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Spontaneous intracerebral hemorrhage (sICH) is associated with significant 
morbidity and mortality, with subsequent hematoma expansion (HE) linked 
to worse neurologic outcomes. Accurate, real-time predictions of the risk of 
HE  could enable tailoring management—including blood pressure control 
or surgery—based on individual patient risk. Although multiple radiographic 
markers of HE have been proposed based on standard imaging, their clinical 
utility remains limited by a reliance on subjective interpretation of often 
ambiguous findings and a poor overall predictive power. Radiomics refers to the 
quantitative analysis of medical images that can be combined with machine-
learning algorithms to identify predictive features for a chosen clinical outcome 
with a granularity beyond human limitations. Emerging data have supported the 
potential utility of radiomics in the prediction of HE after sICH. In this review, 
we  discuss the current clinical management of sICH, the impact of HE  and 
standard imaging predictors, and finally, the current data and potential future 
role of radiomics in HE prediction and management of patients with sICH.
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1 Introduction

Spontaneous intracerebral hemorrhage (sICH) refers to acute bleeding in the absence of 
trauma within the brain parenchyma that can expand into the ventricular, subarachnoid, and 
subdural spaces (1). The primary and most common causes of sICH are hypertension or 
underlying amyloid angiopathy; secondary causes of sICH include acquired or congenital 
coagulopathies, drugs, and underlying tumors or vascular lesions (2). sICH results in 
significant morbidity and mortality, accounting for 10–15% of all hemorrhagic strokes (3), 
which in turn have a global incidence and mortality of over 5 million and 3 million people, 
respectively (3).

Perhaps the most devastating feature of sICH is the propensity for hematoma expansion 
(HE), which occurs in up to one third of patients (4) and is a significant predictor of mortality 
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and poor functional outcomes (5). Nearly 40% of HE occurs within 
three hours of symptom onset (6), and its occurrence often precipitates 
neurologic deterioration as indicated by a decline in Glasgow Coma 
Scale (GCS) score. Identifying patients at risk and limiting HE in those 
with initially smaller hematoma volumes and higher GCS scores is 
particularly important to optimize outcomes, given that patients in 
one study with an overall hematoma volume of >60 mL and GCS 
score ≤ 8 had a 90% mortality rate at one month after initial 
presentation (7).

Although several clinical risk factors have been identified to 
help predict the likelihood of ICH formation (e.g., hypertension, 
genetic disposition, and cerebral amyloid angiopathy), the 
predictability of HE is less clear (8). Current imaging techniques 
such as specialized computed tomography (CT) and magnetic 
resonance imaging (MRI) scans are used to confirm the diagnosis 
of ICH (9), but predictions of HE risk often rely on human detection 
of gross imaging anomalies such as active extravasation. Radiomics, 
an emerging field using quantitative data extraction from diagnostic 
images for clinical problem-solving, represents a potential tool to 
address this issue (10).

Specifically, radiomics integrates numerous images, image 
derivatives, and higher-order data mined from medical images to 
identify complex patterns not otherwise visible to aid in pathology 
identification and management (11). Because of its quantitative and 
integrative nature, radiomics has the potential to significantly 
improve patient care beyond the limits of human ability. In one recent 
study, a radiomics-based model outperformed the diagnostic 
expertise of four experienced radiologists by identifying separate 
tumor pathologies (renal cell carcinoma, fat-poor 
angioleiomyolipoma, and oncocytoma) at a median sensitivity of 
90.0, 86.3, and 73.4%, with a specificity of 89.1, 83.3, and 91.3%, 
respectively (12). In comparison, the four radiologists performed at 
a median sensitivity of 84.5% for each tumor type and a median 
specificity of 61.8, 80.6, and 50.0%. Accordingly, radiomics is 
emerging as a potential tool to predict HE in patients with sICH (13). 
In the present review, we examine the current status and future of 
radiomics in HE detection and sICH management.

2 Methods

The search for relevant literature was performed using the 
electronic database Pubmed1 and included iterations of the search 
terms “spontaneous intracerebral hemorrhage,” “intraparenchymal 
hemorrhage,” “hematoma expansion,” “predict,” “imaging,” and 
“radiomics.” Relevant articles identified on manual review are 
summarized in the manuscript text, with specific information 
extracted for the summary tables including author; publication and 
data collection year(s); study design and number of included studies; 
total number of patients; inclusion and exclusion criteria; imaging 
modality and features of focus; main study findings; limitations, and/
or potential sources of bias (Tables 1, 2).

1 https://pubmed.ncbi.nlm.nih.gov

3 Hematoma expansion

3.1 Pathophysiology and natural history

The definition and pathophysiology of HE are nuanced because 
the line between primary and secondary bleeding can be difficult to 
delineate. Dowlatchahi et al. (29) outlined common definitions of 
HE as used in clinical trials based on absolute and/or relative volume 
changes on serial CT imaging, including a 40% relative volume 
increase or an absolute volume increase of 12.6 mL, a 33% relative 
volume increase, a 20 mL absolute volume increase, or a combined 
50% relative volume increase and a 2 mL absolute volume increase. 
Notably, these authors demonstrated that no matter the threshold for 
the definition of HE, each was independently related to poor outcomes 
(29). The cause of continued bleeding, or HE, has garnered two 
prominent schools of thought: further hemorrhage from the primary 
leaky vessel or the “snowball” effect, which infers continued 
hemorrhage from smaller neighboring vessels (30, 31).

Several studies have illustrated the impact of HE on morbidity and 
mortality in patients with sICH. In a retrospective study by Davis et al. 
(32), each 10% increase in hematoma volume was associated with a 
5% increase in mortality rate. Similarly, as part of the Intensive Blood 
Pressure Reduction in Acute Cerebral Hemorrhage Trial 
(INTERACT1) randomized controlled trial (RCT), Delcourt et al. (33) 
found that a 1 mL increase in hematoma volume leads to a 5% greater 
risk of death or functional dependency. A report by Edlow et al. (34) 
presented a particularly illustrative case of HE  in which a patient 
experienced an acute sICH while in the MRI scanner; what began as 
an 8.8 mL hemorrhage grew to 20.5 mL within 10 min and eventually 
settled at 43.5 mL just over 22 h after the initial finding. Although the 
patient initially presented with mild neurologic deficits, a new left-
sided hemineglect was noted directly after the imaging-documented 
HE. Recent work by Morotti et  al. (35) has further defined those 
patients at highest risk for a poor outcome with HE as those with a 
smaller initial HE  volume (<30 mL), with either an absolute 
HE increase of >12.5 mL or a relative increase in HE volume of >66%. 
These reports highlight the detrimental short- and long-term impact 
of HE on patient outcomes and the potential utility of identifying 
patients at the highest risk for HE after sICH who may benefit from 
stepwise implementation of aggressive preventative treatments.

3.2 Treatment adaptations

Iterative treatment guidelines exist for patients with sICH, with 
the most recent version published in 2022 (36). Cornerstones of 
management include acute blood pressure control, anticoagulant 
reversal, and consideration of either minimally invasive surgical 
evacuation or open craniotomy/craniectomy evacuation in selected 
patients, with acute neurological deterioration from HE  often 
accelerating the treatment algorithm (36). Given its association with 
poor outcomes, significant effort has been devoted to limiting 
HE after sICH.

Multiple RCTs have examined the role of intensive blood pressure 
reduction in preventing HE and mortality and improving outcomes 
after sICH, including the Intensive Blood Pressure Reduction in Acute 
Cerebral Hemorrhage Trial 2 (INTERACT2), followed more recently 
by the INTERACT3 and INTERACT4 trials, and the Antihypertensive 
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TABLE 1 Summary of clinical trials and pilot analyses evaluating manual imaging methodologies for predicting hematoma expansion in spontaneous intracerebral hemorrhage.

Study authors, 
date

(1) Study design; (2) N 
studies; (3) N patients; (4) 
years studied

(1) Inclusion criteria; (2) 
exclusion criteria

(1) Primary outcome; (2) 
secondary outcome

Imaging 
modality and 
radiology signs

Main study 
findings

Limitations and 
interpretation

Kuohn et al. 2022 (14)  (1) Post-hoc analysis of RCT patients 

from FAST trial

 (2) 1

 (3) 728

 (4) 2000–2010

 (1) >18 years old, spontaneous ICH 

confirmed on brain CT within 3 h of 

onset

 (2) Admission GCS <5, surgical ICH 

evacuation planned within 24 h of 

admission, a known or suspected 

secondary cause of ICH, prior disability 

(mRS score > 2), or known thrombotic 

or vaso-occlusive disease within 30 days 

of ICH onset

 (1) HE (increase of >33% or > 6 mL)

 (2) Early neurological deterioration, 

mRS at 90 days

Standard NCCT; ICH 

location

Lobar ICH location is 

associated with larger 

ICH volume, more HE, 

and early neurologic 

deterioration. Deep ICH 

is associated with worse 

outcomes.

Several studies (41, 42) have 

demonstrated that deep ICH, 

rather than lobar, is at higher 

risk of HE. However, location 

alone is a poor prognostic 

indicator for HE.

Brouwers et al. 2014 

(15)

 (1) Prospective cohort

 (2) 2 centers

 (3) 1,012

 (4) 2010–2012 & 1994–2011

 (1) Diagnosis of primary ICH, baseline, 

and follow-up CT available for volume 

analysis

 (2) Patient had undergone hematoma 

evacuation before follow-up CT, 

intraventricular hemorrhage, or patient 

had a known or suspected secondary 

cause of ICH

 (1) HE (>6 mL or 33% growth) Standard NCCT; ICH 

initial size

A 9-point prediction 

score for HE was 

developed and 

independently validated; 

it included initial ICH 

size as an important 

predictor.

Although the 9-point prediction 

score developed and validated 

herein demonstrates utility in 

predicting HE, initial ICH size 

is only one variable and is not 

sufficient to predict HE alone. 

However, when included as part 

of this 9-point prediction score, 

it may provide potential benefit 

in predicting HE.

Yu et al. 2017 (16)  (1) Systemic review and meta-analysis

 (2) 7

 (3) 2,294

 (4) N/A

 (1) Studies including the following 

combinations: CT, NCCT, shape, 

density, hypodensity, blend sign, black 

hole sign, swirl sign, and intracerebral 

hemorrhage or ICH

 (2) Outcomes other than HE, lack of 

essential data, duplicate data

Pooled sensitivity, specificity, positive 

likelihood ration, negative likelihood 

ratio of predicting HE by:

 (1) Shape irregularity of ICH

 (2) Density irregularity of ICH

Standard NCCT; ICH 

shape irregularities

Irregular ICH shape on 

NCCT has an overall 

sensitivity, specificity, 

and AUC of 67, 47%, 

and 0.61, respectively, 

for predicting HE.

The predictive value of shape 

irregularity and density 

heterogeneity of a hematoma 

for HE is limited, given the 

relatively low sensitivity, 

specificity, and AUC. Better 

NCCT predictors for HE in 

sICH may exist.

Yu et al. 2017 (17)  (1) Meta-analysis

 (2) 5

 (3) 2,248

 (4) N/A

 (1) Original studies about predictive 

accuracy of blend sign for HE in ICH

 (2) Duplication, non-related titles and 

abstracts, no clear time of initial CT 

scan, or no mention of blend sign

 (1) Pooled sensitivity, specificity, and 

SROC curve of predicting HE by: 

Blend sign for HE prediction

Standard NCCT; blend 

sign

Blend sign is a useful 

predictor with high 

specificity for HE in 

ICH. Sensitivity, 

specificity, and AUC of 

the blend sign for 

HE were 28, 92%, and 

0.85, respectively.

The predictive value of blend 

sign alone demonstrates 

relatively high specificity for 

HE prediction. However, 

limitations in sensitivity and 

AUC prevent its reliable use 

alone.

(Continued)
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TABLE 1 (Continued)

Study authors, 
date

(1) Study design; (2) N 
studies; (3) N patients; (4) 
years studied

(1) Inclusion criteria; (2) 
exclusion criteria

(1) Primary outcome; (2) 
secondary outcome

Imaging 
modality and 
radiology signs

Main study 
findings

Limitations and 
interpretation

Zheng et al. 2018 (18)  (1) Meta-analysis

 (2) 5

 (3) 1,495

 (4) N/A

 (1) Original studies on the association 

between the black hole sign and HE in 

ICH

 (2) Duplication, non-related titles and 

abstracts, no clear time of initial CT 

scan, or no mention of the black hole 

sign

 (1) Pooled sensitivity, specificity, and 

SROC curve of predicting HE by: 

Black hole sign for HE prediction

Standard NCCT; black 

hole sign

The black hole sign is a 

helpful imaging marker 

for predicting HE in 

ICH. Sensitivity, 

specificity, and AUC of 

30, 91%, and 0.78, 

respectively.

The black hole sign 

demonstrates similar strengths 

to the blend sign in predicting 

HE, with a high specificity but 

relatively unreliable sensitivity 

and AUC when used alone. May 

be useful in combination with 

other imaging features.

Zhou et al. 2021 (19)  (1) Meta-analysis

 (2) 9

 (3) 2,939

 (4) N/A

 (1) Original studies on the association 

between the island sign and HE in ICH

 (2) Duplication, non-related titles and 

abstracts, no clear time of initial CT 

scan, or no mention of the island sign

 (1) Pooled sensitivity, specificity, and 

SROC curve of predicting HE by: 

Island sign for HE prediction

Standard NCCT; island 

sign

Findings suggest that 

the island sign in NCCT 

has valuable predictive 

accuracy for HE in 

sICH. Sensitivity, 

specificity, and AUC for 

the island sign for 

HE prediction were 50, 

89%, and 0.73, 

respectively.

The island sign demonstrates 

improved sensitivity compared 

to the blend sign or black hole 

sign, with a minor decrease in 

specificity but significantly 

lower AUC in predictive power 

comparatively.

Yang et al. 2020 (20)  (1) Meta-analysis

 (2) 5

 (3) 1,493

 (4) up to 2010

 (1) Original studies on the association 

between the satellite sign and HE in 

ICH

 (2) Duplication, non-related titles and 

abstracts, no clear time of initial CT 

scan, or no mention of the satellite sign

 (1) Effect values (sensitivity, 

specificity, positive and negative 

likelihood ratios) for predicting 

HE by satellite sign use

Standard NCCT; 

satellite sign

Pooled diagnostic 

sensitivity and 

specificity were 0.50 and 

0.71, respectively. AUC 

was 0.66. The satellite 

sign exhibits moderate 

use in predicting HE in 

patients with sICH.

The satellite sign demonstrates a 

relatively weak ability to predict 

HE in regards to specificity and 

AUC, compared to island, black 

hole, and blend signs.

Xu et al. 2018 (21)  (1) Meta-analysis

 (2) 29

 (3) 5,514

 (4) 1995–2017

 (1) Original studies reporting on the 

relationship between CTA spot sign 

and HE, mortality, or poor outcomes

 (2) Duplication, non-English studies, 

non-related titles and abstracts, no 

clear time of initial CTA scan, or no 

mention of the spot sign

 (1) Effect values (sensitivity, 

specificity) on HE.

 (2) Mortality (in-hospital and 

3-month), poor outcomes (mRS at 

discharge and 3-months out)

CT angiography; spot 

sign

The incidence of CTA 

spot signs in sICH is 

relatively common 

(23.4%), with its 

presence demonstrating 

significantly higher risk 

of HE (OR 8.49), with a 

sensitivity, specificity, 

and AUC of 62, 88%, 

and 0.86, respectively.

CTA spot signs are relatively 

accurate predictors of HE, 

mortality, and poor outcomes 

post-discharge. Compared with 

standard NCCT signs, the spot 

sign provides a good diagnostic 

tool to predict HE and its 

related morbidity and mortality 

risks.

(Continued)
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Treatment of Acute Cerebral Hemorrhage II (ATACH-2) trial (37–40). 
The INTERACT2 study published in 2013 included 2,794 patients 
who had sICH within the previous 6 h and had elevated blood 
pressure; these patients were randomly assigned to a control arm 
(target systolic level < 180 mm Hg) or a treatment arm that involved 
intensive blood-pressure lowering to a systolic blood pressure of less 
than 140 mm Hg within 1 h of randomization and maintained for 
7 days (37). Similarly, the ATACH-2 trial published in 2016 included 
1,000 sICH patients with hypertension who were randomly assigned 
to either a control (goal systolic blood pressure of 140 to 179 mm Hg) 
or a treatment (goal systolic blood pressure of 110 to 139 mm Hg) arm 
within 4.5 h of symptom onset and continued for the 24 h (38). In both 
trials, despite prior evidence of the potential efficacy of rapid blood 
pressure control in limiting HE  (41), there was no significant 
reduction of the primary outcome of morbidity and mortality or the 
secondary outcome of HE across treatment groups (37, 38). Secondary 
analyses of these data have nonetheless supported a beneficial role for 
systolic blood pressure control, including a post-hoc analysis of the 
INTERACT2 trial that linked elevated blood pressure within 24 h 
post-bleed to increased rates of death and disability at 90 days (42). 
Moreover, in a post-hoc analysis of the ATACH-2 data by Li et al. (43), 
a subgroup of patients that received intensive blood pressure control 
within 2 hours of symptom onset was found to have a significant 
reduction in the risk of HE (odds ratio [OR], 0.56; 95% confidence 
interval [CI], 0.34–0.92; p = 0.02) and improved functional outcomes, 
suggesting a time-sensitive treatment window for hypertension 
management. The 2022 guidelines summarize these findings and 
suggest acutely targeting a systolic goal of 130–150 mm Hg in most 
patients with sICH and hypertension (36).

The INTERACT3 and 4 trials were published in 2023 and 2024, 
respectively, and assessed whether bundled protocols in addition to 
systolic blood pressure control or pre-hospital blood pressure 
reductions prior to a definitive diagnosis could improve sICH 
outcomes (39, 40). In INTERACT3, 7,036 adult patients who 
presented with sICH within 6 h of onset were randomized, with 3,221 
patients assigned to a goal-directed care bundle that combined early 
intensive blood pressure lowering (systolic <140 mm Hg) with 
management algorithms for correction of hyperglycemia, pyrexia, and 
abnormal anticoagulation (all within 1 h) and 3,815 patients assigned 
to a “usual care” group based on local treatment standards (39). 
Although HE was not assessed in this study, the primary outcome of 
functional recovery at 6 months (as measured by modified Rankin 
Scale [mRS] score) was significantly more likely in the care bundle 
group (OR 0.86; 95% CI 0.76–0.97; p = 0.015). INTERACT4 assessed 
whether blood pressure control in undifferentiated stroke patients 
prior to arrival at the hospital could improve outcomes (40). In this 
work, 2,404 patients with a suspected acute stroke (that caused a 
motor deficit) who had an elevated systolic blood pressure ≥ 150 mm 
Hg and were assessed in an ambulance within 2 h of symptom onset 
were randomized to receive immediate systolic blood pressure control 
(target 130–140 mm Hg) (1,205 patients) or “usual” blood pressure 
management commencing after hospital arrival (1,199 patients). 
Although again HE  was not a focus of this study, blood pressure 
treatment before hospital arrival did not affect the primary outcome 
of functional status at 90 days (based on mRS) (OR, 1.00; 95% CI, 0.87 
to 1.15) (40). However, this was the result of including a cohort with 
mixed underlying pathologies: patients with ischemic stroke were 
more likely to have a poor functional outcome with pre-hospital blood T
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TABLE 2 Summary of clinical trial data and pilot analyses evaluating radiomics in predicting hematoma expansion in spontaneous intracerebral hemorrhage.

Study authors, 
date

(1) Study design
(2) N studies
(3) N patients
(4) years studied

(1) Inclusion criteria; 
(2) exclusion criteria

(1) Primary outcome; 
(2) secondary 
outcome

Imaging modality 
and radiology signs

Main study findings Limitations and 
interpretation

Haider et al. 2023 (23)  (1) Post hoc analysis of 

ATACH-2 trial

 (2) 1

 (3) 897

 (4) N/A

 (1) All ATACH-2 trial 

participants

 (2) CT artifacts, corrupted 

images, or missing CT 

images; missing clinical data 

if adequate CT

 (1) HE prediction (AUC for 

discovery and independent 

validation cohorts)

 (2) Functional outcomes at 

3-months post-treatment

Modified NCCT images; 

model with various signature 

combinations of select 

radiomic, clinical, and visual 

markers

The utilization of a combination 

of radiomic features and clinical 

variables provides the highest 

predictive power of HE after 

sICH (AUC 0.67, 0.64), 

outperforming clinical (p = 0.02) 

and visual signatures (p = 0.03), 

and a combined visual/time 

(BAT) score (p < 0.001).

Radiomic features on admission NCCT 

appear to predict HE with stable 

generalizability. The combination of 

radiomic and clinical predictors may 

provide the highest predictive value for 

clinicians in immediate and long-term 

predictions of HE and their associated 

morbidity and mortality.

Li et al. 2023 (24)  (1) Prospective

 (2) 1

 (3) 214

 (4) 2011–2017

 (1) Ages 18–80 years, 

spontaneous ICH, baseline 

CT scan within 6 h of 

symptom onset, follow-up 

CT within 36 h of admission 

CT scan

 (2) Any patients with known or 

suspected secondary causes 

of sICH

 (1) Receiver operating 

characteristic analysis and 

AUC of HE predictive value

Modified NCCT images; 

model with various signature 

combinations of select 

radiomic, clinical, and visual 

markers

Of the 8 machine learning 

methods selected for 

constructing models, the MLP 

model was demonstrated to 

be the best model for 

HE prediction after sICH. 

Sensitivity, specificity, and AUC 

in MLP models were 90.0, 

87.9%, and 0.92, respectively.

This study demonstrated how NCCT 

models based on radiomics features 

and machine learning, particularly the 

MLP model, can greatly enhance 

clinicians in predicting early 

perihematomal edema expansion after 

sICH. Such high specificity, sensitivity, 

and AUC results have not been seen in 

standard manual models together in 

this review.

Dai et al. 2023 (25)  (1) Retrospective

 (2) 1

 (3) 187

 (4) 2017–2022

 (1) First CT scan within 24 h 

and second within 24 h of 

first scan, >18 years of age, 

history of hypertension, 

complete clinical laboratory 

tests

 (2) Long-term anticoagulant 

use, known or suspected 

secondary causes of sICH, 

hemorrhage after infarction, 

primary intraventricular 

hemorrhage, or poor image 

quality

 (1) HE risk and occurrence 

(33% or > 6 mL increase in 

hematoma volume)

Modified NCCT images; 

nomogram model

13 radiomics features were 

selected to construct this 

group’s radiomics signature, 

which demonstrated a robust 

ability and high accuracy to 

predict HE after hypertensive 

ICH. ROC models 

demonstrated AUC up to 0.89 

and 0.82 in training and 

validation sets. Predictive 

capacity increased further to 

0.90 and 0.88 once their model 

included the blend sign.

The combination of prediction models 

of radiomics with the blend sign, 

commonly utilized in manual image 

interpretation, demonstrates high 

prediction performance, similar to the 

MLP model seen in the Li et al. study 

(76). This introduces the idea of trialing 

various radiomic models with various 

image features or signs to help increase 

predictive potential for HE risk.

(Continued)
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TABLE 2 (Continued)

Study authors, 
date

(1) Study design
(2) N studies
(3) N patients
(4) years studied

(1) Inclusion criteria; 
(2) exclusion criteria

(1) Primary outcome; 
(2) secondary 
outcome

Imaging modality 
and radiology signs

Main study findings Limitations and 
interpretation

Feng et al. 2023 (26)  (1) Retrospective

 (2) 1

 (3) 561

 (4) N/A

 (1) Patients presenting with 

sICH and baseline NCCTs

 (1) Intersection over union, dice 

coefficient, and accuracy in 

HE detection

Modified NCCT images; 

nomogram model

This study utilized deep 

learning to automate the 

segmentation of the ROI before 

performing a radiomics analysis 

to predict HE. When done in a 

fully automatic fashion, this 

combined model provides 

relatively high (AUC 0.87 and 

0.82) predictive potential in 

HE risk judgement.

This is an additional study to 

demonstrate the relative accuracy and 

predictive potential a combined model 

can have on efficiently predicting early 

HE, with AUCs rivaling those of 

manual detection of spot signs 

clinically.

Rezaei et al. 2023 (27)  (1) Retrospective

 (2) 1

 (3) 116

 (4) 2004–2019

 (1) Patients >18 years old with 

sBGH on brain CT at time of 

admission and follow-up 

brain CT within 24 h of 

admission

 (2) Patients <18 yearsor missing 

necessary CT imaging or 

lack of sBGH findings on 

admission

 (1) Performance to predict 

HE via AUC

Modified NCCT images; 10 

different machine learning 

models utilized

This study used 10 different 

machine learning models 

developed based on clinical data 

(demographics, labs, exam), 

radiology signs (discussed in 

this table), and radiomic 

features. AUC of 0.9 and 0.89 

were demonstrated in 

predicting HE.

The AUC for these models based on 10 

select radiomic features appear to 

provide the best accuracy in predicting 

HE, regardless of depth of sICH, as 

these patients all had sBGH, compared 

with the other studies often being lobar 

sICH. This shows the accuracy for any 

intracranial bleed at any size or depth, 

while still being better than many of the 

clinical and standard radiology features 

utilized in manual reads.

Seymour et al. 2022 (28)  (1) Retrospective

 (2) 1

 (3) 200

 (4) 2016–2019

 (1) Patients presenting with 

stroke-like symptoms with a 

baseline NCCT and T2 MRI, 

with follow up NCCT scans

 (1) HE (>33% or > 6 mL from 

baseline imaging) prediction 

potential via AUC

Standard NCCT and T2 MRI; 

7 different machine learning 

models utilized

This study found tht NCCT 

models were better predictors of 

HE than MR models 

(sensitivity, specificity, and AUC 

of 73, 71%, 0.70 vs. 72, 67%, 

0.69), with logistic regression 

classifiers best to use in NCCT 

radiomic models.

Radiomic models shown to be accurate 

and highly useful in either CT or MRI-

based imaging. Given the similarities in 

predictive potential, CT may 

be preferred given its rapid abilities in 

such acute pathologies.

AUC, area under curve; CT, computed tomography; HE, hematoma expansion; MLP, multilayer perceptron; MRI, magnetic resonance imaging; NCCT, non-contrast computed tomography; ROC, receiver operating characteristic curve; ROI, region of interest; sBGH, 
spontaneous basal ganglia hemorrhage; sICH, spontaneous intracerebral hemorrhage.
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pressure control (OR, 1.30; 95% CI, 1.06 to 1.60), whereas patients 
with ICH were less likely to have a poor functional outcome (OR, 0.75; 
95% CI, 0.60 to 0.92). Together, these studies support the importance 
of an expedited diagnosis and early, intensive protocolized medical 
management of patients with sICH.

Expedited surgical intervention may also play a role in the 
prevention of HE. Currently, surgical indications for evacuation of 
ICH vary with presentation. The authors of a 2020 systematic review 
identified five RCTs that focused on the optimal surgical management 
of sICH (44). Two of the largest studies at the time (Surgical Trial in 
Lobar Intracerebral Hemorrhage [STICH] 1 and 2) compiled a total 
of 1,634 patients. They failed to show clinical improvement in terms 
of the Glasgow Outcome Scale, Barthel Index, or mRS scores with 
open surgical evacuation of cortical sICHs versus medical 
management (44–46), despite a post-hoc analysis of STICH 1, 
suggesting that patients with hematomas <1 cm from the cortex may 
benefit from surgery. The other three smaller trials examined a total 
of 719 patients with subcortical sICH treated with minimally invasive 
(stereotactic and endoscopic) techniques versus medical 
management. They reported potential benefits of surgery as indicated 
by decreased mortality rates and improved functional outcomes using 
the mRS and Barthel Index (44, 47–49). A subsequent RCT 
(Minimally Invasive Surgery Plus Alteplase for Intracerebral 
Hemorrhage Evacuation [MISTIE III]) explored the role of minimally 
invasive sICH evacuation combined with direct thrombolysis in 505 
patients. Although it did not show a significant improvement in its 
primary functional endpoint (i.e., mRS 0–3 at 1 year), mortality was 
significantly lower with surgery, and an increased rate of good 
functional outcomes was seen with a clot reduction to <15 mL on 
secondary analysis (50). Building on this, the recently completed 
Early Minimally Invasive Removal of Intracerebral Hemorrhage 
(ENRICH) trial was designed to evaluate the role of minimally 
invasive trans-sulcal parafascicular surgery for sICH (36); its data 
revealed significantly improved clinical outcomes (as determined by 
utility-weighted mRS at 180 days) with surgery performed within 24 h 
for lobar hemorrhages between 30 and 80 mL volumes (51). Although 
they did not include the recent ENRICH data, which solidify the role 
of surgery in these patients, the current 2022 sICH guidelines suggest 
that minimally invasive surgery be  considered for patients with 
supratentorial ICH of greater than 20 to 30 mL volume with GCS 
scores of 5–12, with or without thrombolytic use (36). Although the 
potential for HE does not currently impact the decision for surgery 
in sICH, HE  can change a nonsurgical candidate to a surgical 
candidate. As surgical techniques continue to improve and become 
less invasive, identifying consistent markers of HE may allow for 
more aggressive upfront surgical intervention in patients at risk, 
thereby avoiding the functional decline commonly associated 
with HE.

4 Standard imaging features of HE

Given the ubiquity of standard imaging modalities in the 
diagnosis and management of sICH, significant efforts have been 
made to identify predictive markers of HE after sICH on non-contrast 
CT, CT angiography, and CT perfusion (Table 1). This is analogous to 
other standard radiologic reviews, wherein common characteristics of 
known pathologies can alter clinical care significantly. For example, 

close interpretation of conventional MRI sequences can often 
differentiate between low- and high-grade intrinsic brain tumors 
based on patterns of enhancement, edema, necrosis, and multifocality, 
with an added ability to suggest tumor subtype based on location and 
secondary features such as calcifications and appearance on diffusion 
imaging (52). Although these efforts have demonstrated promise with 
sICH, in general, such techniques have not achieved the high levels of 
sensitivity and specificity required to confidently alter clinical care 
regarding HE. Likely undermining their clinical efficacy is a heavy 
reliance on subjective interpretations and potentially vague or 
overlapping characteristics (53). A brief review of some of the most 
described imaging markers are provided below.

4.1 Location

Hemorrhage locations are often defined as lobar (cortex and 
cortical–subcortical junction) or deep (thalamus, basal ganglia, 
internal capsule, and deep periventricular white matter), and while 
debate exists, differences in propensity for HE have been suggested 
based on location (54). For example, in a recent post-hoc analysis of 
728 patients from the FAST (Factor VII for Acute Hemorrhagic Stroke 
Treatment) trial for supratentorial hemorrhage, lobar hemorrhages 
were found to be larger at baseline (35 vs. 12 mL, p < 0.001) and had a 
higher risk of HE (44 vs. 27%, p = 0.001) than deep hemorrhages (14). 
However, this differs from other studies in which deep hemorrhages 
were found to have a higher risk of HE (55, 56), highlighting the poor 
prognostic potential of sICH location for HE.

4.2 Initial size

The size of the hematoma at presentation has likewise been 
suggested as a marker for HE, with bigger initial ICH size linked to a 
higher HE risk (15). Brouwers et al. (15) included the initial size of the 
ICH (<30, 30–60, and > 60 mL) as part of their 9-point prediction 
score, which was independently validated to help predict HE in sICH 
(C statistics score of 0.72 for the development cohort and 0.77 for the 
independent validation cohort). In their multicenter prospective 
analysis, Silva et  al. (57) reported that among 183 patients who 
presented for sICH management, 22.3% of patients with sICH 
volumes <20 mL but 33.6% of patients with sICH volumes ≥20 mL 
experienced HE. Similarly, Dowlatshahi et al. (58) demonstrated that 
smaller hematomas, particularly those under 10 mL, are less likely to 
expand, leading to better neurological outcomes. Although these data 
provide additional justification to the current recommendations to 
consider surgery in selected patients with supratentorial sICH 
volumes >20 mL based on an increased HE risk (36), volume alone is 
unlikely to be a reliable marker of HE risk.

4.3 Shape

Irregular sICH shape has also been linked to a greater risk of 
HE  in multiple studies (16, 59, 60), and is thought to result from 
multifocal hemorrhage rather than a singular hemorrhage source. This 
fits with an analysis of the INTERACT2 trial data by Delcourt et al. 
(61), wherein irregular sICH shape independently correlated with 
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death and major disability at 90 days post-sICH (OR, 1.60; 95% CI, 
1.29–1.98) as well as a lower functional outcome as determined by 
mRS score (OR, 1.46, 95% CI; 1.23–1.72). A meta-analysis of data 
from more than 2000 patients on irregular shape on non-contrast CT 
as a predictor of HE after sICH nonetheless demonstrated an overall 
sensitivity, specificity, and an area under the receiver operating 
characteristic curve (AUC) of 67, 47%, and 0.61, respectively (16).

4.4 Blend sign

The blend sign refers to a blending of adjacent hypoattenuating 
and hyperattenuating regions within a hematoma on non-contrast CT 
(defined by a difference of 18 Hounsfield units between densities) (62, 
63) and correlates with the presence of a spot sign (a marker of 
ongoing hemorrhage) on CT angiography (63). In a retrospective 
analysis of 238 patients, Sporns et al. (63) linked the blend sign to a 
more than threefold increase in both risk of HE and a poor neurologic 
outcome after sICH. In a meta-analysis examining 2,248 patients, 
however, Yu et al. (17) found that the sensitivity, specificity, and AUC 
of the blend sign for HE were 28, 92%, and 0.85, respectively.

4.5 Black hole sign

The black hole sign is characterized as a well-defined hypodense 
area within a hyperdense hematoma on non-contrast CT and differs 
in criteria from the blend sign in that there must be a 28-Hounsfield 
unit difference between the hypodense and hyperdense regions (64, 
65). Similar to the blend sign, it is correlated to the spot sign on CT 
angiography (a marker of ongoing hemorrhage). Although it has also 
been suggested as a marker of HE (64, 65), a meta-analysis of the 
predictive value of the black hole sign in more than 1,495 patients 
reported a sensitivity, specificity, and AUC of this sign of 30, 91%, and 
0.78, respectively (18).

4.6 Island sign

The island sign refers to sICH margin irregularities on 
non-contrast CT (66) and is defined as either ≥3 minor hematoma 
regions that do not visibly communicate with the primary hematoma 
or ≥ 4 minor hematomas that lobulate separately from the main 
hematoma (66, 67). It is thought to result from secondary multifocal 
areas of hemorrhage that result from the main hematoma and is linked 
to HE and poor outcome after sICH (66). In a meta-analysis of 2,939 
patients, the sensitivity, specificity, and AUC of the island sign as a 
predictor of HE were 50, 89%, and 0.73, respectively (19).

4.7 Satellite sign

The satellite signal refers to the presence of small high-density 
starry dots near but distinct from the primary hematoma on 
non-contrast CT, with a diameter of ≤10 mm and a distance of 
≤20 mm from the main hematoma body (67, 68). They are thought to 
represent small foci of secondary reactive hemorrhage and have been 
linked to HE and worse functional outcomes after sICH (67, 68). A 
meta-analysis of 1,493 patients nonetheless reported a sensitivity, 

specificity, and AUC of the satellite sign as a predictor of HE of 50, 
71%, and 0.66, respectively (20).

4.8 Spot sign

Expanding beyond non-contrast CT, the spot sign has been 
suggested as a marker of continual intracranial bleeding after sICH 
as visualized on CT angiography (69). It is generally considered to 
be a more reliable marker of HE than non-contrast CT-based signs 
and has been associated with worse functional outcomes after sICH 
(70, 71). In a broad systematic review and meta-analysis comprising 
29 studies and 5,514 patients, Xu et al. (21) reported a spot sign was 
identified in 23.4% of sICH patients and was associated with a 
significantly greater risk of HE  (OR 8.49, 95% CI 7.28–9.90). In 
support of its likely better predictive value over non-contrast CT 
signs, the sensitivity, specificity, and AUC of the spot sign as a 
marker of HE in this work were 62, 88%, and 0.86, respectively (21). 
The spot sign on MRI studies has also been explored in a recent 
study, with a similar association with HE and poor outcome after 
sICH (72).

4.9 Cerebral blood volume and flow

Perihematomal cerebral blood volume, as determined by CT 
perfusion, has also been linked to HE (73), with previous hypotheses 
suggesting that bleeding will continue without adequate counter-
pressure from blood-saturated perihematomal parenchyma. In 
support of this concept, in a small study of 155 patients, Morroti et al. 
(73) recently demonstrated that perihematomal cerebral blood volume 
(independent from blood pressure, hematoma volume, and other 
potential confounders) was inversely associated with HE (B = −0.20; 
p < 0.001), with only very low cerebral blood volumes of <1.4 mL/100 g 
being associated with HE (B = 0.25, p < 0.001). This nonetheless differs 
from a more recent small study of 50 patients with sICH, in which 
higher cerebral blood flow around the hematoma on CT perfusion 
imaging was positively correlated with incidence of HE (p = 0.004) (22).

5 The potential utility of radiomics

Although a multitude of standard imaging and combined standard 
imaging and clinical criteria have been suggested as markers of 
HE (15, 17, 18, 20, 21, 74), their practical use has largely not caught 
on in sICH management, potentially because of a combination of low 
specificity, difficulty in radiologic interpretation, or cumbersome 
scales. Differing from the above techniques, radiomic analysis extends 
beyond the limits of human intuition, ability, and knowledge by 
integrating pathology-specific imaging characteristics and patterns 
with a granularity well beyond the human eye, with practical 
implications for predicting HE (Table 2). Van Timmerman et al. (75) 
detailed the general process of radiomic analysis as follows: (1) image 
acquisition, (2) image segmentation to define the regions of interest 
[ROIs; done manually, semi-automatically, or fully automatically (i.e., 
deep learning algorithms)], (3) image processing (to homogenize 
images based on pixel spacing, grey-level intensity, etc.), (4) feature 
extraction (commonly based on intensity, shape, texture, and radial 
features), and (5) feature selection/dimension reduction (identifying 
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and optimizing the relevant features for statistical and machine-
learning/artificial intelligence modeling).

Multiple technical considerations arise when implementing 
radiomic analyses into a heterogeneous healthcare environment, 
particularly variance and artifact in source imaging. Radiomics 
analyses of sICH typically use non-contrast CT scans. To reduce 
variance, scans from a single scanner may be  used. However, 
techniques for image homogenization can allow pooling of images 
from different scanners. Images are then aligned and resampled using 
image processing software. Supervised quality checks are commonly 
performed to exclude images with significant artifact. Skull stripping 
(removal of non-brain tissue signal) is often performed as part of 
imaging processing and is particularly important for sICH located 
adjacent to the skull.

For the next step of image segmentation, ROIs may be selected 
using a color scale based on Hounsfield units. They can be segmented 
manually, wherein an experienced user traces the hematoma on each 
slice of the image, ensuring that the entire hematoma is included while 
excluding surrounding cerebral edema. However, some groups also use 
semi- and fully automated pipelines to select ROIs before performing 
a radiomics analysis (76). After segmentation is complete, shape, first-
order (based on single-pixel or single-voxel analyses), and texture 
features are extracted from the images.

For machine learning-based radiomics models as part of the last 
step of feature selection/dimension reduction (77), cases are randomly 
divided into training and test sets. Extracted features are processed 
and normalized, and then subsamples of the training data are used for 
cross-validation to build and evaluate the classification model. 
Signatures can also be generated by combining radiomics features 
with visual markers (as determined by expert human reviewers, 
commonly neuroradiologists) and clinical variables into a least 
absolute shrinkage and selection operator-regularized logistic 
regression (LASSO-LR) model, among other methods (23). Model 
efficacy is determined by the mean AUC of the receiver operating 
characteristic curve, sensitivity, specificity, and accuracy. These 
parameters can be  used to make statistical comparisons between 
models and identify the most predictive signature. Notably, the 
predictive efficacy of radiomic assessments can vary widely based on 
the machine-learning algorithm utilized (e.g., logistic regression, 
support vector machine, k-nearest neighbor, multilayer perceptron, 
random forest) (24), highlighting the importance of transparency in 
the reporting of these studies to ensure reproducibility, as well as the 
benefit of testing multiple algorithms to ensure an optimized model.

To date, most radiomic algorithms have been deployed in the 
oncologic setting. However, pilot analyses demonstrating the utility of 
a radiomics approach for pathology characterization have also been 
used in other intracranial applications ranging from classically 
non-descript temporal lobe tumors to MRI-negative epileptogenic 
mesial sclerosis (78, 79). To assess the hypothesis of HE detection via 
radiomics methodologies, Haider et al. (23, 38) recently examined the 
prospective ATACH-2 patient database of 897 total patients for 
markers of HE on non-contrast CT using discovery and independent 
validation cohorts. Their radiomics model (after manual segmentation 
of the sICH) included 1,130 total imaging features (18 first-order, 14 
based on shape, and 75 based on texture on the original images and 
11 derivative images) and resulted in an AUC for predicting HE of 
0.64 (0.59–0.70) in the discovery cohort and 0.61 (0.56–0.67) in the 
independent validation cohort, respectively (23). Each of the markers 
was also significantly correlated with functional outcomes at 3-month 

follow-up (23). Additionally, their model compared favorably with 
visually dependent interpretations by three expert readers looking for 
eight reported HE markers on non-contrast CT (including the blend 
sign, swirl sign, black hole sign, island sign, satellite sign, and irregular 
shape) (23). Suggesting a role for the importance of multifactorial 
inputs, a radiomics signature combined with a clinical signature 
(incorporating only the baseline National Institutes of Health Stroke 
Scale [NIHSS] score) attained the highest AUC scores in this work 
(0.67 in the discovery cohort and 0.64 in the independent validation 
cohort) (23). This, notably, did not include the addition of standard 
non-contrast CT signs, which did not augment the predictive capacity 
of radiomics when added into the model in this work.

Similar recent studies have reported even higher predictive values 
for HE after sICH in optimized machine-learning models. In one 
study of 214 patients, Li et al. (24) found a sensitivity, specificity, and 
AUC of 90.0, 87.9%, and 0.92, respectively, using a logistic regression 
machine-learning algorithm. This model also involved manual 
segmentation followed by automated radiomics feature extraction 
based on geometry, intensity, and texture to generate 1906 features per 
patient, with such granularity facilitating a significantly higher 
predictive capacity than any of the human-detected signs discussed 
previously. A similar recent study of 187 patients by Dai et al. (25) 
supports the high predictive ability of radiomics for HE, with AUCs 
of 0.9 and 0.82 in the training and validation testing, respectively. 
Interestingly, unlike in the prior work by Haider et  al. (23), the 
addition of a blend sign to the radiomics modeling in this study 
increased the predictive capacity, resulting in AUCs in training and 
validation testing 0.90 and 0.88, respectively (25). Taking this one 
process step further, a study of 561 patients by Feng et al. (26) used 
deep learning to automate segmentation of the ROI before performing 
a radiomics analysis to predict HE. The predictive value of radiomics 
in this fully automated model remained high, with AUCs in a training 
cohort of 0.87 and 0.82 in an external validation cohort (26).

Although many of the above studies did not specify lobar versus 
deep sICH location, the potential of radiomic analyses in sICH is likely 
unaffected by hemorrhage location. Rezaei et al. (27) examined HE in 
116 patients with basal ganglia sICH. Their machine-learning algorithm 
incorporated 10 predictive noncontrast CT radiomics features and 
achieved an AUC of 0.9 on the training cohort and 0.89 on the testing 
group, significantly better than the AUCs ranging from 0.5 to 0.6 using 
clinical laboratory and standard radiology features (27). Although their 
study was not focused on HE, Wang et  al. (80) demonstrated the 
potential of radiomics in infratentorial sICH by using a deep-learning 
model to predict the prognosis of primary pontine hemorrhages, with 
AUCs of 0.886, 0.886, and 0.759 in predicting 30-day mortality, 90-day 
mortality, and 90-day functional outcome. With the addition of clinical 
factors to their model, the predictive capacity improved these AUCs to 
0.920, 0.941, and 0.894, respectively (80). Radiomic models using MRI 
as a primary imaging modality have also been explored as markers of 
HE after sICH. In a small comparative analysis of CT- versus MRI-based 
radiomics modeling, MRI demonstrated a similar optimized sensitivity, 
specificity, and AUC (up to 72, 67%, and 0.69, respectively) to 
non-contrast CT (73, 71%, and 0.70, respectively), although the reported 
predictive capacity for HE was lower than that seen in other studies 
across modalities (28).

Although these reports are preliminary, they support the potential 
of radiomics and deep learning modeling in sICH management and 
HE prediction. Rather than relying on subjective and often ambiguous 
imaging markers, radiomic analysis allows for objective integration of 
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image volumes, voxel density, and textures unseen to the human eye 
that, when combined with deep learning modeling and fully 
automated workflows, can produce superior and clinically relevant 
predictive results. Although the role for integrating clinical (age, 
NIHSS, etc.) or standard imaging (spot sign, etc.) data in radiomic 
modeling of HE remains unclear, a fully automated workflow that is 
capable of highly accurate predictions based on non-contrast CT 
remains the working goal of this field.

6 Limitations and future directions

Given the ongoing pace of technological advances within 
medicine and beyond, optimized radiomics analyses—despite their 
relative infancy—are likely to play a future role in the clinical 
management of sICH, in addition to other cause of ICH such as 
cavernous malformations (81) and arteriovenous malformations (82, 
83). However, inherent limitations of radiomics are applicable, 
including limitations of data sharing that can limit training model size, 
reproducibility, and optimization and, once clinical integration 
becomes a reality, addressing potential disparities in technological 
access and a need for clinician education (84).

Despite such obstacles, there are current precedents for clinical 
integration of radiomics, including within the field of genomics, where 
radiomics techniques are used to more accurately predict hereditary 
profile characteristics and anticipate survival after radiotherapy of 
patients with non-small cell lung cancer and nasopharyngeal 
carcinoma (10). Commercially available software that uses radiomics 
to detect large-vessel occlusions for thrombectomy is also becoming 
widely used, including at our institution, to streamline the care of 
patients after stroke (85). A similar application of radiomics for 
HE prediction, if sufficiently accurate, has the potential to optimize 
care of patients at high risk for HE by enabling highly tailored medical 
and surgical decision-making with a goal of mitigating adverse events 
and enhancing outcomes.

7 Conclusion

Radiomics is an emerging tool that leverages machine-learning 
algorithms for a variety of clinical applications. Emerging data have 
supported its potential future role in prediction of HE after sICH, 
likely enabling tailored, risk-stratified care to optimize patient 
outcomes. Refinement in radiomics modeling and inputs and 
expansion of training and validation databases will be needed before 
clinical integration.
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