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Background: In healthy subjects, repetitive transcranial magnetic stimulation 
(rTMS) targeting the primary motor cortex (M1) demonstrated plasticity effects 
contingent on electroencephalography (EEG)-derived excitability states, 
defined by the phase of the ongoing sensorimotor μ-oscillation. The therapeutic 
potential of brain state-dependent rTMS in the rehabilitation of upper limb 
motor impairment post-stroke remains unexplored.

Objective: Proof-of-concept trial to assess the efficacy of rTMS, synchronized 
to the sensorimotor μ-oscillation, in improving motor impairment and reducing 
upper-limb spasticity in stroke patients.

Methods: We conducted a parallel group, randomized double-blind 
controlled trial in 30 chronic stroke patients (clinical trial registration number: 
NCT05005780). The experimental intervention group received EEG-triggered 
rTMS of the ipsilesional M1 [1,200 pulses; 0.33  Hz; 100% of the resting motor 
threshold (RMT)], while the control group received low-frequency rTMS of the 
contralesional motor cortex (1,200 pulses; 1  Hz, 115% RMT), i.e., an established 
treatment protocol. Both groups received 12 rTMS sessions (20  min, 3× per 
week, 4  weeks) followed by 50  min of physiotherapy. The primary outcome 
measure was the change in upper-extremity Fugl-Meyer assessment (FMA-UE) 
scores between baseline, immediately post-treatment and 3  months’ follow-up.

Results: Both groups showed significant improvement in the primary outcome 
measure (FMA-UE) and the secondary outcome measures. This included the 
reduction in spasticity, measured objectively using the hand-held dynamometer, 
and enhanced motor function as measured by the Wolf Motor Function Test 
(WMFT). There were no significant differences between the groups in any of the 
outcome measures.

Conclusion: The application of brain state-dependent rTMS for rehabilitation in 
chronic stroke patients is feasible. This pilot study demonstrated that the brain 
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oscillation-synchronized rTMS protocol produced beneficial effects on motor 
impairment, motor function and spasticity that were comparable to those 
observed with an established therapeutic rTMS protocol.

Clinical Trial Registration: ClinicalTrials.gov, identifier [NCT05005780].

KEYWORDS

brain state-dependent stimulation, sensorimotor μ-oscillation, rTMS, motor stroke 
rehabilitation, spasticity

1 Introduction

In recent years, repetitive transcranial magnetic stimulation 
(rTMS) has emerged as a safe and non-invasive neuromodulatory 
intervention for enhancing functional recovery after stroke. One 
fundamental principle of stroke rehabilitation employing rTMS is to 
enhance the excitability of the ipsilesional cortex. Two distinct 
stimulation protocols have been employed for that purpose: (1) high-
frequency excitatory rTMS of the ipsilesional hemisphere, with the 
aim of direct enhancement of the corticospinal output; (2) 
low-frequency inhibitory rTMS of the contralesional hemisphere to 
restore excitability balance between the two cortical hemispheres (1–3).

There have been some promising findings for the application of 
low-frequency 1 Hz rTMS to the contralesional hemisphere for 
functional recovery (4–6) and reduction of spasticity (7). However, the 
results of various studies utilizing different rTMS protocols for stroke 
rehabilitation have not been consistent (5, 8). The effects, when found, 
are small and quite variable (9, 10), indicating that optimal stimulation 
protocols and parameters are not yet determined. The conventional 
“one-size-fits-all” approach to rTMS therapy has been criticized for 
neglecting individual patient characteristics. Thus, a shift towards 
individualized and patient-tailored rTMS therapies is advocated as a 
solution to reduce heterogeneity and to increase the overall therapeutic 
efficacy (11, 12).

Until recently, clinical research involving rTMS has employed an 
open-loop stimulation approach, disregarding the brain’s 
instantaneous state at the time of stimulation. The oscillatory activity 
of the neural networks represents rhythmic fluctuations in excitability 
(13–15), and significantly modulates the network’s response to various 
inputs (16–20). Therefore, taking into account the ongoing oscillatory 
brain state represents a compelling prospect for optimization of 
therapeutic brain stimulation.

Several investigations that explored EEG phase-dependent 
responses to TMS of the human primary motor cortex (M1) revealed 
that the trough/early rising phase of the endogenous sensorimotor 
μ-rhythm corresponds to a high-excitability state of corticospinal 
neurons, as indicated by motor evoked potentials (MEPs) of a larger 
amplitude compared to the peak of the μ-rhythm (21–24). Importantly, 
these alternating excitability states are decisive for the induction of 
plasticity: consistent triggering of rTMS during the high-excitability 
state led to long-term potentiation (LTP)-like effects in corticospinal 
excitability. In contrast, no changes were observed when stimuli were 
uncoupled from sensorimotor μ-phase in otherwise identical 
stimulation protocols (23, 25–27). In particular, the synchronization 
of TMS bursts with the trough of the μ-oscillation demonstrated 
efficacy in LTP-like plasticity induction in healthy subjects when 
presented in high-gamma frequencies (e.g., 100 Hz) (28).

Brain state-dependent TMS has predominantly been explored 
in healthy subjects. The method relies on autoregressive forward 
prediction to estimate future instantaneous oscillatory phases (23, 
29), requiring consistent and predictable phase progression over 
time. In stroke, the disruption of brain networks can undermine 
the integrity of the μ-oscillation (30), which makes reliable phase 
targeting challenging. Nevertheless, Hussain et  al. (31) have 
recently demonstrated in three chronic stroke patients that 
accurate targeting of the ipsilesional sensorimotor μ-rhythm 
is feasible.

Collectively, these findings suggest that real-time information 
about instantaneous brain states can be utilized to control the efficacy 
of plasticity in humans, potentially optimizing stimulation protocols 
to maximize the benefits of therapeutic interventions using rTMS in 
rehabilitation after stroke. The objective of this study was to investigate 
the feasibility and therapeutic efficacy of μ-phase-synchronized rTMS 
over M1 in improving motor disability of the upper limb in chronic 
stroke patients.

The application of rTMS for neurorehabilitation after stroke 
extends beyond treating motor disability to include the reduction of 
spasticity. Spasticity is defined as a “velocity-dependent increase in 
tonic stretch reflexes (muscle tone) with exaggerated tendon jerks, 
resulting from hyperexcitability of the stretch reflex” (32). The 
excitability of the monosynaptic Ia afferent-motoneuron (MN) 
pathway, which underlies the stretch reflex is regulated by intricate 
spinal circuitries, which are in turn modulated by supraspinal 
pathways descending from cortical and brainstem structures (33).

There is increasing evidence indicating that rTMS, particularly 
1 Hz stimulation to the contralesional M1, effectively reduces spasticity 
(7). Although the precise mechanism by which rTMS might affect 
spasticity remains unclear, it is plausible that rTMS modulates the 
activity of spinal circuitry involved in spasticity by altering the 
excitability of cortical—or subcortical—centers projecting to this 
circuitry (34–36). We hypothesized that optimizing rTMS stimulation 
protocols through individualized brain state-dependent stimulation 
could enhance the effects not only on motor impairment and function 
but also on reducing spasticity. Therefore, as a secondary outcome 
measure in this feasibility trial, we aimed to assess the effects of rTMS 
on spasticity.

In summary, this study was designed to examine the feasibility 
and therapeutic efficacy of μ-phase-synchronized rTMS over M1 in 
improving motor disability of the upper limb in chronic stroke 
patients. A secondary outcome measure was to examine the effect on 
spasticity and the underlying mechanism. In this proof-of-concept 
trial, we compared the effects of μ-oscillation-triggered rTMS of the 
ipsilesional M1 with an established protocol of low-frequency rTMS 
over the contralesional M1.
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2 Materials and methods

2.1 Trial design

This single-center parallel-group randomized double-blind 
controlled proof-of-concept trial compared brain-oscillation-triggered 
rTMS, synchronized with the trough of the EEG sensorimotor 
μ-rhythm of the ipsilesional hemisphere (referred to as intervention), 
with the established protocol of 1 Hz rTMS of the contralesional M1 
(referred to as control). Both stimulation protocols were administered 
immediately prior to upper limb physiotherapy. Blinding procedures 
were implemented to ensure that participants and study staff, except 
for the personnel delivering the rTMS treatment, were unaware of 
group assignment.

The trial was conducted at Tübingen University Hospital-
Department of Neurology & Stroke. All patients provided informed 
consent prior to participating in the trial (ethics committee 
approval No: 530/2019BO1). The study adhered to the principles of 
the declaration of Helsinki and was registered in a publicly 
accessible clinical trials registry (ClinicalTrials.gov, identifier: 
NCT05005780).

2.2 Subjects

We recruited 30 patients (23 males, 7 females) with upper limb 
hemiparesis following ischemic (n = 22) or hemorrhagic stroke (n = 8). 
The patients had an average age of 57.9 ± 8.0 (range: 39–73) years. The 
average time since stroke was 51 ± 47 months (range: 9 months—
27.9 years). A total number of 79 subjects were screened for inclusion. 
Forty-nine of the screened subjects were excluded (43 did not meet 
the recruitment criteria, and 6 did not participate for other reasons). 
Figure  1 shows the participant flow chart, while subjects’ 
characteristics are found in Table 1.

The inclusion criteria were as follows: (1) minimum 6 months 
since stroke onset; (2) age 18–85 years and able to provide informed 
consent; (3) presence of ipsilesional MEPs; (4) resting motor threshold 
(RMT) of the contralesional M1 <80% of maximum stimulator output 
(MSO); (5) ability to understand and willingness to follow the Fugl-
Meyer Assessment-Upper Extremity (FMA-UE) instructions, 
FMA-UE score ≤60.

Following safety and ethics guidelines for TMS in clinical 
practice and research (37), participants were excluded if they (1) had 
a seizure disorder history; (2) were taking pro-convulsive medication; 
(3) were taking muscle-relaxing medication (e.g., baclofen, 
tolperison, cannabis); (4) had a cardiac pacemaker, implanted 
medication pump, or an intracranial implant; (5) received a 
botulinum toxin injection in their affected upper limb <3 months 
before inclusion; (6) had a wrist joint contracture hindering 
spasticity measurement.

2.2.1 Randomization
Patients were randomized into two groups of 15 patients each 

using a stratified block randomization method (38) with randomly 
selected block sizes of 4 or 6 patients. Stratification, based on FMA-UE 
scores, categorized patients into two strata: scores 0–30 and scores 
31–60, ensuring a balanced distribution at baseline. The randomized 
list was generated using MATLAB.

2.3 Study overview

Patients underwent four evaluation sessions. The first session 
(pre-assessment) involved examination of eligibility based on 
inclusion and exclusion criteria, followed by baseline assessment, 
immediate post-therapy assessment, and a three-month follow-up. 
The study’s outcome measures were evaluated during all three 
assessment sessions. Adverse events were systematically monitored 
through inquiries after each rTMS session, addressing effects or 
complaints from the current or previous sessions.

Additionally, magnetic resonance images (MRIs) (clinical or 
research scans, T1 or T2-weighted) were available for a subset of 
patients (n = 24; 11 in the control group and 13 in the intervention 
group), and used for lesion mapping. Lesions were overlaid for each 
group (Figure 2A), guiding their classification as subcortical, cortical, 
or combined, with motor cortex involvement defining cortical lesions 
(Table 1).

2.3.1 TMS stimulation protocols
Both groups received 12 rTMS therapy sessions over 4 weeks (3 

sessions per week). During rTMS stimulation sessions, patients were 
seated on an electronically adjustable reclining chair (Treatment Chair 
with Neckrest, MagVenture, Farum, Denmark) with both arms relaxed. 
A conventional TMS stimulator (MagPro R30, MagVenture, Farum, 
Denmark) was used to deliver biphasic TMS pulses to the motor 
hotspot, using an air-cooled figure of eight coil (MCF-B65 MagVenture, 
diameter 75 mm) according to the designated protocol. The coil was 
oriented such that the second phase of the biphasic pulse induced an 
electrical field in the brain from lateral-posterior to medial-anterior.

In the 1 Hz rTMS group (control group), 1,200 TMS pulses were 
delivered at a frequency of 1 Hz and an intensity equivalent to 115% 
RMT to the motor hotspot of the contralesional M1 (8). For the brain 
state-dependent stimulation group (intervention group), phase-specific 
TMS pulses were triggered by a customized real-time signal-processing 
system (23). Triple pulses at 100 Hz, with an inter-burst interval of on 
average 3 s were delivered based on the instantaneous oscillatory phase 
of the ipsilesional sensorimotor μ-rhythm (28). A total of 400 triplets at 
100% RMT were triggered using a combined criterion of μ-phase 
(triggered at negative peak) and power threshold. The power threshold 
was individually adjusted to result in a stimulation frequency around 
0.33 Hz (Figure 2B). The intervention protocol builds on previous theta-
burst inspired paradigms used in our group, which reliably induced 
plasticity in healthy participants (23, 28). A stimulation intensity of 
100% was used to reliably elicit MEPs using triple bursts, providing an 
additional measure for coil position stability during therapy.

Immediately following each rTMS session, patients engaged in a 
50 min personalized exercise-based physiotherapy training targeting arm 
and hand function. The training involved practicing meaningful 
functional tasks tailored to the patients’ goals and motor abilities, 
covering various aspects like trunk control, strength training, object 
manipulation, and fine motor training. In total, patients received 600 min 
(12 sessions × 50 min) of physiotherapy throughout the study period.

2.4 EEG and EMG recordings

NeurOne Tesla biosignal amplifier (Bittium Biosignals Ltd., 
Finland) was used for acquiring both EEG and EMG signals. Scalp 
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EEG was recorded using a TMS-compatible 64-channel Ag/AgCl 
sintered ring electrode cap (EasyCap GmbH, Germany) arranged 
according to the International 10-5 system with a denser electrode 
array over the sensorimotor cortex (39). The reference electrode was 
located at the FCz position, and the ground electrode was located at 
the POz position. During rTMS therapeutic stimulation sessions, the 
EEG caps placed on the patients’ heads were equipped with only 5 
electrodes in the C3-centered or C4-centered Laplacian montage (see 
Figure  2C), along with reference and ground electrodes. EEG 
electrodes were fitted onto the EEG cap on the stimulated side in both 
therapy groups.

EEG signal was sampled at a rate of 5 kHz and low pass filtered 
(1.25 kHz cut-off). EMG signal was sampled at 10 kHz and low pass 

filtered (1.5 kHz cut-off) using bipolar surface electrodes (Ambu® 
Neuroline 720, Denmark) placed on the abductor pollicis brevis 
(APB), first dorsal interosseous (FDI) and abductor digiti minimi 
(ADM) in a belly-tendon arrangement. An additional ground 
electrode was placed on the styloid process of the ulna.

Resting-state EEG data (5 min) was acquired during the 
pre-assessment, as well as during post-treatment, and follow-up 
sessions. Before the recording, the skin was carefully prepared by mild 
skin abrasion (Nuprep Skin Prep Gel, United States). To ensure signal 
quality, care was taken to maintain electrode impedances below 10 
kΩ. Patients were instructed to keep their eyes open, and to maintain 
their neck, jaw, and arm muscles relaxed during the recording. The 
experimenter continuously monitored the EMG and EEG signals 

FIGURE 1

Flow chart of study participants.
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TABLE 1 Characteristics of study participants.

ID Age Sex Time 
since 
stroke 

(m)

Affected 
side

Ischemic /
hemorrhagic

Location FMA-
UE/66

RMT 
(%)

MAS 
wrist

MAS 
total/70

Visual 
analog 

scale (%)

MAL 
(%)

Disability 
rating 

scale/24

1 70 F 40 R Ischemic No MRI 10 65 1 6.5 20 0 8

4 62 M 16 R Hemorrhagic Subcortical 22 80 1+ 6.5 15 0 13

5 50 F 97 L Ischemic Cortical + 

subcortical

49 56 1+ 9 50 39 11

7 69 M 120 R Ischemic Cortical + 

subcortical

39 59 1+ 14 60 5 20

9 54 M 179 L Ischemic Cortical + 

subcortical

58 79 1 4 40 35 8

14 53 M 45 L Ischemic Subcortical 31 87 1 11 50 10 10

18 70 M 36 L Ischemic Cortical + 

subcortical

57 46 0 6 40 52 5

23 54 M 47 R Hemorrhagic No MRI 28 56 2 18.5 60 43 7

24 67 M 50 L Ischemic Subcortical 32 85 3 16.5 100 26 16

25 60 M 335 R Ischemic Subcortical 44 79 1+ 10 30 28 7

32 39 M 12 R Ischemic Subcortical 38 58 1+ 14.5 33 26 17

35 53 M 17 L Ischemic Subcortical 43 58 0 5.5 0 9 10

38 67 M 9 R Ischemic Subcortical 56 66 1 4 20 32 9

39 49 M 73 R Ischemic No MRI 38 72 3 17 75 14 4

41 50 F 14 L Ischemic No MRI 14 70 1 5 60 3 13

44 73 M 71 L Ischemic Subcortical 42 65 1+ 9 30 21 11

45 61 M 66 R Ischemic Cortical + 

subcortical

30 69 1 12.5 50 7 6

47 53 F 33 R Hemorrhagic Cortical + 

subcortical

41 82 0 8.5 70 16 12

49 49 M 9 R Ischemic Cortical 38 56 0 17 75 14 4

55 58 M 27 R Ischemic Subcortical 56 59 0 0 0 30 7

(Continued)
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TABLE 1 (Continued)

ID Age Sex Time 
since 
stroke 

(m)

Affected 
side

Ischemic /
hemorrhagic

Location FMA-
UE/66

RMT 
(%)

MAS 
wrist

MAS 
total/70

Visual 
analog 

scale (%)

MAL 
(%)

Disability 
rating 

scale/24

60 61 M 35 L Ischemic Subcortical 41 54 1 8.5 40 20 7

61 66 M 36 R Ischemic Subcortical 34 42 1 10 55 18 12

62 55 M 15 L Hemorrhagic Subcortical 30 52 1+ 6 30 23 4

65 52 M 29 L Ischemic No MRI 45 56 1 9 50 16 16

73 60 M 24 L Hemorrhagic No MRI 59 67 0 4 60 41 7

74 68 M 126 L Hemorrhagic Cortical + 

subcortical

19 76 1+ 12 90 0 11

76 44 F 12 R Ischemic Cortical + 

subcortical

59 49 0 6.5 0 69 4

77 59 F 29 R Hemorrhagic Cortical + 

subcortical

21 60 2 15.5 30 0 20

78 58 M 22 L Ischemic Subcortical 23 84 1+ 10 40 0 8

79 53 F 178 L Hemorrhagic Cortical + 

subcortical

17 59 1 12 80 7 13

The clinical scores represent those acquired at baseline. FMA-UE, Fugl-Meyer Assessment-Upper Extremity; RMT, resting motor threshold, expressed as a percentage of maximum stimulator output on the lesioned side; MAS, modified Ashworth scale; MAL (%), 
motor activity log, a structured interview which examines the patient’s use of the affected upper limb in comparison to the time before the injury.
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during the recording, and took appropriate measures whenever 
artifacts were introduced.

2.5 Motor hotspot identification and 
resting motor threshold measurement

The stimulation target was the hand knob area in M1. For each 
participant, the motor hotspot was determined by identifying the coil 
position and orientation over the M1 hand representation that elicited 

the largest and most consistent MEPs in either ABP, FDI or ADM 
muscles. The identified muscle—in the affected upper limb for the 
intervention group or the unaffected upper limb for the control 
group—was designated as the reference muscle for each participant, 
and used consistently throughout all subsequent therapeutic sessions.

To ensure the most effective hand knob stimulation, a hotspot 
search was performed at the beginning of each stimulation session to 
re-identify the reference muscle’s hotspot. Once identified, the motor 
hotspot was marked on the EEG cap to guarantee consistent coil 
positioning throughout the session.

To determine the stimulation intensity, we assessed the RMT in 
the reference muscle every session. RMT was defined as the minimum 
stimulus intensity required to elicit MEPs with a peak-to-peak 
amplitude of at least 50 μV in the target muscle (the muscle with the 
lowest RMT) in at least 5 out of 10 consecutive TMS pulses delivered 
to the motor hotspot (40).

2.6 Real time stimulation method

EEG-phase synchronization was achieved using a real-time EEG 
data analysis method described in Zrenner et  al. (23). Briefly, an 
algorithm implemented in Simulink Real-Time (Mathworks Ltd., 
United States, R2017b) was used to analyze an online output copy of 
the EEG signal in real-time in order to determine the timing of and 
trigger the TMS pulse. The local cortical activity of the sensorimotor 
cortex μ-rhythm was extracted using a surface Laplacian source 
derivation montage centered at electrode C3 for left-sided lesions 
(referenced to the average of the surrounding electrodes CP1, CP5, 
FC1, and FC5), and C4 for right-sided lesions (referenced to CP2, 
CP6, FC2, and FC6) (21–23, 41). A sliding window (length 500 ms) of 
data was band-pass filtered (6–15 Hz) to isolate the μ rhythm. This 
relatively wide range was chosen as individual peak frequencies of the 
ipsilesional sensorimotor cortex spanned a wider range than the 
typical alpha band. The instantaneous phase at the time of the TMS 
trigger decision was estimated by forward-predicting the signal using 
an autoregressive model. The spectral band-power within the sliding 
window of data was also estimated in real-time using fast Fourier 
analysis (FFT). When the band-power exceeded a predetermined 
threshold and simultaneously matched a pre-specified phase, a TMS 
pulse was triggered (Figure 2C). The power threshold was adjusted 
continuously during the experiment to achieve an average stimulation 
frequency of 0.33 Hz.

2.6.1 Spectral estimation
Spectral estimation was performed on the resting state EEG data 

obtained during screening sessions using the multi-taper method, 
applying three distinct tapers (window functions) to baseline-
corrected epochs with a length of 1.4 s and a 50% overlap. The 
aperiodic fractal background component of the spectrum was 
estimated using the irregular-resampling auto-spectral analysis 
(IRASA) method (42) with factors 1.1 to 2.9  in steps of 0.1 and 
excluding 2.0, and removed from the full spectrum.

The resulting ratio between the power of the periodic component 
and the aperiodic background noise can be termed signal-to-noise 
ratio (SNR). SNR determines the maximum achievable precision of 
phase targeting (43). The individual μ-peak frequency was determined 
from the corrected spectrum in the range between 6 and 15 Hz of both 

FIGURE 2

(A) Lesion distribution overlays for both study groups, the control 
group (upper panel, n = 11) and the intervention group (lower panel, 
n = 13), were generated through MRI analysis. The computation 
involved manual delineation conducted by a qualified neurologist for 
each patient to define the volume of interest (VOI) within the subject 
space. Subsequently, the VOI was normalized to Montreal 
Neurological Institute (MNI) space using the Clinical Toolbox in 
SPM12. VOIs were mirrored to the left in right hemisphere lesions. 
Lesion overlap was calculated utilizing the NiiStat Toolbox functions 
for MATLAB. (B) The two rTMS protocols used in this study. Left: the 
brain state-dependent stimulation group (intervention group) 
received 1,200 TMS pulses to the ipsilesional M1 in the form of triple 
pulses at 100  Hz and an interstimulus interval of on average 3  s. 
Right: the control group received 1,200 TMS pulses to the 
contralesional M1 at 1  Hz frequency. (C) The brain state-dependent 
stimulation method: an output copy of the EEG signal was analyzed 
in real-time in order to determine the timing of and trigger the TMS 
pulse. The local cortical activity of the sensorimotor cortex μ-rhythm 
was extracted using a surface Laplacian source derivation montage 
centered around C3 for a left-hemisphere lesion. A sliding 500  ms 
window of EEG data was band-pass filtered (6–15  Hz) to isolate the 
μ-rhythm. An autoregressive model was used to predict the 
instantaneous phase of the signal. When the band-power exceeded 
a predetermined threshold and simultaneously matched a pre-
specified phase, a TMS pulse was triggered.
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the ipsilesional and contralesional hemispheres, and the respective 
SNR at that frequency was obtained.

2.6.2 Real-time EEG phase estimation accuracy
Phase estimation accuracy for each subject was calculated using 

the resting state EEG dataset. We compared the real-time—causal—
phase estimation, where only data preceding the time of interest, i.e., 
the TMS pulse is available, against a “benchmark” estimation method 
using the PHASTIMATE toolbox (43). The benchmark—non-causal—
estimation uses data before and after the time point of interest for 
instantaneous phase and amplitude determination.

Both (simulated) real-time phase estimate and the non-causal 
benchmark phase were obtained from TMS-artifact-free resting-state 
EEG data. For details, please refer to Zrenner et  al. (44). Briefly, 
resting-state EEG data was segmented into overlapping 1.4 s epochs. 
The phase at the center of each epoch was estimated using both 
methods. The causal real-time algorithm utilized a 500 ms segment of 
data preceding the center of the epoch, while the non-causal 
benchmark method utilized the entire epoch for estimation. Epochs 
with an alpha oscillation spectral power below the median were 
discarded from the phase accuracy analysis, to simulate the effect of 
the real-time amplitude threshold. We then computed the average 
error between the trial-wise causal and benchmark estimates. Circular 
standard deviation quantified the variance of trial-wise errors, 
providing a measure of estimation precision.

2.7 Spasticity-related measurements

2.7.1 Objective assessment of spasticity in the 
wrist flexors using a hand-held dynamometer

The Portable Spasticity Assessment Device (PSAD) from Movotec, 
Denmark, a hand-held dynamometer, was utilized for objective wrist 
flexor spasticity assessment (45, 46). It enabled simultaneous 
measurement of force, joint movement, and muscle activity to 
precisely measure reflex-mediated muscle resistance (spasticity) and 
distinguish it from soft tissue (passive) stiffness.

Passive stiffness was evaluated by slow wrist joint extension 
(<20°/s) to assess resistance in the absence of a stretch reflex, while 
reflex-mediated stiffness was measured during high-velocity joint 
movement (>300°/s) triggering a stretch reflex. Six repetitions were 
performed for each velocity. EMG data was recorded using bipolar 
surface adhesive electrodes placed over the bellies of both flexor carpi 
radialis (FCR) and extensor carpi radialis (ECR) muscles. The PSAD 
was wirelessly connected to a data acquisition software providing real-
time visual feedback on stretch velocity and EMG activity. All data, 
including position, acceleration, angular velocity, EMG, and forces, 
were saved for offline analysis. A MATLAB code was used to analyze 
the raw data and extract the outcome parameters (passive stiffness and 
stretch reflex torque) based on the methods detailed in Mahmoud 
et al. (45).

2.7.2 Electrophysiological assessment of 
post-activation depression

Post-activation depression, a spinal inhibitory mechanism 
characterized by frequency-dependent reduction in neurotransmitter 
release, is consistently decreased on the affected upper limb in spastic 
stroke patients (47, 48). This reduction correlates with clinical 

spasticity assessments (48), potentially contributing to stretch reflex 
hyperexcitability. To investigate potential spasticity-related 
neurophysiological changes induced by rTMS, we measured post-
activation depression by varying the inter-stimulus interval (ISI) of 
consecutive stimuli to the median nerve, while measuring the H-reflex 
in the FCR (47).

Using a direct current stimulator (DS07 Digitimer, 
United Kingdom), the median nerve was stimulated at the elbow with 
1 ms rectangular shocks via metal electrodes (brass, 1.5 cm radius). 
Stimulation intensity was adjusted to produce an H-reflex with a peak-
to-peak amplitude of Hmax/2. Stimulation blocks alternated ISIs of 8 or 
2 s until 30 reflexes at each interval were obtained (3 blocks of 10 stimuli 
per ISI). EMG data from NeurOne was analyzed using a customized 
Python program. The peak-to-peak amplitudes of the individual 
H-reflexes were extracted, and the responses triggered with the same ISI 
were averaged and saved for statistical analysis. The outcome measure 
of this assessment is the calculated ratio of the H-reflex amplitude 
evoked every 2 s to that of the H reflex evoked every 8 s: (H2/H8).

2.8 Clinical outcome measures

The primary outcome measure was defined as the change in 
motor impairment measured using the standardized FMA-UE (49) 
both immediately post-treatment (post), and 3 months post-treatment 
(follow-up) in comparison to baseline.

Other outcome measures included the Wolf Motor Function Test 
(WMFT), which comprised 15 timed tasks for the evaluation of upper 
limb motor function (50). Both the time (in seconds) required to 
perform a task, as well as the quality of the movement were recorded. 
Movement quality was rated on a scale from 0 to 5. Total time score 
was calculated by summing the time taken for each task (capped at 
120 s if not completed within that time frame), while the quality score 
is the sum of all task quality ratings, with a maximum score of 75.

Clinical measures of spasticity were obtained using the modified 
Ashworth scale (MAS) (51), where the examiner passively mobilized 
the joint of interest and simultaneously estimated the perceived 
resistance according to a 6-point ordinal scale. The total MAS score 
was calculated by summing individual scores from 14 movements of 
multiple upper limb joints (flexion, abduction, internal rotation and 
external rotation of the shoulder; flexion and extension of the elbow; 
pronation and supination of the forearm; flexion and extension of the 
wrist; flexion and extension of the fingers; and adduction and 
abduction of the thumb).

Patient-centered outcome measures included the visual analogue 
scale (VAS) for self-reported spasticity, where patients reported the 
degree of spasticity they perceived in their arm on a scale that ranged 
between 0 and 100. The Motor Activity Log (MAL-30) a questionnaire 
where patients described the frequency with which they used the 
affected limb to perform each of 30 different activities of daily living 
(52, 53). Additionally, the Disability Rating Scale (54) was used for 
assessing the impact of spasticity on daily activities.

2.9 Statistical analysis

Statistical analyses were performed on the intention-to-treat 
(ITT) population using IBM-SPSS Statistics software version 28.0.1.1 
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(IBM Corp., Armonk, NY, United States), JASP version 0.18.0 (55) was 
used for Bayesian statistics. Baseline comparability between the 
intervention and control groups included the examination of several 
variables, namely age, time since stroke, and baseline FMA-UE scores 
using an independent t-test.

To assess normality assumptions, we inspected histograms for 
each outcome measure and calculated skewness and kurtosis, we also 
ran the Shapiro–Wilk test for each assessment session and each group. 
The assumption of sphericity was tested using Mauchly’s test, which 
indicated no violation of sphericity for any variable, eliminating the 
need for correction. For normally distributed datasets, we employed 
repeated measures ANOVA, considering Session (baseline, post, 
follow-up) as a within-subject effect, and Group (Intervention, 
Control) as a between-subject effect. Additionally, we examined the 
interaction (Session × Group). The Bayesian repeated measures 
ANOVA used BF10 and compared to null model.

When data did not satisfy the assumption of normality (WMFT-
time, WMFT-function and stretch reflex torque), We used Generalized 
Estimating Equations (GEE) to test the effect of Session, Group and 
Session × Group interaction. We  applied a GEE model with an 
exchangeable correlation structure to account for within-subject 
correlations over time. The outcome variable was treated as continuous, 
with a gamma probability distribution and a log link function. Robust 
estimation was used to handle violations of normality. A p-value of 
<0.05 was considered to indicate statistical significance. For ordinal 
data (Disability Rating Scale), we used Whitney U test.

3 Results

Seventy-nine subjects were screened between October 2019 and 
March 2022. Thirty stroke patients (23 males, 7 females), average age 
57.9 ± 8.0 years, participated in this study. All patients had unilateral 
hemiparesis due to stroke at least 6 months before participation 
(average 51 ± 47 months). A participant flow diagram is presented in 
Figure 1. The characteristics of the study participants are presented in 
Table 1. Two patients from the control group were lost to follow-up and 
one additional patient refused to perform the WMFT during follow-up.

3.1 Adverse events

During the study, adverse events were observed in 7 out of 360 
therapy sessions: 4  in the control group and 3  in the intervention 
group. In the control group, adverse events included tiredness (n = 1), 
headache (n = 1), and shoulder/arm pain—presumably, posture, not 
rTMS-related—(n  =  2, 1 session terminated). In the intervention 
group, adverse events consisted of head numbness (n = 1), transient 
double vision (n = 1), and tiredness (n = 1). Two pre-assessment 
sessions had to be terminated—one due to orthostatic syncope and 
another due to intense agitation during TMS.

3.2 Spectral analysis and phase estimation 
accuracy

The mean μ-peak frequency of the ipsilesional sensorimotor cortex 
was 9.5 ± 2.7 Hz with a mean SNR of 5.4 ± 2.3 dB, compared to 
12.5 ± 2.3 Hz and 4.9 ± 2.3 dB in the contralesional sensorimotor cortex. 

With regards to targeting the μ-oscillation in the ipsilesional hemisphere, 
the average phase difference between the estimate of the real-time 
algorithm and the post-hoc phase measure was 1° ± 83.6° (mean ± circular 
standard deviation) demonstrating an absence of a systematic bias. These 
results are similar to findings reported in the literature (31, 44).

3.3 Group comparison

3.3.1 Baseline group comparison
The results of the t-test revealed no significant differences between 

the two groups at baseline with regards to age (intervention: 
57 ± 8 years, control: 60 ± 9 years; p = 0.47), time since stroke 
(intervention: 47 ± 52 months, control: 54 ± 44 months; p = 0.41), and 
FMA-UE scores (intervention: 37.6 ± 15, control: 38 ± 15; p = 0.9).

3.3.2 Effects on clinical outcomes
The repeated measures ANOVA (Table 2) revealed a significant 

effect of the treatment on FMA-UE score [Session: F (2,52) = 25.7, 
p < 0.001]. No difference was observed between the groups [Group: F 
(2,26) = 0.45, p = 0.51], and there was no significant Session × Group 
interaction [F (2,52) = 0.31; p = 0.73]. Post hoc analyses indicated 
sustained gains in FMA-UE at 3 months follow up, with a significant 
difference between baseline and post scores (p < 0.001), baseline and 
follow-up scores (p < 0.001), but not between post and follow-up 
scores (p = 0.48) (Figure 3).

Potential FMA-UE treatment effects were further explored using 
a Bayesian repeated measures ANOVA. The analysis revealed very 
strong evidence for an effect of Session (BFincl  = 616569.643), but 
showed evidence against Group (BFincl = 0.508) and Session × Group 
interaction (BFincl  = 0.907). Post hoc comparison for Session 
demonstrated very strong evidence for a difference between baseline 
and post (BF10,U  = 23733.611), baseline and follow-up 
(BF10,U = 1055.822), but evidence against a difference between post and 
follow-up (BF10,U = 0.246). These results align with the findings of the 
classical statistical analysis.

The WMFT showed a significant treatment effect (Session) for 
both time [χ2 (2) = 22.5, p  < 0.001] and function components [χ2 
(2) = 26.2, p < 0.001]. No Group effect or significant Session × Group 
interactions were observed. Moreover, there was a significant effect of 
the treatment on the reduction of stretch reflex torque measured with 
the hand-held dynamometer [Session: χ2 (2) = 5.9, p = 0.05], without a 
significant Group effect or Session × Group interaction.

The MAS (total) exhibited a significant decrease after treatment 
[Session: F (2,50) = 5.8, p = 0.005], without a significant Session × Group 
interaction. Patient-reported use of the upper extremity in everyday 
activities (MAL) significantly increased after treatment [Session: F (2,42) 
= 11.6, p < 0.001] without a difference between the groups. No 
significant effects of the treatment were observed on grip strength, 
post-activation depression, VAS for perceived spasticity, or Disability 
Rating Scale (Figure 4).

4 Discussion

Evidence from experiments in healthy subjects indicates that 
brain state-dependent rTMS may improve the magnitude and 
consistency of rTMS effects by delivering the stimulation during 
periods of increased cortical excitability, thus, increasing the induction 
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of LTP-like plasticity (23, 26). In this trial, we investigated feasibility 
and efficacy of an rTMS protocol which synchronized the TMS bursts 
with the trough of the ipsilesional sensorimotor cortex μ-rhythm, i.e., 
a high-excitability state of the corticospinal tract. We compared this 
intervention to standard low-frequency rTMS of the contralesional 
motor cortex.

The stimulation was well-tolerated in both groups. All adverse events 
were mild, mostly standard TMS side-effects or unspecific in nature. The 
accuracy of targeting the trough of the ipsilesional sensorimotor cortex 
μ-rhythm was comparable to previous studies in healthy subjects (23, 27, 
44), confirming the feasibility of safe and successful administration of 
brain state-dependent stimulation to chronic stroke patients in a clinical 
setting. A more detailed analysis of EEG parameters and changes will 
be published in a separate manuscript.

The analysis of clinical endpoints demonstrated significant 
improvements in motor impairment and function, alongside a 
reduction in clinical and objective measures of spasticity in both 
groups with no significant difference between the groups. Motor 
improvement was maintained 3 months’ post-treatment, and was 
accompanied by an increased use of the affected upper limb in daily 
activities, as indicated by the MAL questionnaire. Although no 
significant difference was observed between the two groups, this 
finding does not necessarily mean that the stimulation protocols have 
identical effects. The study’s design, with its limited statistical power, 
may not have been sensitive enough to detect differences, if present. 
Therefore, while this feasibility study was not intended to compare 
the effectiveness of the stimulation protocols, it serves as a pilot to 
inform the design of larger clinical trials.

In addition, the absence of a sham-rTMS arm in this study raises 
the possibility that clinical improvements in both groups may 
be attributed to the physiotherapy, especially considering the limited 
physiotherapy typically received by chronic patients. Our study did 

not aim to establish rTMS superiority over physiotherapy, but rather 
to compare two rTMS protocols that serve as priming tools for 
enhancing motor rehabilitation. However, numerous randomized 
sham-controlled trials have demonstrated the efficacy of rTMS 
interventions in improving motor impairment and function in chronic 
stroke. For comprehensive reviews of these trials, please refer to Graef 
et al. (2), Kim et al. (56), Lüdemann-Podubecká et al. (57), Dionisio 
et al. (58), and Zhang et al. (59).

Both rTMS protocols implemented in this study aimed to increase 
the excitability of the ipsilesional hemisphere and are embedded in the 
interhemispheric inhibition (IHI) model. The model supposes that 
unopposed inhibition from the contralesional to the ipsilesional 
hemisphere impedes recovery after stroke. The phase-dependent 
stimulation aimed to directly upregulate the excitability of the 
ipsilesional cortex using high-frequency (100 Hz) triplets, while the 
low-frequency (1 Hz) rTMS attempted to indirectly upregulate the 
excitability of the ipsilesional cortex through downregulation of the 
contralesional hemisphere and thereby rebalancing abnormal 
interhemispheric inhibition. The integrity of the ipsilesional 
corticospinal tracts has been proposed as a biomarker for potential 
benefit from therapies that aim to upregulate ipsilesional excitability 
(60). Despite the different working mechanisms of the two stimulation 
protocols used in this study, both aimed to enhance the excitability of 
the ipsilesional hemisphere. In line with this, only patients with 
positive ipsilesional MEPs were included, thereby increasing both the 
homogeneity of the study sample and the potential for improvement.

Selection of contralesional low-frequency stimulation as the 
control intervention was based on the cumulative evidence supporting 
its efficacy. However, recent literature questions its mechanism and 
suitability for all stroke patients (61). Indeed, the IHI imbalance model 
itself is currently being debated and re-evaluated in light of recent 
evidence (62–66), suggesting that IHI per se should not be a target for 

TABLE 2 Results of the statistical analysis for clinical outcome measures.

Contralesional 1  Hz rTMS 
(Control) mean  ±  standard 

deviation

Phase-dependent rTMS 
(Intervention) mean  ±  standard 

deviation

Measure Pre Post Follow-
up

Pre Post Follow-
up

Session Group Session × 
Group

FMA-UE/66 40.8a ± 3.9 45.8 ± 4.0 45.1 ± 4.1 37.6 ± 3.7 41.6 ± 3.7 681 ± 121 F (2,52) = 25.7, 

p < 0.001

F (2,26) = 0.45, 

p = 0.51

F (2,52) = 0.31, 

p = 0.73

WMFT-time (s) 652 ± 135 518 ± 126 564 ± 132 731 ± 125 659 ± 116 40.2 ± 5.6 χ2 (2) = 22.5, 

p < 0.001

χ2 (1) = 0.13, 

p = 0.72

χ2 (2) = 3.5, 

p = 0.18

WMFT-

function/75

42.8 ± 5.7 46.8 ± 5.7 46.7 ± 6 37.9 ± 5.2 40.2 ± 5.2 8.5 ± 1.9 χ2 (2) = 26.2, 

p < 0.001

χ2 (1) = 0.04, 

p = 0.85

χ2 (2) = 4.1, 

p = 0.12

Grip strength (kg) 15.3 ± 2.1 15.6 ± 2.4 15.8 ± 2.0 9.0 ± 2.0 9.4 ± 2.2 0.92 ± 0.33 F (2,44) = 0.09, 

p = 0.91

F (2,22) = 5.7, 

p = 0.03

F (2,44) = 0.21, 

p = 0.81

Stretch reflex 

torque (mV)

1.53 ± 0.34 1.29 ± 0.28 1.58 ± 0.33 1.29 ± 0.34 0.93 ± 0.28 7.5 ± 1.3 χ2 (2) = 5.9, 

p = 0.05

χ2 (1) = 1.2, 

p = 0.27

χ2 (2) = 2.1, 

p = 0.36

MAS_total /70 9.8 ± 1.3 8.2 ± 1.3 8.1 ± 1.4 8.3 ± 1.2 6.6 ± 1.2 33.8 ± 5.8 F (2,50) = 5.8, 

p = 0.005

F (2,25) = 0.48, 

p = 0.49

F (2,50) = 0.51, 

p = 0.60

MAL (%) 23.9 ± 5.6 36.9 ± 7 31.6 ± 6.6 24.9 ± 4.9 31.0 ± 6 33.8 ± 5.8 F (2,42) = 11.6, 

p = <0.001

F (2,21) = 0.01, 

p = 0.92

F (2,42) = 2.1, 

p = 0.13

FMA-UE, Fugl-Meyer Assessment-Upper Extremity; WMFT, Wolf Motor Function Test; MAS, modified Ashworth scale; MAL, Motor Activity Log.
aThe discrepancy in group mean values between the baseline group comparison analysis and this table is due to the loss of two patients to follow-up. ANOVA systematically excludes 
individuals with missing data, resulting in means calculated considering only subjects with a complete dataset.
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rTMS interventions (65). Contemporary models of interhemispheric 
communication present a more complex picture of the interaction 
between the two hemispheres following stroke, contingent on factors 
such as structural reserve (67) and integrity of the callosal and frontal 
connections (68). It is crucial to emphasize, however, that the ongoing 
debate around the IHI model does not invalidate previously reported 
beneficial effects [for an overview, see: Kim et al. (56) and Starosta 
et  al. (69)]. Rather, it suggests that these effects could arise from 
different, yet unknown mechanisms (65).

Two key principles are proposed to enhance the effectiveness of 
therapeutic brain stimulation: precision and personalization (70). This 
proof-of-concept study showed that the brain state-dependent 
stimulation protocol produced outcomes comparable to an established 
conventional open-loop stimulation protocol. This makes 
synchronization of brain stimulation to individual brain oscillations a 
promising possibility for personalizing therapeutic rTMS 
interventions. It is necessary to acknowledge, however, that this trial 
is preliminary. It was designed as a proof-of-concept trial with limited 
statistical power and a single control group which precludes further 
in-depth analyses or comparisons. Also, the study does not offer 
sufficient evidence to support the application of EEG brain-state 
dependent rTMS in standard clinical neurorehabilitation settings. 
Comprehensive investigations are necessary to explore the full 
potential of this technology. Currently, a confirmatory multicenter 
randomized controlled trial is ongoing in Germany to test the 
therapeutic efficacy in subacute motor stroke patients (ClinicalTrials.
gov, identifier: NCT05600374) (71).

A primary strategy to improve the effectiveness of this approach 
is through patient selection and stratification. The selection of an ideal 
rTMS protocol should consider factors like stroke type, location, and 

the stage of stroke recovery. In addition, the future of therapeutic brain 
stimulation should encompass enhanced subject stratification through 
in-depth analysis of brain connectivity and structural integrity. In the 
context of optimizing phase-dependent stimulation protocols 
specifically, several considerations arise. Firstly, it may be necessary to 
choose patients with a sufficiently high μ-rhythm power and SNR for 
optimal phase targeting (43). Secondly, given heterogeneity in lesion 
location and size among the stroke population, EEG channel selection 
may be  essential. Thirdly, parameters for brain state-dependent 
stimulation could be entirely automated using personalized classifiers 
(72, 73).

4.1 Effects on spasticity

When evaluating the impact of the rTMS therapy on spasticity, 
our investigation revealed a significant reduction in both MAS-total 
and the MAS-wrist extension. These results align with previous studies 
(74–77). This study represents one of the first attempts to objectively 
assess the impact of rTMS on spasticity. Using recently developed 
technology, we  found a significant reduction in the stretch reflex 
torque, which represents the neurogenic component of resistance to 
joint stretch. No change was recorded in the passive stiffness 
components. These findings are similar to what we observed in a 
previous study (46) which exclusively involved patients receiving 1 Hz 
contralesional rTMS.

Here, we found that high-frequency rTMS of the ipsilesional M1 
(brain state-dependent) also reduced spasticity. The finding that both 
stimulation protocols were similarly able to improve motor function 
and to reduce spasticity may indicate that reduction of spasticity could 

FIGURE 3

Individual and group FMA-UE scores across sessions for the intervention and control groups. Each thin line represents one patient, while the thick lines 
represent the mean values for each group across the three evaluation sessions.
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be related to motor function improvement, a finding that we recorded 
previously (46). This improvement, which may be  reflected in an 
increased excitability of the ipsilesional corticospinal tract can trigger 
changes at the level of the spinal cord and possibly the motor neurons 
itself, which lead to a reduction in the stretch reflex-mediated torque. 
We  also examined the possibility of the involvement of the post 
activation depression as a putative mechanism underlying the 
measured reduction in spasticity. This was not confirmed from this 
data, in line with our previous study, which examined this effect only 
by applying the 1 Hz rTMS protocol to contralesional M1 (46).

Recent evidence suggests that motor impairment and the 
development of spasticity share a common pathophysiological 
mechanism: the upregulation of descending motor tracts originating 
in the brainstem, primarily the reticulospinal tract (78, 79). This 
upregulation emerges as a response to the reduced descending input 
to the spinal motoneurons following an upper motor neuron lesion, 
thereby supporting muscle activation despite the loss of corticospinal 
drive. Additionally, the lesion itself may reduce cortical activation of 
the inhibitory brainstem centers by affecting the corticoreticular tract. 
These changes can enable the production of force in otherwise weak 

FIGURE 4

Box plots depicting group data for the two study groups: contralesional 1  Hz rTMS (control) group in blue and phase-dependent (intervention) group in 
red, across three measurement points (baseline, post, and follow-up). Each panel corresponds to one outcome measure (A): WMFT-Time, (B): WMFT-
Function, (C): WMFT-Grip strength, (D): Stretch reflex torque, (E): Modified Ashworth scale, (F): Post-activation depression, (G): Motor Activity Log, (H): 
Visual Analogue scale, (I): Disability Rating scale. The small blue and red circles represent individual patient data. The horizontal line inside the box 
represents the median value. The box expands between the 25th percentile (Q1) to 75th percentile (Q3), while the whiskers extend to the smallest and 
largest data points within 1.5 of the interquartile range (Q3 to Q1). Points outside this range could be considered outliers. WMFT, Wolf Motor Function 
Test. The asterisk represents a significant effect of the treatment (Session) on both groups, with no Session × Group interaction, (*) is significance at 
p  <  0.05 level, while (**) represents significance at p  <  0.001 level.
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muscles, but also alter the excitability of various spinal circuits, 
ultimately increasing the excitability of the stretch reflex, leading to 
spasticity (78).

The finding that both stimulation protocols examined in this 
study improve motor function and reduce spasticity to a similar extent 
(pending confirmation by larger trials) could suggest that these 
protocols influence the same underlying mechanism, though in 
different ways. For instance, ipsilesional high-frequency stimulation 
might enhance corticospinal tract excitability, and increase inhibition 
of the brainstem centers by boosting corticoreticular tract excitability, 
which would modulate reticulospinal tract input. Conversely, 
contralesional inhibitory stimulation could inhibit ipsilateral motor 
cortical areas (M1, somatosensory areas and premotor cortex) that 
facilitate the brainstem descending tracts. Understanding these 
physiological mechanisms requires an in-depth examination of the 
excitability of different cortical areas and descending tracts. While 
speculative due to the lack of evidence from this trial, exploring these 
mechanisms could be  of great value for understanding and 
optimization of rTMS intervention protocols.

5 Conclusion

This study demonstrates that brain state-dependent stimulation 
can be successfully applied in chronic stroke patients with clinical 
effects that are similar to current TMS standard therapy. EEG-TMS 
therefore constitutes an exciting option for personalization and 
optimization of motor neurorehabilitation supported by non-invasive 
brain stimulation. Future studies should further explore its clinical 
benefits and optimize its application.
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