.
Additionally, it needs to be emphasized that the MS cohort was
not used during the training of the model, so that the BAG could
be calculated for all MS patients in this cohort using the same
model trained on healthy data only. Although our findings are
in line with previous literature, the algorithm proposed in this
paper should be validated in other cohorts to verify the findings
of both the BAG and the saliency maps. Lastly, this study did not
directly distinguish between sexes. After pre-processing, the final
ratio of healthy males and females in the control group was 45.3%
vs. 54.7%, compared to 26.4% males and 73.6% females for the
MS cohort. Although the MS cohort has an imbalanced sex ratio,
training of the model was only done using healthy subjects with
data splitting for training/validation/testing based on age and sex as
stratification criteria. However, when analyzing differences between
the healthy subjects and the MS patients, a solution is to age-match
and sex-match the healthy test group with the MS patients, as was
done by Wei et al. (20). No further analyses have been done to
compare differences between the outcomes in men and women,
but as the imbalanced ratio does not affect the behavior of the
model, sex and age were used as confounders when performing
partial correlation analyses of the brain age gap. Furthermore, as it
was found in other studies that brain volumes differ between men
and women, with the ventricles having a larger volume in men,
it may be interesting to compare the saliency maps between the
sexes (37).

To be able to make additional contributions to the field
of personalized medicine (44), it is inevitable to further
extend this research as it was limited by the use of only
single time point T1-weighted MRI scans. Thus, to improve
the performance of this model, it is necessary to include
longitudinal data to train the model to differentiate between
patient-specific brain changes. This is important as the
clinical course can vary significantly among individual
patients (4). In addition to inter-patient variability,
longitudinal data can be used to train the model to recognize

ubiquitous differences between the clinical course of specific
brain regions.

In conclusion, this study revealed that a deep learning model
trained for biological brain age prediction predicts an accelerated
brain aging in MS patients. More precisely, it was found that the
lateral ventricles and the third ventricle, and the insula and gyri
in the right hemisphere specifically are highly important for the
brain age prediction task with a significant difference between
MS and healthy subjects, which is in line with current clinical
knowledge. The saliency maps showed that the model focused on
the regions affected by neurodegeneration resulting in a larger
similarity between MS patients and the healthy subjects who are
older. Also, the predicted brain age gap was weakly associated with
a younger age at disease onset, EDSS score and disease duration, but
moderately correlated with a higher lesion volume and lower brain
parenchymal fraction. Overall, the results of this work show that
the proposed model was able to learn meaningful features from the
images that improve our knowledge about specific regions affected
by MS that may be potential targets for drug therapy.
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