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Background: Some studies have shown a strong link between the central 
nervous system and peripheral immune system, but the prognostic implications 
of dynamic peripheral immune-inflammatory responses in patients with 
traumatic brain injury (TBI) remain unclear. This study aimed to determine the 
dynamic trajectory patterns of the Systemic Immune Inflammation Index (SII) 
in patients with TBI and assess its association with all-cause hospital mortality.

Methods: This retrospective cohort study utilized a large public database of 
patients with TBI sourced from the eICU Collaborative Research Database (eICU-
CRD). Group-Based Trajectory Modeling (GBTM) was used to analyze daily SII 
trajectories during the initial 0–7 days of hospitalization. Logistic regression 
was employed to assess the relationship between different SII trajectory groups 
and hospital mortality. Receiver Operating Characteristic (ROC) curves were 
generated based on the logistic regression model.

Results: A total of 312 patients were included in this study, 52 of whom 
died during hospitalization. Using GBTM, three distinct SII trajectories were 
identified: Group 1 (low-level, rapid decline; 18.90%), Group 2 (moderate-level, 
slow decline; 60.20%), and Group 3 (sustained high-level; 20.80%). Compared 
to patients in Group 1, those in Groups 2 and 3 had a higher risk of all-cause 
hospital mortality (odds ratio [OR] 4.09; 95% confidence interval [CI] 1.21, 19.75) 
and (OR 5.84; 95% CI 1.52, 30.67), respectively. ROC analysis revealed an area 
under the curve (AUC) of 0.838, sensitivity: 75.0%, and specificity: 83.8% for 
mortality in this cohort.

Conclusion: This study identified three distinct SII trajectories, suggesting that 
post-TBI SII trajectories are heterogeneous patterns associated with mortality. 
The sustained high-level SII trajectory may serve as a marker of disease 
deterioration, highlighting the need for targeted interventions. Describing the 
evolution of SII through GBTM and its correlation with clinical outcomes can 
enhance our understanding of the link between neuroinflammation and the 
peripheral immune system.
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1 Introduction

TBI is a significant cause of mortality and disability globally (1). 
According to surveillance conducted by the Centers for Disease 
Control and Prevention (CDC) in the United States, the annual rates 
of TBI-related emergency department visits and hospitalizations are 
403 per 100,000 people and 85 per 100,000 people, respectively (2). 
The mortality rate for patients with moderate TBI is estimated to 
be approximately 10%, whereas for patients with severe TBI, it can 
be as high as 50% (1, 3, 4). To develop personalized treatment plans 
and minimize the misuse of medical resources, accurate identification 
of patients with poor prognosis is essential to guide clinical decision-
making (5). In the past few decades, TBI research has made rapid 
progress in the field of biomarkers. These biomarkers play a key role 
in elucidating pathophysiological processes by examining 
concentration changes associated with cell damage. Examples of such 
biomarkers include neuron specific enolase, S100 calcium binding 
protein B, neurofilament light, and myelin basic protein (6). Currently, 
there is a high demand for technology to determine low concentrations 
of routine TBI biomarkers in body fluids, and not all hospitals have 
the ability to perform these tests. Therefore, it is still imperative to 
identify and develop novel biomarkers that are easy to obtain and 
related to the prognosis of TBI.

TBI can be classified into primary and secondary brain injury (7). 
Secondary injury mechanisms are pivotal in worsening patients’ 
conditions, with neuroinflammation being recognized as a primary 
contributing factor (8). Neuroinflammation after TBI is a complex 
pathophysiological process that involves both resident and peripheral 
immune cells. Primary traumatic brain injury initiates damage-
associated molecular patterns (DAMPs), promoting the production of 
cytokines and chemokines, and further accelerating the infiltration of 
peripheral immune cells (9). Following TBI, disruption of the blood–
brain barrier (BBB) at the injury site allows direct exchange between 
the bloodstream and brain. This exchange facilitates the accumulation 
of platelets and leukocytes in the injured brain tissue, triggering 
inflammation and immune responses that lead to secondary brain 
injury (10). Changes in the blood–brain barrier enable neutrophils to 
migrate to the injury site within the first hour of brain injury (11). 
Another study indicated that platelet activation correlates with early 
pro-inflammatory responses following TBI (11, 12). Patients with TBI 
often show significantly higher absolute numbers and proportions of 
circulating neutrophils than healthy individuals, with neutrophil counts 
doubling within 3–4.5 h post-injury (13). Recent studies have explored 
the predictive ability of systemic inflammatory biomarkers such as the 
platelet-to-lymphocyte ratio (PLR) and neutrophil-to-lymphocyte ratio 
(NLR), among others, for prognosis following TBI. These biomarkers 
have demonstrated promising predictive capabilities (14, 15). Increasing 
evidence suggests a strong connection and interaction between the 
central nervous system and the peripheral immune system (16). So, 
after traumatic brain injury, systemic inflammatory biomarkers may 
reflect the severity of neuroinflammation and predict the prognosis of 
TBI patients. However, the previous biomarkers of inflammation were 

calculated based on two types of immune cells, but this does not fully 
indicate the role of inflammation in traumatic brain injury. SII, as a 
ratio calculated based on platelets, neutrophils, and lymphocytes, 
includes three different types of peripheral blood inflammatory cells 
compared to other common inflammatory parameters such as NLR, 
lymphocyte to monocyte ratio (LMR), and PLR. This parameter can 
more accurately and comprehensively reflect the balance between 
inflammation and immune response in patients (17).

Recent research has shown that the SII has superior predictive 
performance compared to NLR, PLR, and LMR in the context of TBI 
(18, 19). Vascular dysfunction and BBB breakdown after TBI are at the 
core of thrombosis and immunopathological mechanism development. 
Platelets play a crucial role in BBB dysfunction, as their activation and 
aggregation are necessary steps in the process of microthrombus 
formation, which is closely related to microvascular occlusion and 
neuronal death (20). Considering the crucial role of platelet activation 
and aggregation after TBI, as well as their interaction with neutrophils, 
the SII index can more accurately and comprehensively evaluate the 
pathological and physiological status after TBI. So that is why SII was 
chosen as the main focus, and SII may be superior to other inflammatory 
markers. In these studies, researchers primarily focused on the 
relationship between a single time point SII and the outcomes of patients 
with TBI, overlooking the dynamic assessment of systemic inflammation. 
There has been less emphasis on evaluating the relationship between 
neuroinflammation over time and prognosis, as well as the diversity and 
heterogeneity of secondary injuries (21). The SII at a certain time point 
may not reflect the pathological and physiological changes after early 
TBI well. GBTM is a statistical method used to identify clusters of 
individuals with similar longitudinal patterns of biomarker progression 
over time (22). By estimating changes in repeated measurements over 
time, GBTM can identify distinct clusters of individuals exhibiting 
similar longitudinal change patterns. This modeling approach involves 
finite mixture models of unobserved subpopulations, with assumptions 
about trajectory shapes, allowing for the testing of different trajectory 
groups through maximum likelihood estimation (23).

The trajectory of the SII has not yet been studied in TBI, and 
dynamic SII trajectories could reflect the pathophysiological changes 
in disease progression. Exploring SII trajectory patterns can help 
uncover the heterogeneity of the inflammatory response and dynamic 
changes of SII during the early stages of TBI, identify individuals at high 
risk of mortality, and provide new insights into treatment strategies. 
This study aimed to utilize GBTM to identify SII trajectories in patients 
with moderate-to-severe TBI and further evaluate the association 
between SII trajectories and the risk of in-hospital all-cause mortality.

2 Methods

2.1 Data source and ethics compliance

This study utilized a large-scale publicly available database, 
specifically the eICU-CRD version 2.0 (24). The eICU-CRD is a large 

https://doi.org/10.3389/fneur.2024.1439318
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Tang et al. 10.3389/fneur.2024.1439318

Frontiers in Neurology 03 frontiersin.org

multicenter database comprising data covering over 200,000 ICU 
admissions from 2014 to 2015  in the United States. Patients were 
admitted to one of 335 units at 208 hospitals located throughout the 
US. The database is deidentified, and includes vital sign measurements, 
care plan documentation, severity of illness measures, diagnosis 
information, laboratory measurements, patient history, treatment 
information, and more. Access to this database was granted to one 
(TZY) of the authors upon completion of the collaborative institutional 
training initiative exam (Certification ID: 50723731), who was 
responsible for data extraction. This was an observational study. Data 
were extracted from the eICU-CRD version 2.0. Ethical approval and 
informed consent were waived because all information was 
anonymized and the re-identification risk was certified as meeting safe 
harbor standards by an independent privacy expert (Privacert, 
Cambridge, MA; Health Insurance Portability and Accountability Act 
Certification No. 1031219–2).

2.2 Population selection criteria

The inclusion criteria were patients with TBI as their primary or 
major diagnosis. For patients with multiple admissions, data from 
their initial hospitalization were used. Patients with a Glasgow Coma 
Scale (GCS) score > 12, aged <16 or > 89 years, diagnosed with 
infectious diseases or hematologic malignancies, undergoing 
chemotherapy, using medications severely affecting blood cell counts, 
or those with missing survival data were excluded. Additionally, 
patients with less than 3 days of SII data were excluded from the 
GBTM analysis.

2.3 Clinical data collection

We used PostgreSQL software (version 15) and Navicate Premium 
software (version 15.0.29) with structured query language (SQL) to 
extract data from the eICU-CRD for the years 2014 to 2015. All the 
codes for computing demographic features, laboratory tests, 
comorbidities, and severity scores were obtained from the GitHub 
website.1 This study gathered demographic and clinical data as well as 
comorbidities, and then calculated the Charlson Comorbidity Index 
(CCI). Demographic information included age, sex, race, and body 
mass index (BMI). The study also recorded specific injury types (such 
as skull fractures, epidural hematoma, subarachnoid hemorrhage, 
subdural hematoma, contusion or laceration, and intracerebral 
hemorrhage) alongside multiple scoring systems [including GCS, 
Sequential Organ Failure Assessment (SOFA), and Acute Physiology 
Score III (APS III)]. Data also encompassed medication treatments, 
laboratory indicators, vital signs, length of hospital stay, neurosurgical 
interventions, and outcome indicators (hospital mortality). Based on 
previous studies (25, 26), some variables were repeatedly measured 
within the initial 24 h of admission, and the value that best reflected 
the severity of the disease was used. The primary outcome of this 
study was all-cause hospital mortality, with the exposure factor being 
the longitudinal trajectory of SII. Variables with a missing proportion 

1 https://github.com/MIT-LCP/eicu-code

exceeding 10% were excluded from our analysis. Missing values are 
processed using Multiple Imputation by Chained Equations (MICE) 
algorithm (Supplementary Table S1). Complete blood counts for the 
initial 7 days post-admission were included in our analysis. 
SII = platelet × neutrophil/lymphocyte.

2.4 Statistical analysis

Continuous variables were presented as either medians with 
interquartile ranges (IQR) or means with standard deviations (SD), 
while categorical variables were described as counts and percentages. 
The normality of variables was assessed using the Shapiro–Wilk test. 
For comparisons involving categorical variables, either the chi-square 
test or Fisher’s exact test was employed. At the same time, analysis of 
variance was utilized for continuous variables following a normal 
distribution to compare different SII trajectory patterns. The Kruskal–
Wallis test was used for continuous variables with non-normal 
distributions to compare the different trajectory patterns.

GBTM is a semi-parametric finite mixture model capable of 
identifying groups of individuals with similar biomarker progression 
(22). This method assumes that the population consists of a finite 
number of distinct groups defined by their biomarker trajectories. 
PROC TRAJ is a SAS program suitable for GBTM (27). It provides the 
ability to model three different data distributions for the variable of 
interest: (1) counts; (2) continuous data; and (3) dichotomous data. 
Since SII is a continuous variable and biomarkers typically exhibit 
skewed distributions, we log-transformed SII. We then used GBTM 
with a censored normal distribution (CNORM) to identify subgroups 
of participants with different SII trajectories within the first 7 days 
post-trauma. One key decision when identifying trajectory groups in 
a population is determining the optimal number of groups to best fit 
the data. One must also decide on the highest polynomial order that 
best describes the trajectory of the biomarker over time for each 
group. The polynomial order relates to the shape of the trajectory. 
Models with different numbers of groups and shapes must 
be compared to identify the model that best fits the biomarker data. 
Several model fit indices can help determine the best model, but one 
commonly used measure is the Bayesian Information Criterion (BIC). 
When comparing two possible trajectory models (e.g., with different 
numbers of groups and/or trajectory shapes [polynomial orders]), the 
model with the higher BIC value is selected. If two models fit the data 
similarly, but one is more complex (i.e., has more groups or higher-
order polynomials) than the other, the simpler model should 
be  chosen (28). Akaike Information Criterion (AIC) and 
log-likelihood (LL) also assist in selecting the optimal model, and like 
BIC, the model with the highest AIC and LL values is preferred. 
Average posterior probability (AvePP): If individuals are 
unambiguously assigned to different groups, the AvePP for each group 
would be 1. Therefore, the closer the AvePP is to 1, the better the 
model fit. It is generally recommended that the AvePP for all groups 
be  greater than 0.7. Odds of Correct Classification (OCC): For a 
model that fits the data well, the OCC values should be significantly 
greater than 1. It is generally recommended that the OCC for all 
groups be  5 or higher (29). We  employed the standard approach 
provided by the BIC to determine the optimal number of trajectory 
groups. We iteratively refined the model by eliminating non-significant 
polynomial terms, reducing polynomial levels to achieve a simplified 
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final model, where the significance level for each trajectory group was 
set at α ≤ 0.05 (23, 30). Models ranging from two to six trajectory 
groups were fitted using linear, quadratic, and cubic polynomial terms. 
Typically, we started with a model consisting of two groups with cubic 
polynomials, then progressively eliminated non-significant 
polynomial terms, reducing the polynomial order until the highest-
order polynomial for each group was significant at a confidence level 
of α ≤ 0.05. We then increased the number of groups and repeated this 
process for models with three to six groups. The selection of the best 
trajectory was based on various parameters, including the AvePP, Occ, 
BIC, AIC, and LL. We selected models with higher BIC, AIC, and LL 
values and AvePP ≥0.7, Occ >5, while also favoring simpler models 
(31, 32) (Supplementary Figure S1, Table S2).

After identifying the optimal SII trajectory groups, we used logistic 
regression models to examine the association between SII trajectory 
and all-cause hospital mortality. Initially, a crude logistic regression 
model was established with the first group as the reference. 
Subsequently, we constructed a multivariable logistic regression model. 
In the process of constructing a multivariable logistic regression 
model, we first performed univariable logistic regression analysis on 
variables including demographics, Charlson Comorbidity Index, 
injury type, medication, laboratory indicators, vital signs, length of 
hospital stay, neurosurgical interventions, and scoring systems. 
Variables with a significance level of p < 0.05 from the univariable 
analysis were then included in the multivariable logistic regression 
model. To reduce model complexity, avoid overfitting, and ensure that 
only variables with a significant effect on the outcome variable were 
included in the model, stepwise regression was used to further select 
variables. This helped identify the optimal model and ensure minimal 
multicollinearity. Variables with p < 0.05 in the stepwise regression 
were incorporated into the final multivariable logistic regression model 
for adjustment of confounding factors. Additionally, other commonly 
recognized risk factors, such as age, GCS, and surgical treatment, were 
also included in the final multivariable logistic regression model. If 
variance inflation factor (VIF) ≥ 10, it is considered that there is 
collinearity between variables. In this analysis, all VIF values were 
below 10, suggesting that no significant multicollinearity was detected. 
Consequently, no variables were excluded from the model. ROC curve 
analysis was conducted based on multivariable logistic regression 
model. Sensitivity analysis was performed based on the severity of 
traumatic brain injury, excluding patients with moderate TBI and 
reconstructing the sensitivity analysis cohort. An additional GBTM 
model was developed to explore the association between subgroups in 
this model and all-cause hospital mortality.

Two-sided p-value <0.05 was considered statistical significance. 
We  did all analyses with SAS version 9.4 software and R version 
4.2.2 software.

3 Results

3.1 Study cohort

Initially, a total of 200,859 ICU admission records were retrieved 
from the eICU-CRD database. After applying exclusion criteria, 312 
patients were included in the study cohort, with a total of 1,757 SII 
measurements conducted within 7 days post-trauma (Figure  1). 
Among them, 52 cases (16.7%) died during hospitalization. The 

median age of the patients was 54 years (IQR 32.80–70.00), with males 
comprising 66.7% of the cohort. The median Min GCS score was 6 
(IQR 3.00–8.00), and the primary TBI type was subdural hematoma 
(40.01%). Compared to survivors, non-survivors had higher Max 
creatinine and Max glucose levels [1.09 mg/dL (IQR 0.84, 1.43) vs. 
0.90 mg/dL (IQR 0.77, 1.10); 188 mmol/L (IQR 157, 244) vs. 
156 mmol/L (IQR 133, 195)], elevated Max white blood cell count 
(WBC) [17.80 (IQR 11.8, 23.8) vs. 15.00 (IQR 10.6, 18.2)], lower Min 
systolic blood pressure (SBP) and Min diastolic blood pressure (DBP) 
[(86.2 mmHg, SD ± 23.6) vs. (99.7 mmHg, SD ± 20.8); (45.6 mmHg, 
SD ± 15.5) vs. (51.5 mmHg, SD ± 12.6)], and reduced Min GCS (3.00 
[IQR 3.00, 6.00] vs. 6.00 [IQR 3.00, 8.00]). Additionally, a higher 
proportion of non-survivors received mannitol (23.1% vs. 6.15%) and 
underwent ventriculostomy (23.1% vs. 10.4%; Supplementary Table S3).

3.2 Characterization of SII trajectories

Our model identified three distinct longitudinal trajectories of 
daily maximum SII (Figure 2). The AvePP for each group exceeded 
0.85, and the proportion of the population was greater than 5%. These 
three trajectory groups reflected different patterns of daily maximum 
SII values post-trauma. Group  1 (n = 59, 18.90%) represents the 
low-level rapid decline group, initially characterized by the low level, 
sharply decreasing to its minimum around the 4th day, followed by a 
slight rebound. Group 2 (n = 188, 60.20%) represented the moderate-
level slow decline group, being the largest cohort, exhibiting an initial 
gradual decline, followed by a rebound, and ultimately stabilizing. 
Group 3 (n = 65, 20.80%) represents the sustained high-level group, 
displaying the highest Log SII values and maintaining consistently 
elevated levels without a clear declining pattern.

3.3 Clinical characteristics

Table  1 presents the differences in demographic and clinical 
characteristics among different SII trajectory groups. Group 2 has the 
highest proportion of males (70.70%), which is higher than in the 
other two groups. There were no differences in age, race, and BMI 
among the three groups, and the maximum WBC and platelet counts 
were higher in Group 2 and Group 3 than in Group 1 (Max WBC: 
15.40 [IQR 10.70, 19.00] and 15.40 [IQR 11.50, 20.60]; Max platelets: 
226.00 [IQR 176.00, 282.00] and 260.00 [IQR 241.00, 320.00] for 
Groups 2 and 3, respectively). There were differences in the types of 
TBI among the three trajectory groups, with subdural hematoma 
being predominant in Group 3 (50.80%). Additionally, the proportion 
of patients undergoing surgical treatment and receiving mannitol was 
highest in Group  3 (24.60 and 13.80%, respectively), but these 
differences were not statistically significant. Differences were observed 
in the maximum, minimum, and mean values of SII among the three 
groups, with Group 3 exhibiting higher than the other two groups.

3.4 Association of SII trajectories and 
all-cause hospital mortality

There was a significant difference in all-cause hospital mortality 
rates among the different trajectory groups (p = 0.013), with 
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FIGURE 1

Flowchart of eligible participants.

FIGURE 2

SII trajectories within the first 7 days post-admission following trauma. Trajectories were defined using group-based trajectory modeling. Day 0 was 
defined as the day of admission. Group 1: “Low-Level Rapid Decline” (18.90%) exhibited the lowest mortality rate. Group 2: “Moderate-Level Slow 
Decline” (60.20%) demonstrated a moderate risk of mortality. Group 3: “Sustained High-Level” (20.80%) was associated with the highest mortality rate.
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TABLE 1 Characteristics among trajectory groups.

ALL (N = 312) Group1 (N = 59) Group2 (N = 188) Group3 (N = 65) p

Demographics

Age (years, median [IQR]) 54.0 [32.8;70.0] 50.0 [35.0;65.0] 53.5 [30.0;66.0] 56.0 [35.0;77.0] 0.216

Sex, n (%) 0.044

Female 104 (33.3%) 19 (32.2%) 55 (29.3%) 30 (46.2%)

Male 208 (66.7%) 40 (67.8%) 133 (70.7%) 35 (53.8%)

Ethnicity, n (%) 0.566

African American 21 (6.73%) 4 (6.78%) 13 (6.91%) 4 (6.15%)

Asian 5 (1.60%) 0 (0.00%) 3 (1.60%) 2 (3.08%)

Caucasian 241 (77.2%) 48 (81.4%) 145 (77.1%) 48 (73.8%)

Hispanic 21 (6.73%) 2 (3.39%) 11 (5.85%) 8 (12.3%)

Native American 2 (0.64%) 1 (1.69%) 1 (0.53%) 0 (0.00%)

Other/Unknown 22 (7.05%) 4 (6.78%) 15 (7.98%) 3 (4.62%)

BMI(kg/m2,median [IQR]) 26.4 [22.9;29.9] 27.4 [22.5;29.8] 26.4 [23.4;30.3] 25.7 [22.1;29.8] 0.227

CCI, median (IQR) 2.00 [0.00;4.00] 2.00 [0.00;4.00] 2.00 [0.00;4.00] 3.00 [0.00;4.00] 0.221

Laboratory variates, median (IQR)

Min creatinine (mg/dL) 0.78 [0.63;0.95] 0.78 [0.64;0.90] 0.78 [0.62;0.94] 0.83 [0.64;0.97] 0.886

Max creatinine (mg/dL) 0.92 [0.78;1.14] 0.90 [0.80;1.08] 0.90 [0.78;1.14] 0.94 [0.77;1.17] 0.728

Min glucose (mmol/L) 108 [93.0;127] 105 [92.0;122] 110 [94.8;127] 109 [94.0;129] 0.348

Max glucose (mmol/L) 160 [135;202] 150 [128;186] 161 [136;208] 162 [140;207] 0.193

Min Hb (g/dL) 11.4 [9.30;12.7] 11.7 [9.20;13.5] 11.6 [9.57;12.8] 10.5 [9.10;12.2] 0.101

Max Hb (g/dL) 13.3 [11.8;14.6] 13.5 [11.6;14.9] 13.4 [12.1;14.6] 12.6 [10.8;14.2] 0.084

Min INR (ratio) 1.10 [1.00;1.20] 1.10 [1.05;1.20] 1.10 [1.00;1.20] 1.10 [1.01;1.20] 0.321

Max INR (ratio) 1.17 [1.09;1.30] 1.14 [1.10;1.37] 1.16 [1.05;1.30] 1.20 [1.10;1.36] 0.767

Min platelet (109/L) 174 [134;223] 158 [110;182] 169 [132;220] 204 [167;268] <0.001

Max platelet (109/L) 223 [178;280] 194 [169;222] 226 [176;282] 260 [214;320] <0.001

Min potassium (mmol/L) 3.50 [3.20;3.80] 3.60 [3.30;3.80] 3.50 [3.20;3.80] 3.50 [3.20;3.80] 0.43

Max potassium (mmol/L) 4.10 [3.90;4.60] 4.10 [3.90;4.45] 4.10 [3.80;4.60] 4.20 [3.90;4.50] 0.558

Min sodium (mmol/L) 138 [136;140] 139 [136;140] 138 [136;140] 138 [135;141] 0.727

Max sodium (mmol/L) 142 [139;145] 141 [139;144] 142 [139;145] 142 [140;145] 0.504

Min WBC (109/L) 10.5 [8.13;13.7] 9.50 [8.00;12.1] 10.3 [7.97;13.4] 12.5 [9.20;15.6] 0.005

Max WBC (109/L) 15.2 [10.8;18.9] 12.0 [9.90;16.6] 15.4 [10.7;19.0] 15.4 [11.5;20.6] 0.035

Min NEU (109/L) 8.02 [5.65;10.9] 6.93 [5.24;9.62] 7.89 [5.64;10.8] 9.63 [7.36;12.6] 0.002

Max NEU (109/L) 11.4 [8.13;15.3] 9.83 [7.41;13.1] 11.8 [8.12;15.4] 12.4 [9.48;16.8] 0.015

Min LYM (109/L) 1.02 [0.68;1.46] 1.30 [1.00;1.88] 0.97 [0.66;1.46] 0.86 [0.63;1.23] <0.001

Max LYM (109/L) 1.73 [1.13;2.97] 1.95 [1.37;2.95] 1.69 [1.12;3.16] 1.51 [0.94;2.72] 0.113

Min MON (109/L) 0.72 [0.53;0.97] 0.74 [0.53;1.00] 0.72 [0.53;0.95] 0.76 [0.53;1.01] 0.756

Max MON (109/L) 1.00 [0.74;1.40] 1.00 [0.80;1.26] 0.99 [0.74;1.42] 1.02 [0.68;1.44] 0.933

Vital Signs, median (IQR)

Min heart rate (times/min) 67.0 [58.0;77.0] 66.0 [58.0;74.5] 67.0 [59.0;78.0] 67.0 [55.0;73.0] 0.463

Max heart rate (times/min) 110 [96.8;128] 111 [96.5;127] 110 [96.8;126] 117 [98.0;137] 0.33

Min SBP (mmHg), means (SD) 97.7 (21.7) 95.9 (15.9) 98.6 (23.2) 96.7 (22.0) 0.641

Max SBP (mmHg) 161 [147;180] 157 [136;178] 160 [149;179] 168 [146;182] 0.142

Min DBP (mmHg), means (SD) 50.5 (13.2) 50.7 (10.2) 51.4 (13.6) 47.8 (14.3) 0.157

(Continued)

https://doi.org/10.3389/fneur.2024.1439318
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Tang et al. 10.3389/fneur.2024.1439318

Frontiers in Neurology 07 frontiersin.org

TABLE 1 (Continued)

ALL (N = 312) Group1 (N = 59) Group2 (N = 188) Group3 (N = 65) p

Max DBP (mmHg) 97.5 [84.0;113] 97.0 [84.5;108] 98.0 [85.0;113] 95.0 [81.0;112] 0.775

Min temperature (°C) 36.3 [35.7;36.7] 36.2 [35.8;36.7] 36.3 [35.7;36.7] 36.4 [35.6;36.6] 0.869

Max temperature (°C), means (SD) 38.0 (0.72) 37.9 (0.76) 38.0 (0.69) 38.1 (0.76) 0.381

Type of TBI, n (%)

Skull fracture 0.858

No 299 (95.8%) 56 (94.9%) 180 (95.7%) 63 (96.9%)

Yes 13 (4.17%) 3 (5.08%) 8 (4.26%) 2 (3.08%)

EDH 0.315

No 295 (94.6%) 57 (96.6%) 179 (95.2%) 59 (90.8%)

Yes 17 (5.45%) 2 (3.39%) 9 (4.79%) 6 (9.23%)

tSAH 0.472

No 215 (68.9%) 44 (74.6%) 125 (66.5%) 46 (70.8%)

Yes 97 (31.1%) 15 (25.4%) 63 (33.5%) 19 (29.2%)

SDH 0.027

No 187 (59.9%) 43 (72.9%) 112 (59.6%) 32 (49.2%)

Yes 125 (40.1%) 16 (27.1%) 76 (40.4%) 33 (50.8%)

tICH 0.367

No 292 (93.6%) 57 (96.6%) 173 (92.0%) 62 (95.4%)

Yes 20 (6.41%) 2 (3.39%) 15 (7.98%) 3 (4.62%)

Contusion or laceration 0.465

No 230 (73.7%) 45 (76.3%) 134 (71.3%) 51 (78.5%)

Yes 82 (26.3%) 14 (23.7%) 54 (28.7%) 14 (21.5%)

Scoring Systems, median (IQR)

Min GCS 6.00 [3.00;8.00] 6.00 [3.00;8.00] 4.00 [3.00;8.00] 6.00 [3.00;7.00] 0.868

SOFA 4.00 [3.00;6.00] 4.00 [3.00;7.50] 4.00 [3.00;6.00] 4.00 [3.00;6.00] 0.929

APSIII 53.0 [37.0;74.0] 47.0 [34.5;74.5] 54.0 [35.0;73.2] 54.0 [40.0;74.0] 0.404

Clinical Treatments, n (%)

Ventriculostomy 0.139

No 273 (87.5%) 56 (94.9%) 160 (85.1%) 57 (87.7%)

Yes 39 (12.5%) 3 (5.08%) 28 (14.9%) 8 (12.3%)

Craniotomy 0.159

No 287 (92.0%) 55 (93.2%) 176 (93.6%) 56 (86.2%)

Yes 25 (8.01%) 4 (6.78%) 12 (6.38%) 9 (13.8%)

CSF drainage 0.163

No 286 (91.7%) 57 (96.6%) 168 (89.4%) 61 (93.8%)

Yes 26 (8.33%) 2 (3.39%) 20 (10.6%) 4 (6.15%)

Craniectomy 0.838

No 308 (98.7%) 59 (100%) 185 (98.4%) 64 (98.5%)

Yes 4 (1.28%) 0 (0.00%) 3 (1.60%) 1 (1.54%)

Surgery 0.168

No 248 (79.5%) 52 (88.1%) 147 (78.2%) 49 (75.4%)

Yes 64 (20.5%) 7 (11.9%) 41 (21.8%) 16 (24.6%)

Hypertonic saline 0.155

(Continued)
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Group 3 showing a higher mortality rate than the other two groups. 
The mortality rates for Groups 1, 2, and 3 were 5.08, 17.55, and 
24.62%, respectively. In the unadjusted model, compared to 
Group 1, belonging to Groups 2 and 3 was associated with increased 
mortality (OR 3.97, 95% CI 1.36–16.97; OR 6.01, 95% CI 1.89–
27.33). After adjusting for potential confounders (APSIII, Max 
creatinine, Min SBP, Mannitol, Age, Min GCS, Surgery), the 
multivariable logistic regression model yielded similar results, 
showing an increased risk of mortality in Groups 2 and 3 (OR 4.09, 
95% CI 1.21–19.75; OR 5.84, 95% CI 1.52–30.67; Table  2). 
Subsequently, we  calculated the model’s AUC to be 0.838, 
sensitivity: 75.0%, and specificity: 83.8% (Figure 3).

3.5 Sensitivity analysis

After excluding patients with moderate TBI, we remodeled and 
identified a Log SII trajectory plot that closely mirrored the number 
and evolution patterns of the original cohort. We conducted a rough 
comparison of the three Log SII trajectory groups and used a logistic 
regression model to explore the relationship between these trajectory 
groups and all-cause hospital mortality. The results were consistent 
with those of the original cohort. Using Group 1 as a reference, the 

risk of death increased in Group 3 (OR 3.10, 95% CI 0.56, 29.33). Refer 
to the Supplementary Materials (Supplementary Figure S2, Table S4) 
for further details.

TABLE 1 (Continued)

ALL (N = 312) Group1 (N = 59) Group2 (N = 188) Group3 (N = 65) p

No 268 (85.9%) 55 (93.2%) 160 (85.1%) 53 (81.5%)

Yes 44 (14.1%) 4 (6.78%) 28 (14.9%) 12 (18.5%)

Mannitol 0.055

No 284 (91.0%) 58 (98.3%) 170 (90.4%) 56 (86.2%)

Yes 28 (8.97%) 1 (1.69%) 18 (9.57%) 9 (13.8%)

Hospital Outcomes

LOS hospital hours, median (IQR) 249 [148;420] 229 [148;399] 250 [144;416] 290 [176;498] 0.345

In-hospital death, n (%) 0.013

No 260 (83.3%) 56 (94.9%) 155 (82.4%) 49 (75.4%)

Yes 52 (16.7%) 3 (5.08%) 33 (17.6%) 16 (24.6%)

SII Characteristics, median (IQR)

Avg SII 1,557 [1,014;2,236] 768 [622;856] 1,524 [1,210;1900] 3,089 [2,615;3,675] <0.001

Min SII 782 [546;1,123] 365 [280;477] 788 [642;1,038] 1701 [1,286;2,112] <0.001

Max SII 2,622 [1,666;4,216] 1,367 [915;1,690] 2,531 [1792;3,596] 5,287 [4,002;7,452] <0.001

BMI, body mass index; CCI, Charlson comorbidity index; Hb, hemoglobin; INR, International Normalized Ratio; WBC, white blood cells; NEU, neutrophile; LYM, lymphocyte; MON, 
monocyte; SBP, systolic blood pressure; DBP, diastolic blood pressure; TBI, traumatic brain injury; EDH, epidural hematoma; SDH, subdural hematoma; tSAH, traumatic subarachnoid 
hemorrhage; tICH, traumatic intracerebral hemorrhage; GCS, Glasgow Coma Score; SOFA, sequential organ failure assessment; APSIII, acute physiology score III; CSF, cerebrospinal fluid; 
LOS, length of stay; SII, systemic immune inflammation index. Boldface type indicates p < 0.05.

TABLE 2 Association between SII trajectories and all-cause hospital mortality.

Trajectories Univariate analysis Multivariate analysis

OR (95% CI) p-value OR (95% CI) p-value

Group 1 Reference Reference

Group 2 3.97(1.36,16.97) 0.027 4.09 (1.21,19.75) 0.042

Group 3 6.01(1.89,27.33) 0.006 5.84 (1.52,30.67) 0.018

Adjusted for APSIII, Max creatinine, Mannitol, Min SBP, Age, Min GCS, Surgery. OR, odds ratio; CI, confidence interval. Boldface type indicates p < 0.05.

FIGURE 3

Receiver operating characteristic (ROC) curve of the SII trajectory 
model. This ROC curve achieved an area under the curve (AUC) of 
0.838, with a sensitivity of 75.0% and a specificity of 83.8%. The SII 
trajectory model was adjusted using APSIII, Max creatinine, Min SBP, 
Mannitol, Age, Min GCS, Surgery. AUC: the area under the receiver-
operating-characteristics curve.
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4 Discussion

Post-traumatic brain injury secondary damage has long been a 
focal point, particularly with neuroinflammation playing a pivotal 
role. In this study, we  employed GBTM to examine dynamic SII 
patterns following TBI. We identified three distinct trajectory groups 
based on daily maximum SII levels. Compared to the “low-level rapid 
decline” and “moderate-level slow decline” groups, the group 
exhibiting a “sustained high-level” trajectory pattern showed a 
significantly increased risk of in-hospital mortality. This relationship 
was confirmed in a multivariable logistic regression model.

Neuroinflammation in the secondary injury following TBI is 
recognized as one of the important factors influencing disease 
progression, becoming a major focus of research in recent years (16). 
In response to brain injury, inflammatory cells from both the central 
nervous system and periphery rapidly react and may aid in the healing 
process (33). This inflammatory response is triggered by damaged 
neuronal tissue, leading to the production of pro-inflammatory 
cytokines and angiogenic factors (34). Increased levels of cytokines 
and chemokines, such as tumor necrosis factor (TNF), interleukin 
(IL)-1β, and IL-6, may serve as signals of the inflammatory response. 
Their release and production leads to local immune reactions in the 
brain tissue and systemic immune responses. These cytokines and 
chemokines result in the recruitment of neutrophils, activation of 
monocytes, and polarization of microglia and astrocytes (13). In this 
process, the production of proteases, metalloproteinases, TNF, and 
reactive oxygen species (ROS) further breaks the BBB, allowing 
neutrophils to enter the central nervous system (35). Platelets play a 
critical role in blood–brain barrier dysfunction through their 
activation and aggregation, which are essential for microthrombus 
formation associated with microvascular occlusion and neuronal 
death. Platelets and leukocytes can form microvascular thrombi 
around the injury site and adjacent brain tissue by forming activated 
vascular hemophilia factor polymers (36). Therefore, the infiltration 
of inflammatory cells following TBI plays an indispensable role in 
traumatic brain injury.

Previous studies have highlighted numerous biomarkers for TBI 
diagnosis and prognosis, including protein biomarkers for astroglial 
cell injury (GFAP, S100B), neuronal cell body injury (UCH-L1, NSE), 
markers of post-injury neurodegeneration (total Tau and 
phosphorylated Tau), neuronal cell death (alpha-II spectrin 
breakdown products), axonal injury (NF protein), white matter injury 
(MBP), and markers of post-injury autoimmune response (brain-
targeted autoantibodies). However, these biomarkers may not 
be  universally accessible across all hospitals (37). Therefore, 
researchers have been striving to identify simple, readily available, and 
relatively reliable biomarkers. The SII may be associated with adverse 
outcomes in neurological diseases, such as the severity of pneumonia 
in patients with intracerebral hemorrhage, the prognosis of patients 
with acute ischemic stroke, and delayed cerebral vasospasm following 
aneurysmal subarachnoid hemorrhage (38–40). Studies focusing on 
patients with TBI have also shown that elevated SII levels upon 
admission are correlated with poor outcomes. Notably, SII 
demonstrates superior predictive performance compared to other 
ratios like PLR, NLR, and LMR (18, 19).

In this study, we focused on patients with a GCS score of ≤12 
upon admission, aiming to explore the relationship between 
inflammatory biomarker trajectories and mortality of patients 

with moderate-to-severe TBI. Compared to the static assessments 
of the SII, our research underscores the importance of SII 
trajectory patterns in patients with TBI. Previous studies have 
demonstrated that elevated SII levels correlate with poor outcomes 
upon admission in patients with TBI (18, 19). However, these 
studies solely examined the association between SII at a single 
time point and prognosis. Single-time-point assessments of SII 
may introduce bias owing to varying disease time frames and offer 
limited insights into disease progression post-TBI. A one-time SII 
measurement may not fully capture the comprehensive pattern of 
inflammatory changes during hospitalization. Clinical treatment 
options for patients with TBI are often limited, as the lack of 
treatment options stems from the diversity of injury types and an 
incomplete understanding of secondary brain injury mechanisms 
(1, 41, 42). Hence, there is an urgent need for methods to explore 
inflammatory changes following TBI. This exploration can aid in 
comprehending the pathophysiological mechanisms of 
inflammation-related secondary injuries and identifying patient 
heterogeneity post-TBI. By gaining insights into inflammation 
progression after TBI, clinicians can better comprehend patient 
conditions, tailor clinical interventions more precisely to 
individual patients, enhance patient outcomes, and provide a 
research roadmap for pathophysiological investigation.

Through clinical characteristics and dynamic changes in SII 
trajectories, we can gain insights into the complex mechanisms of 
neuroinflammation progression in patients with TBI. For example, 
patients in Group  3, as opposed to those in Groups 1 and 2, 
demonstrated higher SII measurements during the first 7 days after 
admission, with no downward trend. This subgroup exhibited the 
highest mortality rates, a higher APSIII, and a greater incidence of 
subdural hematoma, along with increased rates of surgical treatment 
and mannitol usage. Traumatic acute subdural hematoma (ASDH) is 
the most severe subtype of TBI due to its high rates of disability and 
mortality. The lethality of traumatic ASDH primarily arises from its 
frequent association with primary and/or secondary brain injuries, 
including contusions, lacerations, edema, or swelling (43). Following 
traumatic brain injury, the release of molecular patterns associated 
with primary and secondary injuries triggers an immune response, 
leading to BBB disruption and vasogenic edema following TBI. These 
reactions can cause further increases in intracranial pressure (ICP) 
(44). In our study, Group 3, which exhibited sustained high SII levels, 
was associated with higher rates of mannitol use, a greater proportion 
of subdural hematomas, and higher surgical intervention rates. These 
patients likely had more severe conditions, exhibiting a stronger 
inflammatory response and cerebral edema, suggesting that they were 
more prone to severe complications such as increased ICP. The 
differences in mannitol usage, proportion of subdural hematomas, and 
surgical interventions indicate that SII trajectories may reflect the 
severity of the patient’s condition, as well as the need for ICP 
management and surgical treatment. This aligns with our conclusion 
that patients with sustained high SII levels had the highest all-cause 
in-hospital mortality. These patients may require more aggressive 
treatment and ICP monitoring to control cerebral edema and 
intracranial pressure. The APS III score measures the severity of a 
patient’s acute physiological state, with higher scores reflecting 
worsening clinical conditions (45). In Groups 2 and 3, APS III scores 
were higher than in Group 1, and SII levels remained elevated in 
Group 3. The differences in APS III scores suggest that patients with 
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different SII trajectories not only differ in their inflammatory 
responses but also show significant variations in the severity of their 
acute physiological conditions. Patients with sustained high SII levels 
and higher APS III scores are likely to face a higher risk of in-hospital 
mortality, highlighting the need for closer monitoring and more 
aggressive interventions in clinical practice. Patients in Group  1 
exhibited a rapid decline in SII after injury and consistently maintained 
low SII levels. This cohort had the lowest mortality rate, indicating that 
patients in this category may experience minimal secondary 
neuroinflammation-related damage post-injury, and their 
inflammation may resolve more rapidly.

The pathophysiological mechanisms of TBI are heterogeneous 
and dynamic (21). Neuroinflammation is an important and modifiable 
cause of secondary injury after TBI, driven by both central and 
peripheral immune responses (46). After TBI, the body initiates a 
systemic immune response, leading to significant changes in various 
immune cells and inflammatory markers (47). There is a strong 
connection and interaction between the central nervous system and 
the peripheral immune system (16). Therefore, changes in SII may 
be driven by the complex interactions between the central nervous 
system (CNS) and the peripheral immune system. Elevated SII after 
TBI may indicate an exacerbation of neuroinflammation and systemic 
inflammatory responses, leading to poor outcomes. The impact of TBI 
is not limited to the brain; it can cause multi-organ damage and trigger 
a systemic immune response, including the production of cytokines 
and chemokines (48). Current potential therapies targeting peripheral 
immune responses to CNS injury include anti-HMGB1 monoclonal 
antibodies, which reduce blood–brain barrier disruption, decrease 
cerebral edema, and limit inflammatory cascades; metformin, which 
exhibits anti-inflammatory effects by reducing neutrophilia and 
normalizing the neutrophil-to-lymphocyte ratio; and dexamethasone/
hydrocortisone, which reduce the intensity of immune responses 
through various cells (16). Therefore, aggressive targeted anti-
inflammatory treatment, intracranial pressure management, and 
timely adjustment of surgical strategies are expected to alter SII 
trajectories, allowing for a rapid decrease in SII levels. In this study, 
the model demonstrated an AUC of 0.838, indicating good 
discriminative ability in predicting mortality in patients with 
moderate to severe TBI. Compared to two recent models using 
admission SII levels to predict the prognosis of moderate to severe TBI 
patients (18, 49), our model’s AUC is higher, highlighting the model’s 
advantages in prognostic prediction and the importance of dynamic 
SII monitoring. The model’s sensitivity was 75.0%, meaning that in 
clinical practice, most patients at risk of death could be identified, 
facilitating early intervention. The specificity was 83.8%, indicating 
that the model could effectively exclude non-critical cases, reducing 
unnecessary treatment burdens. Compared to models in the existing 
literature (75.0%, 83.8% vs. 64.1%, 92.1% and 48.3%, 84.2%), these 
metrics are at relatively high levels, demonstrating the potential of this 
model for application in TBI patients. This model will help clinicians 
identify high-risk patients early after admission and predict the 
prognosis of patients with TBI. Such identification could prompt 
surgeons to expedite necessary interventions, implement stratified 
management, and provide personalized treatments, such as aggressive 
pharmacological interventions, targeted anti-inflammatory treatment, 
intracranial pressure management and timely adjustments in surgical 

strategies. By combining the model’s predictions with other clinical 
assessment methods, treatment decisions can be further optimized, 
ultimately improving patient outcomes.

This study has some limitations that are common in large-scale 
public database studies. First, data missingness and outliers are 
common owing to routine clinical electronic records, resulting in 
inconsistent data density when collecting clinical records of 
SII. Second, variables were extracted using ICD-9 and ICD-10 
diagnostic codes, inevitably leading to coding errors or 
misclassification biases. Third, the sample size limited significant 
statistical comparisons of mortality rates among groups in sensitivity 
analyses. Finally, the database did not include neuroimaging data, 
therefore, this study was unable to extract neuroimaging data for 
analysis. Although these limitations may somewhat affect the 
generalizability of the results, we have taken various measures to 
minimize their impact. For example, we used multiple imputation 
methods to handle missing data, applied strict inclusion and 
exclusion criteria as well as sensitivity analyses to enhance the 
validity and generalizability of the findings, and adjusted for 
potential confounding factors in the multivariable regression models 
to reduce bias. Therefore, despite its limitations, the results of this 
study still hold significant clinical relevance and generalizability to 
some extent. However, to further validate our conclusions, future 
research could conduct larger-scale prospective cohort studies, 
incorporating more comprehensive clinical and imaging data to 
enhance the validity and generalizability of the findings.

5 Conclusion

In summary, this study employed GBTM to identify three 
dynamic SII trajectories after TBI, offering fresh insights into the 
interactions between peripheral immune system and secondary brain 
injury following trauma. Patients in the “sustained high-level” group 
exhibited the highest risk of all-cause hospital mortality. Early 
monitoring of the dynamic changes of SII helps identify subtypes 
with high mortality risk and enhances treatment strategies. SII 
trajectory modeling contributes to our understanding of the 
pathology of post-traumatic neuroinflammation and enables more 
targeted treatment approaches.
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