
Frontiers in Neurology 01 frontiersin.org

Automated identification of 
thrombectomy amenable vessel 
occlusion on computed 
tomography angiography using 
deep learning
Jung Hoon Han 1, Sue Young Ha 2, Hoyeon Lee 2, Gi-Hun Park 2, 
Hotak Hong 2, Dongmin Kim 2, Jae Guk Kim 3, Joon-Tae Kim 4, 
Leonard Sunwoo 5, Chi Kyung Kim 1*† and Wi-Sun Ryu 2*†

1 Department of Neurology, Korea University Guro Hospital, Seoul, Republic of Korea, 2 Artificial 
Intelligence Research Center, JLK Inc., Seoul, Republic of Korea, 3 Department of Neurology, Eulji 
University Hospital, Daejeon, Republic of Korea, 4 Department of Neurology, Chonnam National 
University Hospital, Gwangju, Republic of Korea, 5 Department of Radiology, Seoul National University 
Bundang Hospital, Seongnam, Republic of Korea

Introduction: We developed and externally validated a fully automated algorithm 
using deep learning to detect large vessel occlusion (LVO) in computed 
tomography angiography (CTA).

Method: A total of 2,045 patients with acute ischemic stroke who underwent 
CTA were included in the development of our model. We validated the algorithm 
using two separate external datasets: one with 64 patients (external 1) and 
another with 313 patients (external 2), with ischemic stroke. In the context of 
current clinical practice, thrombectomy amenable vessel occlusion (TAVO) was 
defined as an occlusion in the intracranial internal carotid artery (ICA), or in the 
M1 or M2 segment of the middle cerebral artery (MCA). We employed the U-Net 
for vessel segmentation on the maximum intensity projection images, followed 
by the application of the EfficientNetV2 to predict TAVO. The algorithm’s 
diagnostic performance was evaluated by calculating the area under the receiver 
operating characteristics curve (AUC), sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV).

Results: The mean age in the training and validation dataset was 68.7  ±  12.6; 
56.3% of participants were men, and 18.0% had TAVO. The algorithm achieved 
AUC of 0.950 (95% CI, 0.915–0.971) in the internal test. For the external 
datasets 1 and 2, the AUCs were 0.970 (0.897–0.997) and 0.971 (0.924–0.990), 
respectively. With a fixed sensitivity of 0.900, the specificities and PPVs for the 
internal test, external test 1, and external test 2 were 0.891, 0.796, and 0.930, and 
0.665, 0.583, and 0.667, respectively. The algorithm demonstrated a sensitivity 
and specificity of approximately 0.95  in both internal and external datasets, 
specifically for cases involving intracranial ICA or M1-MCA occlusion. However, 
the diagnostic performance was somewhat reduced for isolated M2-MCA 
occlusion; the AUC for the internal and combined external datasets were 0.903 
(0.812–0.944) and 0.916 (0.816–0.963), respectively.

Conclusion: We developed and externally validated a fully automated algorithm 
that identifies TAVO. Further research is needed to evaluate its effectiveness in 
real-world clinical settings. This validated algorithm has the potential to assist 
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early-career physicians, thereby streamlining the treatment process for patients 
who can benefit from endovascular treatment.
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large vessel occlusion, computed tomography angiography, deep learning, stroke, 
endovascular treatment

Introduction

Advancements in stroke imaging and procedural devices have 
extended the endovascular treatment (EVT) window for patients with 
hyperacute ischemic stroke (1, 2). The DAWN (DWI or CTP 
Assessment with Clinical Mismatch in the Triage of Wake-Up and 
Late Presenting Strokes Undergoing Neurointervention with Trevo) 
and DFFUSE 3 (Endovascular Therapy Following Imaging Evaluation 
for Ischemic Stroke) trials have changed the standard of care for 
ischemic stroke patients who present within 6 to 24 h of their last well 
known status.

Triage entry for clinical trials primarily relies on magnetic 
resonance imaging (MRI) or computed tomography perfusion (CTP) 
to identify clinical or tissue mismatch and is now endorsed in 
guidelines. However, access to acute MRI or CTP is limited and not 
commonly available in the majority of primary stroke centers 
worldwide. Recent studies have brought attention to more readily 
available imaging techniques, such as CT angiography (3). The CT for 
Late Endovascular Reperfusion (CLEAR) trial (4) revealed no 
significant differences in clinical outcomes between patients selected 
using non-contrast CT with CT angiography and those selected using 
CTP or MRI. In addition, a sub-study (5) of the HERMES 
collaboration (Highly Effective Reperfusion Evaluated in Multiple 
Endovascular Stroke Trials) has extended this approach to the early 
time window (0–6 h) by demonstrating that the rates of favorable 
functional outcomes were comparable between patients who 
underwent CTP and those who did not.

Two-thirds of EVT candidates were initially routed to centers not 
equipped for EVT (6), despite better outcomes and higher chances of 
receiving EVT at EVT-capable centers. Consequently, non-EVT-
capable centers must consistently identify large vessel occlusion (LVO) 
around the clock, ensuring quick reporting to facilitate patient transfer 
to EVT-capable centers. However, a lack of vascular specialists poses 
challenges for many smaller, non-EVT-capable centers. Even in 
EVT-capable centers, the ability to screen CTAs for the presence of 
LVOs can streamline workflow, staffing, and door-to-puncture times 
by facilitating LVO detection. Machine learning has been employed to 
automate LVO detection in CTA, which is now in clinical use in a few 
countries (7, 8). However, independent external evaluation of these 
automated LVO detection algorithms have shown only modest 
sensitivity (7, 8). Moreover, machine learning algorithms contingent 
on Hounsfield unit and hemisphere asymmetry information have 
limited its applicability in patients with bilateral occlusions, such as 
Moyamoya disease (9).

In contrast to initial focus on intracranial LVO, recent 
advancements in neurointerventional devices and cerebrovascular 
imaging have expanded the application of EVT to medium vessel 
occlusions. Consequently, the selection of appropriate EVT candidates 
has become more complex, necessitating advanced imaging. This 

complexity poses a challenge for early-career physicians in making 
treatment decision (10).

In the context of current clinical practice, we have developed and 
validated a fully automated deep learning algorithm to detect 
comprehensive EVT target vessels. This includes not only the well-
known LVOs but also other relevant vessel occlusions. We utilized a 
dataset from multiple centers in Korea, encompassing 2,441 patients 
with acute ischemic stroke. The deep learning algorithms were 
specifically designed for (1) selecting the appropriate slices for 
consistent maximal intensity projection (MIP) image generation, (2) 
segmenting vessels on MIP images, and (3) identifying vessel occlusions 
using the vessel segmentation mask. We further validated the algorithm 
with two independent external datasets.

Materials and methods

Datasets

Training validation and internal test
From May 2011 and June 2013, 1,745 patients were collected from 

two hospitals. Additionally, 389 patients were included from a 
university hospital between August 2020 and May 2021. After 
combining these groups, a total of 2,134 patients who were suspected 
with ischemic stroke and who underwent CT angiography were 
initially considered (refer to Supplemental Figure 1). Following the 
exclusion of 89 patients, the final cohort consisted of 2,045 patients, 
who were randomly divided into training (1,277), validation (144), 
and internal test (624) datasets with a 63:7:30 ratio.

External test
Between April 2011 and July 2013, a total of 71 patients were 

included from two tertiary hospitals. After excluding 7 patients, 64 
were assigned to external test dataset 1. In addition, 337 patients from 
a university hospital were included for the period between February 
2017 and March 2022. After excluding 24 patients from this group, 
313 were assigned to external test dataset 2. The study procedure was 
approved by the institutional review boards of each hospital, and 
written consent was waived due to the retrospective and anonymised 
nature of the study design.

Definition of thrombectomy amenable 
vessel occlusion

In our study, the vascular occlusions we aimed to investigate are 
termed as thrombectomy amenable vessel occlusion (TAVO) which 
include any arterial occlusion involving the intracranial internal 
carotid artery (ICA), middle cerebral artery (MCA)-M1, and 
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MCA-M2 segments. Intracranial ICA is defined as the segment of the 
ICA from the petrous part to the MCA-ACA (anterior cerebral artery) 
bifurcation. MCA-M1 indicates the MCA segment from the 
MCA-ACA bifurcation to the MCA branching point, and the 
MCA-M2 refers to the segment of the MCA ascending vertically along 
with Sylvian fissure from its branching point. For the subsequent 
analysis, TAVO patients were divided into intracranial LVO and 
isolated MCA-M2 occlusion in our study (11). In cases of early 
division of the MCA, a functional rather than traditional angiographic 
definition was adopted; the short proximal trunk was called the M1 
segment and the branches distal to division were defined as M2 
segments. To determine the presence or absence of TAVO (ground 
truth label), each image used in the study was reviewed by an 
experienced neurologist along with the subject’s MR image (MRI) 
scans and patient symptom data. The neurologist’s TAVO diagnosis 
was cross-referenced with the stroke registry, which was independently 
verified by attending vascular neurologists at each hospital. In case of 
disagreement, a consensus was made.

Algorithm description

Slices selection for maximal intensity projection 
image generation

In order to maintain the uniformity of the input image for the deep 
learning model, we  have developed an automated approach for 
selecting slices from the source images (Figure 1). These slices are then 
used to create a maximum intensity projection (MIP) image. 
We constructed a sagittal bone array by summing the pixel values of the 
source images. This process automatically outlines the skull, enabling 
the automatic determination of the vertex and the C1 atlas (12). Using 

this method on the training data, we effectively identified target slices 
in 1,240 cases, which accounts for 97.1% of the total. We calculated the 
mean and standard deviation of the distance between the vertex and C1 
atlas in these patients. For cases falling outside the mean ± 2SD range, 
we utilized the second method, a deep learning-based algorithm. This 
model, modified Inception (13), classifies CTA source images from the 
vertex to the C1 atlas as target regions. We used 100 randomly selected 
cases (4,020 CTA source images), where the first method correctly 
identified the vertex and C1 atlas. Of these, 89 cases were used for 
training and 11 cases for validation. The method accurately identified 
target slices within a 5% margin of error in all cases in the validation 
dataset. By combining these two techniques, we successfully produced 
MIP images with a uniform range across all patients in the training and 
validation dataset. Following skull stripping using our in-house 
algorithm, we created axial MIP images suitable for the deep learning 
method, utilizing software developed at our institution (14).

Vessel segmentation on maximal intensity 
projection image

We developed a 2D U-Net based on the Inception Module 
specifically for vessel segmentation in axial MIP images (15). This 
model was trained to segment vessels from the generated MIP images. 
The U-Net architecture integrates structural information from the 
network with the semantic information from the Inception Module, 
enabling more precise segmentation of vessels in MIP images. After 
generating MIP images, researchers manually segmented intracranial 
arteries in 208 randomly selected patients (16% of whom had TAVO) 
from the training (n = 189) and validation dataset (n = 19). For the 
training of the vessel segmentation model, we manually outlined all 
discernible anterior circulation intracranial arteries on MIP, including 
the distal ICA, MCA, ACA, posterior cerebral artery, and their visible 

FIGURE 1

Depiction of the algorithm used to detect automatic thrombectomy amenable vessel occlusion (TAVO). (I) the acquisition of unprocessed CT 
angiogram images in DICOM (Digital Imaging and Communications in Medicine) format, accompanied by the automated selection of slices from the 
vertex and C1 atlas. (II) Skull removal, standard template registration, and maximal intensity projection (MIP) image rendering. (III) Using a rendered axial 
MIP image to segment blood vessels using deep learning (DL) and merging the blood vessel masks. (IV) Predicting TAVO using the merged blood vessel 
mask and generating a heatmap that identifies the region that influences the DL decision the most.
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branches. This manual segmentation was conducted under the 
supervision of an experienced vascular neurologist (W-S Ryu). The 
trained model achieved a Dice similarity coefficient of 0.80, indicating 
strong agreement with the manual segmentation performed by 
researchers supervised by a vascular neurologist. Two representative 
cases comparing automated intracranial vessel segmentation with 
manual segmentation is provided in Supplementary Figure 2.

Vessel occlusion detection algorithm
After automatically segmenting blood vessels on the axial MIP 

image, the vessel masks from each slice were combined to create a 
two-dimensional compressed image of the vessel masks. These 
compressed images serve as inputs for our deep learning model, trained 
for TAVO classification. We observed that using multiple compressed 
images of vessel masks at constant intervals as input significantly 
reduced model’s performance compared to using a single compressed 
image. This was primarily due to overfitting of the algorithm on MCA 
slices where most TAVOs are located in a specific slice of the 3D volume. 
The issue of overfitting became more pronounced with an increase in 
the number of compressed images. Therefore, to mitigate this 
overfitting, we compressed the segmented vessel masks into a single 
image for this study. EfficientNetV2 was employed to train the TAVO 
classification model (16). Data augmentation was applied during the 
training process to prevent overfitting and alleviate domain shift 
problems. The augmentation algorithm was implemented using 
albumentations, a Python library for image augmentations (17). A batch 
size of 32 was maintained, with TAVO and non-TAVO cases sampled at 
a 1:1 ratio in each batch. For the deep learning training, intracranial 
LVO and isolated MCA-M2 occlusion were combined into a single 
category as TAVO.

For the training process, we used the AdamW optimizer with a 
batch size of 32, and a StepLR learning rate Scheduler with a step size of 
7 and gamma of 0.1. Additionally, we addressed class imbalance by using 
a Weighted Random Sampler to sample the TAVO cases more frequently. 
The training utilized libraries including Python, PyTorch, TensorFlow, 
Pydicom, OpenCV, ITK, and was performed on an NVIDIA RTX 
A6000 GPU. The developed software operates on Window 10 or higher.

Statistical analysis

Data were presented as mean ± standard deviation, median 
(interquartile range), or number (percentage). To compare baseline 
characteristics between training and validation, internal test, external 
test 1, external test 2, we employed ANOVA or Kruskal-Wallis test for 
continuous variables and chi-square test or Fisher exact test, as 
appropriate. The diagnostic performance of the algorithm for 
detecting TAVO was assessed using sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value (NPV), 
calculated through receiver operating characteristics (ROC) analysis. 
The Youden index was utilized to determine the optimal threshold 
(18). We then stratified the TAVO patients into intracranial LVO and 
isolated MCA-M2 occlusion groups and conducted two subgroup 
analyses: one excluding subjects with isolated MCA-M2 occlusion and 
another excluding intracranial LVO. In this subgroup analysis, 
external test 1 and external test 2 dataset were combined due to small 
number of subjects in the external test 1 dataset. The DeLong test was 
used to calculate 95% confidence interval of the area under the curve 

(AUC) (19). For other parameters, bootstrap analysis with 1,000 
repetitions was conducted to calculate 95% confidence intervals. All 
statistical analyses were performed using STATA 16.0 (STATA Corp., 
Texas, United States), with p < 0.05 considered statistically significant.

Results

Baseline characteristics

The mean ages for the training and validation, internal test, 
external test 1, and external test 2 were 68.7, 68.3, 68.8, and 67.1 years, 
respectively, as shown in Table  1. The prevalence of male, atrial 
fibrillation, and history of prior stroke were similar across all groups. 
However, the occurrence of TAVO was less frequent in the external 
test 2 dataset compared to the others (13.4% vs. 18.0 to 23.4%). 
Notably, the CT vendors and imaging parameters, including slick 
thickness and pixel spacing, significantly varied between the groups 
(see Supplementary Table 1). For 100 randomly selected cases from 
the internal test dataset, the mean processing time from the input of 
source images to the output of results was 178 ± 11 s.

Diagnostic performance for overall TAVO

Representative examples of TAVO detection using deep learning in 
four patients with intracranial LVO or isolated MCA-M2 occlusion are 
illustrated in Figure 2. In the internal test dataset, the deep learning 
algorithm achieved an area under the AUC of 0.950 (95% CI, 0.915–
0.971, see Figure 3). For the external test datasets 1 and 2, the AUCs were 
0.970 (0.897–0.997) and 0.971 (0.924–0.990), respectively. Using a cutoff 
threshold of 0.5, the sensitivity ranged from 0.800 to 0.860 (Table 2), and 
specificity varied from 0.956 to 1.000. The result of the combined 
external test dataset is visualized in Supplementary Figure 3. Density 
plots of TAVO probability demonstrated that the deep learning algorithm 
could robustly differentiate between TAVO and non-TAVO in both 
internal and external datasets (as shown in Supplementary Figures 4A,B).

The Youden indices in the internal test, external test 1, and 
external test datasets were 0.824, 0.826, and 0.855, respectively, as 
detailed in Table 2. In addition, the Youden indices remained stable 
across a wide range of cutoff points (Supplementary Figures 4C,D). At 
the optimal cutoff points, the sensitivities recorded were 0.860, 0.867, 
and 0.929 in the internal, external 1, and external 2 datasets, 
respectively, with corresponding specificities of 0.964, 0.959, and 
0.926. When the external test datasets were combined, at the optimal 
cutoff point, sensitivity, specificity, PPV, and NPV were 0.895 (0.785–
0.960), 0.934 (0.901–0.959), 0.708 (0.589–0.810), and 0.980 (0.958–
0.993), respectively (see Supplementary Table  2). With a fixed 
sensitivity of 0.900, the specificities and PPVs for the internal test, 
external test 1, and external test 2 were 0.891, 0.796, and 0.930 and 
0.665, 0.583, and 0.667, respectively.

Diagnostic performance for intracranial 
large vessel occlusion

Excluding subjects with isolated MCA-M2 occlusion from the 
analysis significantly improved the performance of the deep learning 
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algorithms. The AUC increased up to 0.967 in the internal dataset and 
to 0.993 in the combined external datasets, as shown in Table 3 and 
Supplementary Figure 5. With a cutoff point of 0.5, the sensitivity and 
specificity in the internal test were 0.943 (0.872–0.981) and 0.956 
(0.935–0.972), respectively. The corresponding values in the 
combined external dataset were 0.947 (0.823–0.994) and 0.975 
(0.951–0.989).

Diagnostic performance for isolated 
MCA-M2 occlusion

When subjects with intracranial LVO were excluded from 
the analysis, the diagnostic performance of deep learning 
algorithm was somewhat diminished. The AUC of internal 
and combined external datasets were 0.903 (0.812–0.944) and 
0.916 (0.816–0.963), respectively. The sensitivities were 0.636 in 
the internal test and 0.632  in the combined external dataset. 
However, the specificities remained high at 0.956 and 0.975, 
respectively.

False positive and false negative samples in 
external test datasets

In the combined external test datasets, eight cases were incorrectly 
classified as TAVO (Supplementary Table  3). Among these, three 
patients had occlusions in the MCA-M3 or MCA-M4 segments, which 
are not considered candidate for EVT. Of the nine patients 
misclassified as non-TAVO, seven had isolated occlusions in the 
MCA-M2 segment. Two patients with false negative results and 
intracranial LVO had marginal TAVO probability score of 0.155 and 
0.355, respectively.

Discussion

In this study, we developed a fully automated deep learning algorithm 
to detect intracranial anterior circulation arterial occlusions in CTA, 
which are likely candidates for EVT in hyperacute ischemic stroke. The 
algorithm underwent external validation in two different datasets and 
demonstrated high diagnostic sensitivity and specificity. When analyzing 
occlusion sites separately, the algorithm exhibited an excellent diagnostic 
performance for intracranial LVO. Although the performance for isolated 
MCA-M2 occlusion was slightly lower than for intracranial LVO, it 
remained competitive.

Until recently, a number of studies have reported on AI detection 
of LVO or TAVO (see Supplementary Table  4). However, these 
algorithms were either lacked external validation in previous research, 
or if validated, it was in a limited number of cases (20–23). Moreover, 
earlier studies reported that the artificial intelligence algorithms 
achieved AUC scores ranging from 0.74 to 0.86, which may not 
sufficiently support early-career physicians (20–23). Notably, in external 
validation sets with adequate sample sizes, our deep learning algorithm 
achieved AUCs of 0.961, 0.993, and 0.913 for total TAVO, intracranial 
LVO, and isolated MCA-M2 occlusion, respectively.

The ability of our deep learning algorithm to accurately predict 
isolated MCA-M2 occlusion with good performance is of significant 
importance. Although isolated MCA-M2 occlusion is an important 
and emerging target of the EVT (24), it was reported that the rate of 
misdiagnosis for isolated MCA-M2 occlusion is substantially higher 
than that for intracranial LVO even among the neuroimaging 
specialists (35.0% vs. 9.7%, respectively) (25), and the use of 
previously developed deep learning models has yielded worse results 
(50.8%) (20). This characteristic of isolated MCA-M2 occlusion have 
influenced our model as well, leading to improved specificity and 
NPV compared to previous studies (20, 21), despite with somewhat 
less satisfactory sensitivity and PPV. This issue was largely due to false 

TABLE 1 Baseline characteristics of training and validation, internal test, and external test datasets.

Training and 
validation (n  =  1,421)

Internal test 
(n  =  624)

External test 1 
(n  =  64)

External test 2 
(n  =  313)

p-value

Agea 68.7 ± 12.6 68.3 ± 11.9 68.8 ± 12.7 67.1 ± 12.3 0.45

Sex, mena 797 (56.3%) 353 (57.0%) 35 (61.4%) 199 (63.6%) 0.11

Onset to image, houra 20.5 (6.4–51.0) 20.4 (5.3–52.9) 29.5 (16.4–72.1) 22.0 (8.2–78.1) <0.001c

Admission NIHSSa 4 (2–9) 4 (2–7) 4 (2–7) 3 (1–5) 0.001c

Atrial fibrillationa 290 (20.5%) 116 (18.7%) 5 (9.0%) 52 (16.6%) 0.08

History of prior strokea 314 (22.2%) 146 (23.6%) 14 (24.6%) 64 (20.5%) 0.71

Slice thickness of raw image <0.001

  0.75 mm 564 (40.0%) 256 (41.0%) 59 (92.2%) 0

  1.0 mm 473 (33.3%) 232 (37.2%) 5 (7.8%) 313 (100%)

  1.25 mm 321 (22.6%) 105 (16.8%) 0 0

  1.5 mm 63 (4.4%) 31 (5.0%) 0 0

Location of TAVOb 255 (18.0%) 122 (20.0%) 15 (23.4%) 42 (13.4%) 0.08

  Any Intracranial ICA 94 (6.6%) 26 (4.2%) 4 (6.3%) 7 (2.2%) 0.007

  Any M1-MCA 192 (13.5%) 84 (13.5%) 10 (15.6%) 28 (9.0%) 0.15

  Any M2-MCA 234 (16.5%) 101 (16.2%) 15 (24.4%) 39 (12.5%) 0.12

  Isolated M2-MCA 55 (3.9%) 33 (5.3%) 5 (7.8%) 14 (4.5%) 0.28

aClinical data were missing in 4, 5, and 7 patients in training and validation, internal test, and external test 1 datasets, respectively. bIsolated M2-MCA occlusion was considered as TAVO. 
cKruskal-Wallis test was used. MCA, middle cerebral artery; NIHSS, National Institutes of Health Stroke Scale; TAVO, thrombectomy amenable vessel occlusion.
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negatives in cases of short-segment (where collaterals reconstituted 
the M2 segment immediately distal to the occlusion) and incomplete 
(with antegrade flow) occlusions, where the reduction in the inter-
hemispheric vessel density was too small for the algorithm to detect. 
However, in terms of TAVO detection, these occlusions missed due 

to false negative may not be  ideal candidates for emergent intra-
arterial thrombectomy (26).

Our study may have a few potential clinical implications. First, our 
deep learning model can provide decent assistance to healthcare 
professionals who may not have much experience with ischemic strokes. 

FIGURE 2

Representative cases for deep learning based thrombectomy amenable vessel occlusion (TAVO) detection. (A) 71-years old women with cervical internal 
carotid artery (ICA) occlusion (red arrows) without reconstruction of distal flow. (B) 53-years old man with left distal carotid and left proximal middle cerebral 
artery (MCA)-M1 occlusion (blue arrows). (C) 77-years old women with bilateral proximal MCA-M1 occlusion (green arrows). (D) 68-years old women with 
occlusion of the proximal left inferior M2 division (yellow arrows). In all cases, the heatmap visualize the occlusion site or a paucity of distal flow.

FIGURE 3

ROC analysis. ROC curves for detection of thrombectomy amenable vessel occlusion (TAVO) occlusions. (A) Internal test. (B) External test 1. (C) External 
test 2. Red dots indicate optimal cutoff points with the maximum Youden index. ROC, receiver operating characteristics; AUC, area under the curve.
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Regardless of the reason for admission, the majority of ischemic strokes 
are initially encountered by non-specialized physicians (27). In such 
scenarios, identifying vascular occlusion and its location in brain 
imaging is a complex and demanding task, potentially delaying 
appropriate stroke treatment. Second, considering that our model 
processes vascular images in less than 180 s, it could significantly reduce 
the time taken to make EVT decision. In clinical practice, formal 
interpretation of brain imaging often requires several hours, and 
sometimes even more than a day (28). Therefore, rapid primary 
interpretation of vascular status through our model can play a crucial 
role in shortening the time to initiate EVT. Third, the objective and 

reproducible nature of our artificial intelligence software can aid in 
refining EVT process. This includes the preparation protocol for 
interventional devices based on occlusion patterns, which is another 
important factor in reducing reperfusion time.

Limitation of the study

One limitation of our study is the relatively small dataset size used 
for training the deep learning algorithm. This is particularly true for 
isolated MCA-M2 occlusion, where fewer cases were collected 

TABLE 2 Diagnostic performance of deep learning algorithm detecting TAVO.

Cutoff 
point

Internal test External test 1 External test 2

AUC 0.950 (0.915–0.971) 0.970 (0.897–0.997) 0.971 (0.924–0.990)

Threshold of 0.50

Confusion 

matrix

Prediction Prediction Prediction

TAVO no TAVO TAVO no TAVO TAVO no TAVO

GT
TAVO 104 17 12 3 36 6

no TAVO 22 481 0 49 8 263

Sensitivity (95% CI) 0.860 (0.785–0.916) 0.800 (0.519–0.957) 0.857 (0.715–0.946)

Specificity (95% CI) 0.956 (0.935–0.972) 1.000 (0.927–1.000) 0.970 (0.943–0.987)

PPV (95% CI) 0.825 (0.748–0.887) 1.000 (0.735–1.000) 0.818 (0.673–0.918)

NPV (95% CI) 0.966 (0.946–0.980) 0.942 (0.841–0.988) 0.978 (0.952–0.992)

Youden (J) index (95% CI) 0.824 (0.755–0.883) 0.826 (0.653–0.933) 0.855 (0.709–0.915)

Jmax cutoff point 0.5286 0.1284 0.3001

Optimal 

threshold

Jmax Sensitivity (95% CI) 0.860 (0.785–0.916) 0.867 (0.595–0.983) 0.929 (0.805–0.985)

Jmax Specificity (95% CI) 0.964 (0.944–0.979) 0.959 (0.860–0.995) 0.926 (0.888–0.954)

Jmax PPV (95% CI) 0.852 (0.777–0.910) 0.867 (0.595–0.983) 0.661 (0.526–0.779)

Jmax NPV (95% CI) 0.966 (0.946–0.980) 0.959 (0.860–0.995) 0.988 (0.966–0.998)

Fixed sensitivity 

of 0.90

Sens90 Specificity (95% CI) 0.891 (0.691–0.955) 0.796 (0.657–0.898) 0.930 (0.893–0.957)

Sens90 PPV (95% CI) 0.665 (0.587–0.736) 0.583 (0.366–0.779) 0.667 (0.529–0.786)

Sens90 NPV (95% CI) 0.974 (0.955–0.986) 0.975 (0.868–0.999) 0.984 (0.960–0.996)

Sens90 cutoff point 0.1595 0.0436 0.3248

aJmax represents, across all thresholds, the maximum Youden index (sensitivity + specificity − 1). As a secondary reference point, Jmax provides an optimality criterion with equal weighting for 
sensitivity and specificity. CI, confidence interval; GT, ground truth; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; TAVO, thrombectomy amenable 
vessel occlusion.

TABLE 3 Diagnostic performance of deep learning algorithm stratified by location of occlusion.

Intracranial LVO Isolated M2-MCA occlusion

Internal test
Combined external 

test
Internal test

Combined external 
test

AUC 0.967 (0.925–0.976) 0.993 (0.975–0.999) 0.903 (0.812–0.944) 0.916 (0.816–0.963)

Confusion matrix
Prediction Prediction Prediction Prediction

TAVO No TAVO TAVO No TAVO TAVO No TAVO TAVO No TAVO

GT, TAVO 83 5 36 2 21 12 22 7

GT, no TAVO 22 481 8 312 22 481 8 312

Sensitivity (95% CI) 0.943 (0.872–0.981) 0.947 (0.823–0.994) 0.636 (0.451–0.796) 0.632 (0.384–0.837)

Specificity (95% CI) 0.956 (0.935–0.972) 0.975 (0.951–0.989) 0.956 (0.935–0.972) 0.975 (0.951–0.989)

PPV (95% CI) 0.790 (0.700–0.864) 0.818 (0.673–0.918) 0.488 (0.333–0.645) 0.600 (0.361–0.809)

NPV (95% CI) 0.990 (0.976–0.997) 0.994 (0.977–0.999) 0.976 (0.958–0.987) 0.978 (0.955–0.991)

CI, confidence interval; GT, ground truth; NPV, negative predictive value; PPV, positive predictive value; TAVO, thrombectomy amenable vessel occlusion.
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compared to intracranial LVO, influencing the sensitivity and PPV 
performance of the model. The second caveat is that this study was 
conducted within a single country and given the higher prevalence of 
intracranial atherosclerosis in East Asian populations compared to 
Western ones, the assessment of the complete occlusion over 
pre-existing stenosis may have been challenging (29). Such factors could 
contribute to model’s less favorable performance, underscoring the need 
for further research involving diverse ethnic groups. Therefore, 
radiologists and neurologists should be  aware of the potential and 
causes of false negatives in the algorithm’s output. Third, our algorithm 
does not include neck CT angiography and, therefore, is unable to detect 
tandem lesions in the cervical ICA.

Future directions

Collateral score and collateral status on CTA serve as important 
tools in evaluating collateral circulation in patients with TAVO (26). In 
CTA in patients with TAVO, collateral score and collateral status are 
used as important parameters to evaluate cerebral hemodynamics and 
tissue perfusion. These assessments help understand the adequacy of 
compensatory collateral circulation, which is essential for determining 
treatment strategies and predicting tissue viability in patients with 
ischemic stroke. Our developed system can estimate the course of 
collateral circulation by detecting and displaying the location of TAVO 
as a heat map. Collateral status involves a comprehensive assessment of 
the collateral circulation, considering factors such as collateral filling 
rate, extent of collateral vessels, and final tissue perfusion achieved 
through collateral flow (30). This assessment plays a pivotal role in 
predicting the likelihood of ischemic tissue salvage. Appropriate 
adjuvants contribute to increasing the likelihood of viable tissue despite 
vascular occlusion, potentially influencing treatment decisions such as 
endovascular reperfusion therapy. Therefore, auxiliary evaluation of 
collateral status may be considered in future studies.

Conclusion

We developed and validated a novel, fully automated deep 
learning algorithm derived from CTA to detect vascular occlusion 
suitable for EVT. While the algorithm could benefit from further 
improvements and real-world clinical evaluations, its potential as a 
tool to assist in the diagnosis of acute ischemic stroke in patients 
through detection of TAVO has been firmly established.
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