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Seizures have a profound impact on quality of life and mortality, in part because 
they can be challenging both to detect and forecast. Seizure detection relies 
upon accurately differentiating transient neurological symptoms caused by 
abnormal epileptiform activity from similar symptoms with different causes. 
Seizure forecasting aims to identify when a person has a high or low likelihood 
of seizure, which is related to seizure prediction. Machine learning and artificial 
intelligence are data-driven techniques integrated with neurodiagnostic 
monitoring technologies that attempt to accomplish both of those tasks. In 
this narrative review, we  describe both the existing software and hardware 
approaches for seizure detection and forecasting, as well as the concepts for 
how to evaluate the performance of new technologies for future application in 
clinical practice. These technologies include long-term monitoring both with 
and without electroencephalography (EEG) that report very high sensitivity as 
well as reduced false positive detections. In addition, we describe the implications 
of seizure detection and forecasting upon the evaluation of novel treatments for 
seizures within clinical trials. Based on these existing data, long-term seizure 
detection and forecasting with machine learning and artificial intelligence could 
fundamentally change the clinical care of people with seizures, but there are 
multiple validation steps necessary to rigorously demonstrate their benefits and 
costs, relative to the current standard.
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Highlights

 • Seizure detection, prediction, and forecasting technologies can be evaluated based on 
sensitivity, false positive rate, and deficiency time.

 • Performance of these technologies must be evaluated on unseen data.
 • Seizure detection technologies can have high sensitivity for motor seizures but less for 

other seizure types.
 • Seizure prediction and forecasting can substantially improve quality of life in people 

with epilepsy.
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1 Introduction

A seizure is defined by the Oxford dictionary as a sudden attack 
of illness (1). The sudden nature of symptoms is a key component of 
the disability incurred, as measured both by reduced quality of life and 
increased mortality rates (2–4). For people with transient neurological 
events, the first question is if the event represents an epileptic seizure, 
functional (nonepileptic) seizure, or non-epileptic non-functional 
event (e.g., convulsive syncope) (5, 6). The differentiation of these 
transient neurological events can be challenging without simultaneous 
video-electroencephalographic monitoring (VEM): 30% of patients 
with presumed epilepsy who undergo VEM instead have functional 
seizures and 10% of patients who present for prolonged seizure to 
emergency rooms in clinical trials had functional and not epileptic 
seizures (7–9). VEM often requires hospitalization, tends to last for 
less than 10 days at a time, and is primarily available at tertiary care 
centers (10). Therefore, one key clinical challenge is to develop 
hardware and software technologies for highly accurate, reliable, and 
long-term detection of epileptic seizures.

In addition to differentiation of epileptic seizures from 
non-epileptic transient neurological events, there are substantial 
challenges in counting epileptic seizures in people with known 
epilepsy. Obtaining an accurate and reliable count of epileptic seizures 
is a foundational aspect of making treatment decisions for people with 
epilepsy because people with continued epileptic seizures may require 
alteration of treatment to reduce or eliminate epileptic seizures. The 
seizure counts provided by patients, witnesses, or care partners have 
been the basis for clinical decision making and rigorous evaluation of 
antiseizure medications (ASMs) and non-pharmaceutical treatments 
for decades. However, human-provided seizure counts have limited 
sensitivity, especially for focal unaware seizures where the lapse in 
formation of new memories during the seizure also means that the 
patient can forget the seizure itself (11, 12). In addition, retrospective 
seizure counts may represent the overall gestalt of the patient and care 
partner regarding the effectiveness of treatment. Using the principles 
of the placebo effect, people may underestimate seizure counts when 
there is confidence in the treatment (13–19). Conversely, skepticism 
or adverse effects may contribute to nocebo effect that overestimates 
seizure counts (18, 20–22). In long-term clinical practice, simulation-
based studies suggest that the long-term dose and number of ASMs 
were not substantially impacted by reduced sensitivity and false 
positive rate, as long as sensitivity was at least 10% (23). In short term 
clinical trials that aim to determine treatment response within weeks 
to months, statistical power could substantially improve with seizure 
counts based on intracranial electroencephalographic (EEG) devices, 
but the impact of less invasive devices may be less (23–25). Conversely 
to patients with continued seizures, people who are seizure free may 
either continue current treatment, reduce the intensity or dose of 
current treatments, or withdraw treatment. While there are numerous 
barriers to withdrawal of ASMs in people who are seizure free, this 
uncertainty in counting seizures may contribute to the remarkably low 
rate of ASM withdrawal in people with long-term seizure 
freedom (26).

In addition to seizure detection, if a person with epilepsy was able 
to reliably predict when a seizure would occur, then they could take 
safety precautions (e.g., pull over an automobile) or tailor their 
treatment based on this risk (e.g., take a rescue medication or receive 
responsive neurostimulation) (27–29). The severe and unpredictable 

nature is one challenge in addressing the fact that people with epilepsy 
have a 3-to-12-fold increased risk of death for all causes, as well as 
Sudden Unexpected Death in Epilepsy (SUDEP) (2). Currently, the 
clinical care of patients with seizures focuses on reducing this risk by 
achieving seizure freedom.

One goal of the treatment of seizures is to allow the person with 
seizures to live their life as if they did not have seizures by the 
treatment causing both seizure freedom and no adverse effects. 
However, in more than one third of people with seizures, antiseizure 
medications fail to achieve seizure freedom (30); therefore, clinical 
care focuses on maximizing quality of life by reducing seizure 
frequency, minimizing adverse effects of medications, and addressing 
comorbidities or complications of seizures (4, 31, 32). In people with 
medication-resistant epilepsy, this quality of life could be massively 
improved if they could reliably predict when a seizure would not 
occur so they can engage in valuable and rewarding activities that 
otherwise would not be safe (e.g., driving and swimming) (33, 34).

It is both challenging and not useful to make seemingly definite 
binary (yes/no) predictions of if someone will have a seizure (33, 34). 
Therefore, instead of seizure prediction, the approach changed to 
provide individualized seizure forecasts instead of predictions (35–
39). Similar to forecasting the weather, seizure forecasts aim to reliably 
identify these high and low risk states, while recognizing that their 
predictions likely are imperfect. If a person has one seizure a year in 
the low-risk state and one seizure a day in the high-risk state, then 
they could take meaningful precautions based on this forecast.

To develop these forecasts, clinicians and researchers have 
developed long-term monitoring hardware and software to both 
differentiate seizures from mimics as well as identify pre-seizure states 
(35, 37, 40). The hardware aims to measure signals from the person 
with seizures over time that are consistent, reliable, and have minimal 
noise so that the software can use data-driven techniques like machine 
learning and artificial intelligence (41, 42). Machine learning (ML) 
tools are trained based on historical data to maximize their 
performance based on a single quantitative metric (e.g., accuracy of 
classifying seizure [ictal], pre-seizure [pre-ictal], post-seizure [post-
ictal], versus between seizure [interictal] states). Artificial intelligence 
(AI) tools are designed to perform a broad range of tasks, including 
tasks for which they have not been explicitly trained, and can do so 
using multiple ML tools (43). We are not aware of any AI tool for 
seizures that both fills that definition and is approved or cleared for 
clinical use by the United  States Food and Drug Administration 
(FDA). There are numerous multiple FDA-cleared ML algorithms 
applied to data relevant to seizures and ML-based devices (see 
Sections 3–5).

While there is substantial hype about the power of ML/AI for 
clinical medicine (44, 45), especially seizures, there are only a limited 
number of tools that have rigorously demonstrated their utility and 
have been integrated into standard clinical practice (43). This is 
despite decades of effort, especially focused on seizure detection and 
prediction using electroencephalography (EEG) (46, 47). In order to 
understand the future of ML/AI for clinical practice, we must then 
understand the benefits and limitations of the existing approaches.

The central focus of this narrative review is highlighting the 
existing software and hardware for the detection and forecasting of 
seizures. Before discussing that existing software and hardware, 
we  provide context by discussing key aspects of how these 
technologies’ performances should be evaluated by a clinician, person 
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with seizures, or patient-advocate. Afterwards, we  discuss the 
implications for these technologies on the design and conduct of 
clinical trials for treatments of seizures.

2 How to evaluate new machine 
learning tools for seizure detection, 
prediction, and forecasting

Ideally, seizures are rare events. Therefore, while there are 
commonalities between seizures and other applications of ML/AI, 
there are additional unique considerations (48).

2.1 Training, testing, and validation sets

Fundamentally, ML/AI are data-driven techniques to understand 
patterns in historical data that are then applied to unseen data (48). 
When these tools are being developed, their designers should 
be explicit regarding what data are used for training, testing, and 
validation (Figure 1). We define training data as data used to learn 
parameters of the model (e.g., odds ratios within logistic regression). 
While not necessary for all applications, testing data are used to learn 
hyperparameters or higher-level structures within the model that are 
not effectively optimized simultaneous with parameters (e.g., which 
ML model to use). Lastly, validation data are used to evaluate the 
performance of the model on “unseen” data and, thereby, validation 
data should never overlap with training or testing data.

A common error in the development of ML/AI is “leakage” or 
“peeking” where validation data leaks into the process of training or 
testing. For example, consider an ML tool that detects seizures based 
on accelerometry from a wearable device on the wrist, similar to a 
watch (49, 50). If developers report the performance of two ML 
approaches, support vector machines (51) and a neural network (52), 
on the “validation” data, then they can perform statistical tests to 
determine if one ML approach achieved superior performance. 
However, this “validation” data could be better described as “testing” 
data because they do not separately apply the better algorithm to 
“unseen” data. The performance on the “testing” data can be inflated 
as compared to truly unseen data because the developers tested two 
approaches and chose the better approach by “peeking” at the 
performance on validation data, which incurs a similar bias to 
multiple testing in null-hypothesis significance testing (53).

While that version of “peeking” is now less prevalent than before, 
a common error observed in peer review of these algorithms is 
“leakage” during pre-processing and feature selection (53). ML/AI 
tools can be described as data-hungry because their ability to make 
reliable predictions is non-linearly and highly dependent on the size 
and diversity of the training data (54). When developers have access 
to long-term recordings, they often can derive hundreds, thousands, 
or even millions of quantitative metrics, p, that could predict if an 
event was a seizure. Because seizures are rare, it can be  more 
challenging to have a similarly large number of examples of seizure 
and not seizure, n. To train stable ML/AI models, many statistical 
techniques require that p be less than n and, ideally, p is much less than 
n. To address this, developers use their biological and technical 
knowledge to select features that may be reliably measured and related 
to seizures (e.g., placing a wearable on the arm that shakes during a 

motor seizure) (55), in combination with statistical techniques to find 
the features with the best performance (56). One simple technique can 
include mass univariate null-hypothesis testing, where each of the p 
candidate features is compared in examples of seizures as compared 
to not seizures (57). The subsequent ML/AI tool could erroneously 
base its final prediction on the combination of these top features (57). 
This is an error because the “validation” data “leaks” into training data: 
validation data is used to rank the p candidate features! This “leakage” 
also inflates the performance of the ML/AI tool in unpredictable ways 
(53); therefore, developers should be  extremely explicit to clarify 
which data contributed to each stage of training, testing, 
and validation.

While we  caution developers and clinicians interested in 
evaluating these technologies for “leakage” and “peeking,” there are 
good techniques to maximize the size of the training, testing, and 
validation datasets without acquiring three entirely independent 
datasets (48). In cross-validation, one dataset can be split into these 
components artificially according to assigned proportions (e.g., 80, 10, 
and 10%) or based on the number of people (e.g., leave-one-
person-out). Additionally, in cyclic cross-validation, the assignment 

FIGURE 1

Machine learning training, testing, and validation flowsheet. The best 
parameters, β, of a model that maximize a chosen quantitative metric 
of performance are learned based on training from training data 
only. After application of all pre-processing steps to the testing data 
without modification, the best hyperparameters, θ, of a model that 
maximize performance are learned based on testing data, without 
modification of the learned parameters, β. Lastly, the expected 
(E) performance is measured based on validation data after 
application of all pre-processing steps and applying the model with 
the optimized parameters, β, and hyperparameters, θ. D# reflects a 
numbered subset of data; argmax reflects identifying the optimal 
argument (arg) that maximizes (max) the performance; the vertical 
line, |, means “given” in mathematical notation.
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FIGURE 3

Illustrating the structure of a cyclic 10-fold cross-validation, where 
data is split into mutually exclusive subsets labelled D#. Model 
training occurs on training data only (black) and validation 
performance is estimated from validation data only (orange). In 
cyclic cross-validation, the identity of which data was validation 
cycles so that each subset of data is used for validation once and 
only once. Pooled performance across folds estimates performance 
of the general approach on unseen data, but each of the 10 different 
models likely have different learned parameters, β. When 
hyperparameters, θ, need to be learned, nested cross-validation can 
further split the black data into training and testing (pink in the 
Figure 1).

of data can cycle so that each piece of data is in the validation set once 
and only once (Figure 2). When there are no hyperparameters to learn 
and thereby no need for a “testing” set, there can be just one layer of 
cross-validation but when there are hyperparameters and a need for a 
“testing” dataset, one can perform nested cross-validation where the 
data are split into validation and a second dataset, then cross-
validation is performed by splitting into training and testing within 
that second dataset to learn the hyperparameters (not pictured in 
Figure 2). The performance observed on the cycling validation data 
can then reflect the overall performance of the approach, even if the 
underlying ML/AI tool varies slightly from cross-validation fold to 
fold. This allows developers to develop high performance ML/AI tools 
based on large datasets, as well as validate them on data that was 
“unseen” by the tool. This approach of cross-validation and other 
similar techniques allow for development of new approaches on 
limited datasets, but before integration into clinical practice, these 
tools also should be  validated with external datasets on a broad 
population of people (43–45).

The final common error that we will describe here is recognizing 
the internal structure in the data being from multiple people, each of 
whom may have had multiple seizures. Intuitively, data from the same 
person likely is more similar than data from different people, so if the 
data from one person serves within both training and validation, the 
models may have “seen” some aspect of the validation data. For 
example, using a nearest neighbor approach for seizure detection 
likely would identify the seizure most similar to the validation data, 
which probably would be from the same person! To account for this, 
developers can and should impose structure to the data splits of cross-
validation where data are assigned to training, testing, and validation 
based on the person and not the individual time point. However, each 
person’s seizures often are stereotyped; therefore, performance can 
be improved substantially by understanding individual-level patterns, 
in addition to patterns common between multiple people. To 
accomplish that, training and test data for a real-time seizure detection 
or forecasting device could include only data from the same patient 
acquired before the validation data, which can be  considered 
“pseudoprospective” validation (35, 58). This pseudoprospective 
validation occurs retrospectively, but by restricting to data available 
before the validation data, the goal is to simulate how the method 
would work when used prospectively (See Figures 3–7).

2.2 Understanding the metrics of 
performance

The traditional metrics to describe the performance of ML/AI 
tools describe how much the ML/AI tool predictions align with a 
gold-standard method. Outside of seizures, these metrics can 
include accuracy, sensitivity, specificity, predictive values, and 
receiver operating curves. These metrics often focus on data where 
the tools aim to differentiate between two conditions with relatively 
similar prevalence. This often is not the case for seizures. Ideally, 
continuous EEG monitoring for seizures in a patient who is 
critically ill observes zero seizures (59). When seizures are present, 
there often is fewer than 2 seizures, each lasting 2 to 5 min, within 
a 24 h recording. Therefore, even if a patient had 10 min of seizure 
in 24 h, any algorithm that naively predicted the patient was always 
not having a seizure based on classification of 1-min periods of EEG 
would have an accuracy of 99.3% (wrong for only 10 of 1,440 min). 

FIGURE 2

Examples of common errors of (A) “leakage” and (B) “peeking” where validation data is not truly “unseen.” In (A), the validation data leaks into training 
by being used in feature selection to identify the features related to the outcome of interest. In (B), the best performing ML model is chosen based on 
performance based on the “validation” data, but there is no data left to evaluate the performance of that best ML model on “unseen” data.
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However, those 10 min are critically important to the care of 
that patient!

To overcome this, seizure detection, prediction, and forecasting 
tools typically focus on precision, recall, and calibration curves (60). 
In ML/AI, recall is equivalent to the sensitivity: the percent of positive 
cases (seizures) that were identified. Precision is equivalent to the 
positive predictive value: the percent of predicted positive cases 
(seizures) that indeed were positive cases based on the gold-standard 
metric. Analogous to a receiver operating curve that studies the 
relationship between sensitivity and specificity, there are precision-
recall curves that display the relationship between precision and recall 
based on changing risk thresholds. The exact choice of risk threshold 
influences the calculation of precision and recall, therefore the area 
under the precision-recall curve; often abbreviated AUPRC, PR-AUC, 
or PRC; can summarize overall performance. This AUPRC is 
analogous to the area under the receiver operating curve for sensitivity 
and specificity.

In addition to predicting seizure versus not seizure, ML/AI tools 
often also provide a score or risk of seizure. The user can select the 
hyperparameter of risk threshold: scores above this threshold are 
called seizures and scores below this threshold are not seizures. Higher 
risk thresholds will have higher recall and specificity, but lower 
sensitivity and precision. One method to select these thresholds are by 
calibration curves, which display the relationship between the 
predicted risk and the observed risk with gold-standard diagnosis, 
which is equivalent to the precision of each risk threshold. One great 
example of a clinically relevant calibration curve is from the 
2HELPS2B algorithm that predicts risk of seizure on continuous EEG 
in patients who are critically ill: a score of 0 indicates <5% risk of 
seizure after the first hour of monitoring, whereas a score of 1 or more 
indicates that 12 or more hours of seizure free EEG monitoring is 
needed for the risk of seizure on longer monitoring to be less than 5% 
(59, 61, 62).

In addition to these traditional metrics, seizure detection, 
prediction, and forecasting tools also must recognize the quality of 
their data by reporting a “deficiency time” (60). When sensors are 
worn for long periods of time, the quality of the signal often degrades 
so that it falls outside the realm of the training, testing, and validation 
data. This concept of degradation of quality over time is familiar for 
people who read inpatient long term conventional EEG, where affixing 

electrodes with tape allows for quality data for a couple of hours but 
collodion often is necessary for quality data for at least 24 h. Part of the 
engineering challenge for other technologies is to improve or maintain 
the quality of the signal, as well as the durability of that quality without 
technologist or human intervention. When the data is of insufficient 
quality to use the ML/AI tool, there is a distinct clinical difference 
between defaulting to a prediction of not seizure, as compared to 
identifying poor quality data. Therefore, these ML/AI tools should 
report a “deficiency time,” which is the duration of time where the data 
was of insufficient quality for detection, prediction, or forecasting (60). 
Unfortunately, because the datasets used to develop these ML/AI tools 
often are curated to be  high quality, some developers neglect to 
evaluate deficiency time; therefore, users should be vigilant to consider 
this before utilizing the tool.

Each of these metrics of performance is estimated based on the 
validation data, which is a finite dataset. While it can be tempting to 
compare algorithms’ performance across datasets based on any one 
metric, it also is critical to recognize the uncertainty in each metric. 
For example, an accuracy of 80% in a sample of 100 patients is not 
statistically different from an accuracy of 82% in an independent 
sample of 100 patients (Fisher exact test Odds Ratio 0.88, 95% 
confidence interval 0.43–1.78, p = 0.86). Whenever comparisons are 
made between performances, readers should be diligent to make sure 
the comparison is based on rigorous statistical testing (56).

Often, summary metrics for machine learning are not normally 
distributed and often their distribution is unknown (e.g., variable 
importance). Common techniques to overcome these limitations are 
permutation testing and bootstrapping. In permutation testing, the 
link between the predictors (input data) and gold-standard outcome 
is broken by shuffling the rows of the outcome vector, without 
replacement. When the entire process of data cleaning, feature 
selection, training, testing, and validation are performed on a broken 
or permuted dataset, then the summary output should reflect chance 
performance. If this process is repeated for 10,000 independent 
permutations of the outcome vector, then one can build an empiric 
probability distribution for any summary metric. The traditional null 
hypothesis can be tested by asking if the observed metric (e.g., variable 
importance) was as extreme or more extreme than 5% of observed 
values on the permuted dataset (p < 0.05). A rule of thumb is that for 
this 5% threshold to be consistent when the permutation testing is 

FIGURE 4

Illustration of the difference between splitting data into training and validation sets when the internal structure of the data is either maintained or 
modified. When the data includes 10 seizures from 10 patients, indicated by SX. Y for Seizure Y from Patient X, it would be an error to use unstructured 
splitting (first panel). Two appropriate methods for splitting into training and validation are illustrated. In the middle panel, we show training on data 
from 9 patients and validating based on the left out patient. In the right panel, we illustrate pseudo-prospective validation where the model is trained 
based on the first 9 seizures from each patient and validating using the last seizure from each patient.
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repeated, at least 10,000 independent permutations should be done. 
For a threshold of 1%, then 50,000 independent permutations should 
be done. When algorithms are computationally intensive, these rules 
of thumb may not be  practically possible. In comparison to 

permutation testing that empirically estimates the distribution of 
chance, bootstrapping takes the opposite tactic by estimating the 
distribution of observed performance. Bootstrapping creates datasets 
by randomly selecting data points (e.g., patients or seizures) with 

FIGURE 5

Examples of the electrographic, myogenic, and electrocardiographic (ECG) signals seen for (A) a left temporal onset focal to bilateral tonic clonic 
seizure and (B) a functional (nonepileptic) seizure with rhythmic artifacts. A challenge of seizure detection, prediction, and forecasting technologies are 
to differentiate these two types of events based on recording these signals with a combination of relevant sensors. The purple arrows highlight 
rhythmic artifact from side-to-side movement of the head against a pillow that appear to evolve like an electrographic seizure, but they can 
be differentiated from an epileptic seizure based on the high amplitude field in the posterior electrodes whereas the amplitudes in the anterior 
electrodes are markedly lower. The red markings highlight the challenges of ECG monitoring where in (A) the tonic-clonic movements include the 
chest and the muscle-generated signals obscure the relatively lower amplitude signals from the heart and in (B) we highlight that the ECG was not 
accurately recording during the seizure, which represents deficiency time.
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replacement so that, on average, some data points will be selected 
more than once. The entire process of machine learning can occur on 
these bootstrapped datasets to create an empiric probability 
distribution for the observed performance. While we advocate for 

permutation testing and bootstrapping, we also acknowledge that they 
are not appropriate in all cases (e.g., when the dataset is too small for 
10,000 separate datasets to exist).

Additionally, the best comparison between ML/AI tools are made 
based on benchmark datasets (63, 64), where each algorithm is 
validated based on the same data. If this is not possible, then 
developers should ensure that the datasets used to measure 
performance are comparable: for example, it is not appropriate to 
compare performance of a seizure detection tool on critical care EEG 
to outpatient EEG (46, 47).

3 Seizure detection with EEG and 
electrocorticography

There have been decades of work by exceptional researchers on 
how to detect seizures using quantitative EEG features, but the 
problem remains unsolved (65–67). In this section, we describe the 
existing software and hardware approaches for seizure detection using 
traditional EEG, as well as long-term and wearable solutions (38).

The current standard for seizure detection using traditional 
clinical-quality EEG in critical care is SPaRCNet, which used a large 
dataset of long-term critical care scalp EEGs to train a deep neural 
network to identify electrographic seizures and other abnormal 
findings (46). To train this algorithm, there were nine independent 
board-certified epileptologists or neurophysiologists who annotated 
15 s snippets of EEG. Unfortunately, one of the challenges for seizure 
detection is inter-rater agreement, which was an average of 55% for 
each pair of annotators. Therefore, SPaRCNet used the “gold-standard” 
of the majority vote of these annotators, which may or may not reflect 
a true “gold-standard” as compared to implanted intracranial direct 
ECoG in the appropriate region.

In addition to SPaRCNet, it is important to mention SCORE-AI, 
which similarly is an ML/AI tool used to interpret outpatient scalp 
EEG (47). While SCORE-AI also has impressive performance in the 
outpatient setting, the development dataset had a very limited number 
of epileptic seizures; therefore, its performance to detect seizures has 
yet to be  determined reliably. Instead, it focuses on identifying 
interictal abnormalities.

Additionally, the intended application for ML/AI is to work in 
combination with human experts. To date, these technologies have 
been compared to human experts, but there has not been an evaluation 
of the performance of human experts with and without ML/AI 
assistance. Therefore, prior to wide adoption of these technologies, it 
should be  shown directly that the human assisted by the ML/AI 
improves upon human performance without the ML/
AI. We hypothesize that humans with ML/AI will be able to read EEG 
studies much faster with the same quality, but that study has not been 
done yet.

The most widely used and FDA-approved ML/AI tool for seizure 
detection using long-term ECoG is applied within the Responsive 
Neurostimulation System (RNS) (68–72). Patients with RNS have a 
small number of electrodes surgically implanted into the region 
thought to be the seizure onset zone or another area that can modulate 
seizures. Traditional programming of the RNS uses a small set of 
quantitative EEG features to identify when a patient is having an 
electrographic seizure and, in real-time, provide electrical stimulation 
to terminate the seizure. These programming settings are initially 

FIGURE 6

Illustration of EEG-based approaches for seizure detection, seizure 
prediction, and seizure forecasting that differ from conventional 
scalp EEG. See Table 1 and text for citations of specific technologies.

FIGURE 7

A GPT-4 generated illustration of a person wearing various 
monitoring devices that could be used for seizure detection, 
prediction, and forecasting. The white blanket could represent a bed 
pad monitoring device. The watch and bicep monitoring devices 
highlight where other external sensors can be placed. The 
headphones represent devices that can be worn around or inside the 
ear or head. See Table 2 and text for further descriptions.
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TABLE 2 Categories of non-EEG based approaches for seizure detection, seizure prediction, and seizure forecasting (illustrated in Figure 7).

Non-EEG 
approaches

Target use case Duration of use Sensitivity False positive 
rate

Key challenges

Bed mattress
Nocturnal convulsive 

seizures and SUDEP
Months to Years 62–89% 3/year to 0.5/night

Nonconvulsive seizures, 

sleep behaviors, sensor 

placement

Arm-worn (biceps) Convulsive seizures Days to Months 75–90% 0.5/day to 6/night

Wearability, correct sensor 

placement, movement 

artifacts

Wristwatch Convulsive seizures Days to Months 80–95% 0.25/day to 1.2/day
Wearability, movement 

artifacts, noisy data

In Ear*
Convulsive and 

Electrographic seizures
Hours to Days 55–99%

5–60% of all 

detections

Wearability for long term 

use, restricted to near-ear 

epilepsy

See text for citations of specific technologies. The in-ear technology can use EEG in addition to non-EEG signals for seizure detection.

based on collaboration between an expert epileptologist and RNS 
engineer to maximize the sensitivity of prediction, provide stimulation 
as early as possible in the seizure, and minimize false positive rates to 
preserve battery life. In patients whose seizures do not improve in 
frequency or severity after neurostimulation programmed by human 
experts, there is an ML-based algorithm to suggest programming 
settings to optimize stimulation (73). These program settings are 
implemented using a human-in-the-loop approach where the 
ML-based algorithm suggests the programming settings, but human 
supervision is required prior to implementing those settings for the 
patient. This is our first example demonstrating that ML/AI tools do 
not currently aim to replace human experts, but the performance of 
human experts can be improved by collaboration with ML/AI tools.

In addition to these two more established technologies, there are 
numerous technologies in development that address the challenges of 
the established technology (Table 1) (38, 74, 75). The placement of the 
electrodes for the Responsive Neurostimulation System requires 
localization of the seizures, which can be challenging in some cases 
(73). In addition to other intracranial implants, there are technologies 
to implant targeted EEG recording electrodes underneath the skin or 
other tissues (76–80). After a small incision, these devices function for 
at least 1 month and, based on tolerability, have been used for at least 
1 year. The next step down in invasiveness is targeted non-conventional 

scalp EEG systems, where the electrodes can be worn inside the ear or 
affixed to the skin through adhesives or placed within the ear to 
provide a limited coverage for days and perhaps up to a week or two 
(81–85). These non-conventional systems aim to replace ambulatory 
EEG systems, which often require an EEG technologist for placement 
and typically are limited to up to 72 h of monitoring (86).

4 Seizure detection without EEG

One ultimate goal of seizure detection technologies is to produce 
automated and reliable counts and diagnoses of epileptic seizures 
based on long-term wearable devices (Table 2) (87–90). If a person 
with seizures could wear a device with high sensitivity for seizure 
detection and low false positive rate, then the device could alert 
caregivers, emergency services, and others to when the person with 
seizures requires assistance which, in turn, could have a direct 
impact upon risks of Sudden Unexpected Death in Epilepsy 
(SUDEP), early treatment of status epilepticus, and monitoring for 
treatment response (90). The challenges to seizure detection without 
EEG is that the device must (1) capture data relevant to the seizure, 
(2) reliably differentiate seizure from non-seizure, and (3) 
be wearable.

TABLE 1 Categories of EEG-based approaches for seizure detection, seizure prediction, and seizure forecasting (illustrated in Figure 6).

EEG approaches Target use case Duration of use Sensitivity False positive 
rate

Key challenges

Implanted 

electrocorticography

Responsive 

neurostimulation
Lifelong 50–99% 1/month to 1/h*

Invasiveness of implant, 

implant location selection, 

clinical correlation, cost

Sub-scalp EEG implants
Monitoring and 

Forecasting
Months 40–99% 0.5/day to 4,768/h**

Clinical correlation, 

location selection, cost

Non-conventional scalp EEG 

solutions

Diagnosis and 

Characterization
Weeks 40–99% 0.5/day to 5/h

Skin reactions, sensor 

placement

Conventional scalp EEG
Critical and Emergency 

Care
Days 40–85% 0.5/day to 1/h

Skin reactions, EEG 

technologist time, cost

See text for citations of specific technologies. *Long-episodes within responsive neurostimulation can be proxies for seizures and sometimes detection and stimulation parameters are 
purposefully set to have a high false positive rate to allow for long-term neuromodulation. **Similarly, sub-scalp EEG can capture many electrographic seizures without a clear clinical 
correlate that can be unclear whether if they were true positive focal aware seizures versus false positives.
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Current clinical decisions are made based on quasi-objective 
seizure diaries where patients and their caregivers keep track of a 
rough seizure count. Based on this rough seizure count, clinicians 
attempt to judge whether seizures change in response to modifications 
in treatment. Analysis of the electrocorticography from the implanted 
Responsive Neurostimulation System indicated that treatment 
response could be predicted within a week of reaching the equilibrium 
dose of an ASM, but that requires intracranial surgery (25). If similar 
quality of seizure counts could be  achieved with less invasive 
monitoring, then treatment responses could be made much more 
quickly and reliably.

There are many non-electrophysiological methods to monitor for 
seizures including accelerometry (ACM), electromyographic (EMG), 
cardiac monitoring, electrodermal activity (EDA) to measure 
sweating, and photoplethysmography (PPG) to measure blood 
oxygenation with light (90, 91). As discussed in Section 2, these 
technologies are primarily judged based on their sensitivity (what 
percent of seizures do they capture), false positive rate (what percent 
of alerts are indeed seizures), and deficiency time (what percent of the 
time they capture quality data) (60).

The principle behind accelerometry is that many seizures either 
produce movements or represent an absence of movement or tone. 
With objective recording with a wearable device, the detailed 
characteristics of these movements have been able to differentiate 
bilateral or generalized tonic-clonic epileptic seizures from mimics 
including functional seizures (otherwise known as psychogenic 
nonepileptic seizures) as well as other transient neurological 
conditions like convulsive syncope (92–94). This has been 
demonstrated in small to moderate size studies, but the performance 
of these technologies has not been demonstrated in the broad and 
medically complex populations typically seen in outpatient clinic or 
even video-EEG monitoring units. The first evaluation of these devices 
typically is in patients admitted in a highly controlled environment for 
video-EEG monitoring to directly compare the device to the gold 
standard. Once evaluated there, devices can then be utilized in the real 
world. These subsequent evaluations have shown that many behaviors 
like clapping, walking, running, and other repetitive motor behaviors 
can be challenging to differentiate from seizures. In some patients, this 
can produce as many as two false positive seizure detections a day, 
which would be  intolerable in the context of having one epileptic 
seizure every 3 months (95, 96).

In addition to accelerometry, wearable sensors can evaluate other 
aspects of a person’s health (90). Smart watches are increasingly 
prevalent and can directly associate seizures with cardiac cycling. In 
fact, there is emerging work demonstrating synchronicity of both 
circadian and multi-day cycles of seizures and heart rate variability 
(97). Due to the inherent limitations of accelerometry, the addition of 
multimodal sensors has the great potential to improve upon both 
sensitivity and false positive rate. The addition of sensors also may 
increase the invasiveness of the technology and thereby create 
wearability challenges if the patient can only tolerate wearing the 
sensors for a restricted period. For example, bed covers are a good 
example of being very wearable because they only change the feel of 
the bed, but also miss seizures that do not occur in bed. In contrast, 
the Responsive Neurostimulation System (RNS) requires surgical 
implantation, daily to weekly data uploads, and in person clinic visits 
roughly every 3 months for programming. Other technologies balance 
between these two extremes of least invasive to most invasive. Table 2 

summarizes some of the current approaches using multimodal sensors 
for seizure detection.

5 Seizure prediction and forecasting

While seizure detection itself is valuable because it can improve 
patients’, caregivers’, and the healthcare system’s responses to seizures, 
it would be even more powerful if we could predict when seizures 
would occur in the future (33, 34, 98). The practical definition of 
epilepsy is based upon a greater than 60% 10 year cumulative risk of 
unprovoked seizures (99), but that the risk of seizures is not the same 
on each individual hour, day, week, or year. Some of the key aspects of 
the disability incurred by recurrent seizures is the lack of predictability. 
A fear of seizure can contribute to a new onset or worsening anxiety 
disorder (32, 37). Similarly, the feeling of learned helplessness from 
being unable to control when seizures occur can contribute to the high 
rate of comorbid depression in people with seizures (100). If individual 
minutes or days with greater than 60% risk of seizures could 
be predicted reliably, then practical actions could be taken to improve 
both quality of life and safety, like taking additional medication(s), 
alerting a caregiver, or not driving an automobile. In days of low 
seizure risk (e.g., <1%), a radical suggestion would be that people with 
seizures could be indistinguishable from people without seizures and 
may not even require ASMs, similar to oligoepilepsy (101). 
Unfortunately, our methods for seizure prediction and forecasting are 
not yet good enough to achieve that vision for the future (102).

In addition to producing practically useful tools, the process of 
developing seizure prediction and forecasting methods improved our 
understanding of the continuum of states from inter-ictal, pre-ictal, 
ictal, to post-ictal. These states differ from the reporting guidelines for 
expert interpretation of EEG, which focus on differentiating inter-ictal 
activity from ictal-interictal continuum and electrographic or 
electroclinical seizure. In some of the pivotal work on seizure 
prediction, intracranial monitoring with NeuroVista demonstrated 
that in order to have a seizure, many patients first transition to a 
pre-ictal state where the likelihood of seizure is high, but seizure is not 
guaranteed (103, 104). In the inter-ictal state, the risk of transitioning 
directly to seizure within seconds or minutes is very low (e.g., 1/year), 
but the risk of subsequent seizure in the pre-ictal state is higher (e.g., 
1/week). This is consistent with other observations about the 
propagation of the epileptic activity from the seizure onset zone to a 
symptomatogenic zone that produces clinical symptoms including, 
but not limited to, “auras” or focal aware seizures in isolation (105, 
106). Many patients with focal-onset seizures have focal aware seizures 
that do not progress to focal unaware seizures. In contrast to focal 
aware seizures (auras), these pre-ictal states are not seizures. However, 
recognition of pre-ictal states could represent an opportunity for 
intervention to avoid progression to seizures (See Table 3).

If this pre-ictal state can be identified reliably, then targeted 
changes to treatments can be implemented to transition back to the 
inter-ictal state as compared to the ictal state (33). For example, 
Chiang and colleagues demonstrated that the different types of 
neurostimulation were effective to reduce seizures when applied in 
a pre-ictal state as compared to an inter-ictal state (107). Even 
when seizures do not occur in someone who is seizure free, 
identification of these transitions to a pre-ictal state could delineate 
the risk of seizure with medication withdrawal. Recruiting for 
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randomized trials for medication withdrawal can be challenging 
because if someone is seizure and side effect free on antiseizure 
medication(s), then there may not be  motivation to stop the 
antiseizure medication(s). Lowering or stopping antiseizure 
medications in this context can reduce healthcare costs and adverse 
effect burden, but there’s always a risk of breakthrough seizures 
when coming off medications and even one breakthrough seizure 
can have big implications (e.g., driving restriction, injuries from 
seizures, and SUDEP). In addition, it can be challenging to train a 
machine learning algorithm to identify seizures in patients who are 
seizure free because there may be no examples of an individual’s 
seizures captured with the device for training (see Section 2 for 
discussion of internal structures in data). While training based on 
others’ seizures can somewhat translate to individual patients, 

these seizure prediction and forecasting methods often require 
personalized modifications (26). Especially because there is no 
electrographic definition of a pre-ictal state, it is not yet possible to 
reliably identify this preceding state without observing the seizure 
that it precedes.

These concepts of state transitions have led the field to transition 
from seizure prediction to seizure forecasting (34). In seizure 
prediction, technologies aim to make clear yes or no predictions that 
a seizure will or will not occur. In seizure forecasting, the purpose is 
to provide a risk-gauge for seizures that likely differs from these clear 
yes and no insights. Like weather forecasting, these seizure forecasts 
are most helpful when the risk substantially varies with time so that 
different decisions can be made based on this estimated risk, but also 
recognizing that the predictions are imperfect.

TABLE 3 Glossary of common and important terms in the field of machine learning and artificial intelligence for seizure detection, prediction, and 
forecasting.

Term Abbreviation Definition

Artificial intelligence AI
Tools trained using historical data to perform a broad array of tasks mirroring human intelligence, including tasks for which 

they have not been explicitly trained

Machine learning ML Algorithms trained using historical data to maximize performance on a specific task

Deep learning DL ML algorithms that use multiple, “deep,” layers of data processing to improve performance

Support vector 

machine
SVM

A type of machine learning algorithm that identifies a maximum separating hyperplane between training data based on the 

hardest to classify examples, called “support vectors”

Neural networks NN

A type of machine learning algorithm that commonly uses multiple layers of hidden combinations of the input data, called 

nodes, to identify complex patterns in the data that may improve performance. The interconnections of these hidden nodes 

often are modeled based on the connections of neurons. This technique is commonly used in DL

Training set – Historical data that ML/AI algorithms use to learn patterns in data

Testing set –
Data separated from the training set that is used to train higher level structures of ML/AI algorithms (e.g., which ML/AI 

algorithm is superior to which)

Validation set – Data separated from the training and test sets that is used to estimate performance when applied to unseen data

Feature
– Quantitative data that can be input into ML/AI algorithms to perform predictions. Also known as independent variables or 

predictors

Feature selection – Identifying a subset of the input data that is most related to the outcome of interest

Peeking
– An error in ML/AI tool development where “validation” data is used in training or testing (e.g., choosing the superior ML/AI 

method on a dataset)

Leakage
– An error in ML/AI tool development where “validation” data leaks into some stages of training or testing (e.g., feature 

selection)

Bootstrapping
– Empiric estimation of the variability of results by repeating the analyses on datasets where data was randomly selected with 

replacement

Permutation testing
– Empiric estimation of the variability of chance or null hypothesis results by repeating the analyses on datasets where the 

outcome of interest is randomly shuffled without replacement

Sensitivity/Recall – The percent of positive outcomes (e.g., seizures) that was accurately identified

Positive predictive 

Value/Precision
PPV

The percent of outcomes predicted to be positive that indeed were positive (e.g., seizures)

False positive rate FPR The rate that the ML/AI algorithm predicts a seizure occurred when a seizure did not occur

Deficiency time
The percent of time when the device or ML/AI algorithm is not recording high enough quality information to make a reliable 

prediction of outcomes

Area under the 

receiver operating 

curve

AUC

Area under the receiver operating curve of the balance between sensitivity and specificity

Area under the PR-

curve
PR-AUC PRC

Area under the curve showing the balance between precision and recall
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One of the insights from seizure forecasting is that continuous 
technological monitoring may not be  necessary to provide 
reasonable seizure forecasts (98). Part of the phenomenology of 
Juvenile Myoclonic Epilepsy is the circadian cycle where myoclonic 
jerks and seizures are more common in the early morning. Those 
circadian cycles also are present in seizures observed in continuous 
video-EEG monitoring units and critical care (40, 103, 104, 108, 
109). However, these circadian cycles may not be as prominent as 
suggested by the data, because there may be  a confound of 
circadian under-reporting of seizures (e.g., nocturnal focal aware 
seizures are missed because patients are sleeping, causing the data 
to suggest that focal aware seizures only occur during the 
day) (110).

In addition to circadian rhythms, the multi-day cycles in seizures 
have been well recognized (103, 108, 111). Catamenial or menstrual 
cycle related seizure patterns have long been recognized based on 
patient and caregiver observations, with subsequent work 
demonstrating sub-patterns of catamenial seizures based on the 
relative sensitivity to the pro-convulsant effect of estrogen and the 
anti-convulsant effect of progesterone (112, 113). Recognition of these 
patterns can prompt cyclic prescription of antiseizure medications, 
where a higher dose is taken 3 days before, during, and 3 days after the 
“high risk” period (113).

The addition of long-term wearable technologies has enhanced 
our recognition of these seizure cycles being present in as high as 30% 
of people with medication resistant epilepsy (111, 114). When seizure 
diaries were paired with long-term cardiac monitoring, Cook and 
colleagues recognized that the monthly cycles of seizures occur in 
men with a similar prevalence as catamenial epilepsy (97). They also 
observed synchrony of the heart rate variability in concurrent cardiac 
monitoring with a watch, as compared to seizure cycles, which 
prompted hypotheses about the mechanisms of SUDEP (2). In 
addition, there commonly are empiric cycles with differing lengths, 
including weekly seizures, fortnightly seizures, and even multi-month 
patterns (111, 114). When these patterns are identified in a person, 
then additional clinical questions arise regarding potential cyclic 
non-adherence to medications (e.g., seizures on Mondays after 
missing weekend antiseizure medication doses) or other associations 
with external or internal factors (e.g., sleep deprivation, head injuries, 
hormonal changes). Other multi-day fluctuations may be based on the 
body’s intrinsic and adaptive resilience to seizures through balancing 
excitation and inhibition within epileptic networks.

An important concept to identifying these seizure patterns is the 
Nyquist frequency, which some providers may be familiar with based 
on interpreting EEG. The Nyquist frequency states that to observe a 
signal with a certain frequency, then the sampling rate must be at least 
twice as fast or twice as long as the target frequency. In EEG, this 
means that frequencies faster than 125 Hz cannot be observed if the 
EEG data has a sampling frequency of 250 Hz. For seizure cycles, to 
measure a monthly seizure cycle, there must be at least 2 months of 
data. Based on this concept, devices that use monthly cycles for seizure 
prediction and forecasting must be worn for at least 2 months before 
there is sufficient data from the individual patient to measure that 
cycling. This represents a technological minimum and the reliability 
of measuring these cycles can improve if longer monitoring is 
performed. To highlight that the Nyquist frequency is the technological 
minimum, the International League Against Epilepsy uses other 
statistical principles to define a response to treatment by an at least 

tripling of the between-seizure interval, which can be called the “Rule 
of Three.” (99).

The above concepts of seizure prediction and forecasting primarily 
are within the realm of research and have not been demonstrated as 
directly clinically applicable yet (102). When thinking about the future 
of machine learning and artificial intelligence, we recognize that the 
current existing tools are the worst that we will see in the future (43). 
The goal of researchers, engineers, and clinicians is to use our 
constantly improving capabilities for data processing and 
understanding to improve upon these standards. While healthcare is 
commonly very slow to migrate, we recognize the great capacity for 
machine learning and artificial intelligence to make massive disruptive 
changes. For example, the public release of large language models like 
ChatGPT have forever revolutionized the practice of essay writing in 
higher education (115, 116). Even though these disruptive 
technologies do not exist for seizure detection, prediction, and 
forecasting yet, we must begin to understand both their potential 
benefits and limits so that when, not if, these technologies exist, then 
we are able to utilize them responsibly (43).

6 Implications for clinical trials

One initial use for these technologies for the detection, prediction, 
and forecasting of seizures is in clinical trials of treatments for epilepsy. 
Clinical trials are the foundation upon which we  determine the 
efficacy of novel treatments, but there are increasing challenges to the 
design and conduct of trials (14). These challenges are highlighted by 
the reducing number of participants per site recruited, which requires 
a compensatory increase in the number of sites to meet sample size 
goals (14).

However, this increase in sites also has been associated with a 
progressive increase in the placebo response rate, which likely harms 
the statistical power of trials by shrinking the difference between the 
elevated placebo and the efficacious treatment, which may be capped 
by a ceiling effect (14, 16). That creates a vicious cycle where higher 
placebo response rate reduces statistical power, which increases the 
number of participants and sites which, in turn, further increases the 
placebo response rate.

The insights that we  have gained from seizure detection, 
prediction, and forecasting work have both highlighted those 
problems as well as offered potential solutions. The challenge in 
recruiting participants in a site is that more than 50% of patients with 
medication resistant epilepsy seen at a tertiary care center for epilepsy 
with a long history of participating in clinical trials did not meet the 
minimum seizure frequency requirement (117). To be able to observe 
the efficacy of treatment within a reasonable time frame of a 12 or 
20 week maintenance period, focal-and generalized-onset seizure 
trials often require at least 4 seizures per month and 3 seizures per 
2 months, respectively. Lowering those minimum seizure frequency 
eligibility requirements may necessitate longer maintenance periods, 
but longer maintenance periods further increase cost and hinder 
participant recruitment because placebo exposure in blinded trials 
was associated with a 5.8-fold increased risk of SUDEP (118).

One of the challenges incurred by these minimum seizure 
frequency requirements called regression to the mean can 
be understood using the language of seizure forecasting (119). In 
regression to the mean, a participant is motivated to enroll in a 
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placebo-controlled trial of a new antiseizure medication due to a 
progressive recent increase in seizure frequency from 1 per month to 
4 per month for 3 months (119). Now that they are eligible to 
participate, they start keeping a prospective seizure diary during the 
4-to-8-week pre-randomization baseline. If this recent increase in 
seizure frequency was due to inherent changes in their seizure cycles 
causing an increase in their rolling-average seizure forecast of 4/
month, then they may spontaneously transition back to that low 
seizure frequency state (1/month) during the baseline and be  a 
“baseline failure.” However, if this spontaneous transition occurs after 
the pre-randomization baseline and instead during the blinded 
randomization phase, then their 75% reduction in seizure frequency 
from 4/month to 1/month may be unrelated to the efficacy of their 
blinded treatment. While trials do not report the reason for “baseline 
failures,” the increase in placebo responder rate has been associated 
with an increasing rate of baseline failures (14).

In addition to giving us the language to describe those changes, 
seizure forecasting can provide solutions. The seizure cycling 
literature demonstrated that, by and large, most seizure cycles are less 
than 1 month long. Therefore, the minimum duration to evaluate the 
efficacy of a treatment likely is longer than 1 month. Trial design can 
use this knowledge to create adaptive designs, where participants 
engage in blinded treatment until there is sufficient data to conclude 
that they have either responded or not responded to the blinded 
treatment, irrespective of the length of observation. One proposal to 
accomplish this is through the Time to Prerandomization monthly 
Seizure Count (T-PSC) design, where participants engage in blinded 
treatment until their blinded post-randomization seizure count 
exceeds their average monthly seizure count measured during 
baseline (13, 120). This design allows for quick exclusion of 
participants who worsen on blinded treatment (either due to nocebo 
or worsening of seizures on novel treatment), who likely have an 
increased risk of SUDEP and other serious adverse events (118). [The 
nocebo effect is defined as a negative effect of placebo treatment, 
including either worsening of seizures or adverse effects (20)]. 
Simultaneously, this design also either maintains the traditional 
12-to-20-week endpoint for initial responders. This traditional 
12-to-20-week endpoint remains necessary to differentiate novel 
treatments from short-acting benzodiazepines, which transiently 
lower seizure frequency but do not have a sustained effect. 
Re-analyses of numerous historical trials has demonstrated that the 
efficacy conclusions of the trials truncated at T-PSC were almost 
identical to the conclusions with full-length trial data (13).

The other challenge of clinical trials is producing reliable and 
accurate counts of epileptic seizures (11). Foundationally, the 
approval of novel treatments is based upon demonstrating both the 
magnitude of the difference in efficacy between placebo and active 
treatment. While patient-and care partner-reported diaries are the 
current standard for clinical trials, there is substantial data suggesting 
that the sensitivity of these reported seizure detections is less than 
50%, where some seizure types may have even lower sensitivity (e.g., 
focal aware seizures, nonmotor focal unaware seizures, absence 
seizures) (24). There also may be  circadian patterns in reduced 
sensitivity that may create artificial circadian patterns in seizure diary 
data (e.g., reduced sensitivity during sleep) (110). Theoretically, this 
reduced sensitivity increases the variability of seizure count by adding 
a source of noise, as well as lowering the apparent seizure frequency 
in each phase of the trial, which can impact the certainty in measuring 

each seizure frequency as well as eligibility (e.g., insufficient baseline 
seizures to progress to the blinded phase).

In addition to increasing the variability of the difference estimate 
within trials, imperfect human-provided seizure counts can incur bias 
(110). While bilateral or generalized tonic-clonic seizures likely have 
low false positive rate of reporting, data from ambulatory and 
inpatient EEG monitoring suggest that patients and care partners also 
may have an unclear false positive rate due to inaccurate differentiation 
of other transient neurological symptoms from their seizures (121). 
Especially for scalp EEG negative focal aware seizures, it can be very 
challenging to evaluate seizure from non-seizure events. Theoretically, 
false positive seizure counts cause under-estimation of difference 
between placebo and active treatment because true seizures may 
benefit from treatment, but false positive counts would not.

These limitations in human-provided seizure diaries clearly could 
be assisted by objective devices that improve upon both the sensitivity 
and false positive rates. Long-term wearable or implanted devices could 
provide more accurate time stamps on seizures and provide further 
characterization of many details regarding seizures (e.g., duration of 
the motor phase) that often is too burdensome for humans to reliably 
record. Combined with the development of seizure prediction and 
forecasting methods, these granular data can incorporate the known 
confounding factors of seizure cycling and clustering into improved 
quantitative metrics measuring improvements in seizures.

To achieve these future benefits, many devices have been shown 
to improve the sensitivity of seizure detection but, unfortunately, 
these devices also incur a false positive rate that may be higher than 
humans (90). Additionally, some of the long term intracranial, 
subcutaneous, or other EEG-based devices may reliably measure 
electrographic seizures, but there is an incomplete link between 
electrographic and electroclinical seizures (74). Improvement in 
electrographic seizures likely does not guarantee an improvement in 
electroclinical seizures, the latter of which likely have a greater impact 
upon quality of life. These devices also often have demonstrated this 
performance in selected patients who are interested in enrolling in 
studies of the devices, as compared to a broader population who 
would enroll in a trial for a novel treatment.

Each of these concerns can be addressed through further study and 
validation of existing devices, as well as improving upon existing 
technology. Lastly, clinical trials are both very expensive and high risk 
for sponsors who often seek to mitigate that risk through following 
conventional trial protocols. While integrating devices into trials could 
have some benefits, providing innovative devices to trial participants 
would increase cost, as well as risks. When (not if) a device for seizure 
monitoring is used in a trial, there is a nontrivial risk that the human-
provided seizure outcome may differ from the device-based diary. (To 
our knowledge, such a trial has not been completed and published yet 
but, to our knowledge, there indeed is a trial underway that combines 
both human diaries and long-term EEG based seizure detections). To 
describe this risk, consider the options for when the human and device-
based diaries disagree. If the human-provided diary suggests benefit but 
the device does not, then clinicians, sponsors, and regulators may 
conclude that the treatment benefitted clinically meaningful seizures 
because humans counted them. However, the trial would conclude that 
the treatment does not have an impact on the device-based seizure 
counts, which may be felt to not be clinically meaningful. Conversely, 
if only the device demonstrated treatment benefit, then the conclusion 
would be that this likely would be a statistically significant, but not 
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clinically significant, improvement. This risk of discrepancy could 
be mitigated by using a human-in-the-loop system where the device’s 
seizure predictions are provided to the patient and care partner for 
supervision, as well as subsequent review by study staff or treating 
clinicians (122). However, these human-in-the-loop studies have not 
been done, to date, within epilepsy or seizures.

As researchers with expertise both in machine learning and 
clinical trials, we believe that clinical trials will eventually rely upon 
seizure counts assisted by long-term seizure detection and monitoring 
devices that use innovative machine learning techniques to improve 
upon the current standard of human-provided seizure diaries. Each 
of the concerns that we have raised and others that we have heard are 
addressable through further development of both the hardware and 
software for seizure detection, prediction, and forecasting.

7 Conclusion

ML and AI will revolutionize the clinical care of people with 
seizures, but the field is nascent. In the future, both software and 
hardware will improve the reliability of the original diagnosis of 
epilepsy compared to mimics, monitoring of seizure recurrence with 
treatment, evaluating novel treatments within clinical trials, and 
providing a real-time and actionable warning system that people with 
seizures can use to improve safety and quality of life. While these 
improvements are promising, the performance of the existing 
technology has not been demonstrated to be high enough to warrant 
a change in current clinical practices. We are confident that in the near 
future ML and AI will not replace clinicians, but clinicians assisted by 
ML and AI will replace clinicians not utilizing ML and AI.
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