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The landscape of therapeutic deep brain stimulation (DBS) for locomotor function 
recovery is rapidly evolving. This review provides an overview of electrical 
neuromodulation effects on spinal cord injury (SCI), focusing on DBS for motor 
functional recovery in human and animal models. We highlight research providing 
insight into underlying cellular and molecular mechanisms. A literature review 
via Web of Science and PubMed databases from 1990 to May 29, 2024, reveals 
a growing body of evidence for therapeutic DBS in SCI recovery. Advances in 
techniques like optogenetics and whole-brain tractogram have helped elucidate 
DBS mechanisms. Neuronal targets sites for SCI functional recovery include the 
mesencephalic locomotor region (MLR), cuneiform nucleus (CNF), and nucleus 
raphe magnus (NRG), with pedunculopontine nucleus (PPN), periaqueductal gray 
(PAG), and nucleus ventroposterolateral thalami (VPL) for post-injury functional 
recovery treatment. Radiologically guided DBS optimization and combination 
therapy with classical rehabilitation have become an effective therapeutic method, 
though ongoing interventional trials are needed to enhance understanding and 
validate DBS efficacy in SCI. On the pre-clinical front, standardization of pre-
clinical approaches are essential to enhance the quality of evidence on DBS 
safety and efficacy. Mapping brain targets and optimizing DBS protocols, aided 
by combined DBS and medical imaging, are critical endeavors. Overall, DBS holds 
promise for neurological and functional recovery after SCI, akin to other electrical 
stimulation approaches.
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Introduction

The standard of care for spinal cord injury patients consists of acute surgical 
intervention and intensive post-acute rehabilitation. Despite the positive recovery of 
sensorimotor functions achieved by these methods, complete functional recovery is largely 
limited (1).There is very low evidence that these intervention improves ASIA motor score 
(AMS) in the short term (2), moreover, the anticipated undesirable effects include any 
major complication, surgical device-related complications, pressure ulcer, sepsis secondary 
to systemic infection, neurological deterioration, need for tracheostomy, and 
cardiopulmonary dysfunction (3). Therefore, finding a more effective and safe treatment 
plan is the top priority. The approach of electrical stimulation of the spinal cord to enhance 
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functional recovery has yielded promising results. This review aims 
to provide an overview of the neural circuitry remodeling 
mechanisms of deep brain stimulation (DBS) after spinal cord 
injury, which may contribute to the improvement of motor 
function. DBS has been successfully used in the treatment of 
various movement disorders for years (4). The body of literature 
regarding DBS for SCI recovery has steadily increased in the past 
decade. In fact, DBS is currently also being applied post-SCI with 
promising results (5). However, the majority of research on DBS for 
SCI have focused on its efficiency on SCI-related neuropathic pain, 
while very few have attempted to ascertain the effects of DBS on 
motor functional recovery after SCI. In addition, some intrinsic 
mechanisms involved in the beneficial effects of DBS have been 
identified, including neuronal circuit remodeling, and potential 
alterations in intracellular signaling induced by DBS (6). Pre-clinical 
models have shed important light on mechanisms and best 
approaches, while researchers continue to synthesize and interpret 
outcomes from heterogeneous applications and populations. By far, 
radiologically-guided DBS has demonstrated the greatest 
improvement in patient outcomes, in addition to allowing the 
refinement of functional targets as the body of literature evolves 
(Figure 1).

Search strategy

The articles used in this review of DBS for SCI treatment were 
retrieved by replicating the search terms of Vanegas et al. (7). A 
narrative review of the literature was performed using the 
keywords “DBS,” “Spinal Cord injury,” and “motor function,” via 
Web of Science, Google Scholar and PubMed databases. The 
search strategy and selection criteria utilized keywords/terms: 
deep brain stimulation (MeSH Terms), neural circuits (MeSH 
Terms), Spinal cord injuries (MeSH Terms), neuromodulation 
(MeSH Terms), neuroplasticity (MeSH Terms), motor function 
(MeSH Terms).

The inclusion criteria: Studies providing preclinical and clinical 
motor function results after DBS treatment in SCI models. For animal 
study, retrospective or prospective clinical studies were included. Papers 
had to be published in English between January 1990 to May 29, 2024.

The exclusion criteria: Reviews, meta-analyses, and those written 
in a non-English language, and studies concerning DBS treatment SCI 
related- pain. Other articles for whom the full text could not 
be retrieved were excluded.

Selection Process: The detailed study selection process is visually 
represented in Figure 2 within the PRISMA flowchart (8). Ultimately, 
we included 79 articles in our review. The protocol was registered with 
PROSPERO (registration ID: 598390).

Quality assessment: The assessment of the methodological 
quality of individual studies was conducted independently by two 
researchers (WyL and WY) according to a checklist designed by 
Van (9).

Post-SCI neuronal circuit remodeling

After SCI, local circuits within the spinal cord may partially or 
completely lose their cortical spinal motor inputs. Complex 
corticospinal circuit remodeling ensues, demonstrating automaticity 
and spontaneous plasticity (10). While some spontaneous plasticity 
occurs to benefit the regeneration of the corticospinal tract, off-target 
re-wiring can be  detrimental to recovery. Circuit remodeling 
facilitating functional recovery mainly operates via supraspinal axon 
re-growth to form compensatory circuits. Target selection of these 
axons is critical, with various competing relay neurons and axon 
guidance factors at play. Ultimately, evidence suggests this modulation 
is activity-dependent (11), and can thus be therapeutically utilized to 
improve motor function after SCI. Indeed, this has been the premise 
of neurorehabilitation and locomotor training for years (12, 13).

In the past decade, many strategies to facilitate neuromodulation 
after SCI have been developed, including stem cell implantation, 
epidural stimulation (ES) and DBS. In this review, we will focus on the 
body of evidence for DBS as a tool for neuromodulation, circuit 
remodeling, and functional recovery after SCI.

Premise for neuromodulation via DBS 
in SCI

The study of high-frequency DBS for therapeutic purposes was 
pioneered decades ago. Since then, elegant hypotheses have been 
elaborated to explain the most complex aspect of DBS-its dynamic 
stimulatory properties (14). The synchronized parallel forebrain 
hypothesis (an extension of the rudimentary centrencephalic system 
initiated by Wilder Penfield) proposes that ablation results from high-
frequency DBS when it targets synchronous neurons and stimulation 
when it targets asynchronous neurons. Since, the focus in DBS 
research has largely remained to target and activate residual neural 
pathways in such a way to activate locomotion (e.g., via central pattern 
generator networks), though use of DBS for stereotactic ablation has 
gained traction for the treatment of movement disorders (15). 
Recently, implantable electrical stimulation modalities have been 
increasingly used in combination with high-throughput computer 
simulators, which rapidly record circuit feedback to refine 
spatiotemporal selectivity and improve functional features (16).

The FDA approved DBS for use in Parkinson’s Disease (PD) 
patients in 2015 (17). Since, DBS has been trialed in human patients 
with largely positive outcomes (18, 19) observed from stimulation of 
the subthalamic nucleus (STN) and globus pallidus interna (GPi), 
including stable and longitudinal motor function improvement. More 
studies have since substantiated the efficacy of DBS as a surgical 
intervention for other tremor-based disorders (20, 21).

Deep brain stimulation typically consists of intracranial electrodes 
implanted surgically and connected to a subcutaneous impulse 
generator. The procedure has been generally well-tolerated (22). This 
finding was reported in a meta-analysis of randomized controlled PD 
trials, and may not translate to DBS for SCI patients. Despite any 
reservation, the use of DBS as a neuromodulatory therapeutic only 
continued to expand, recently gaining popularity as a therapeutic for 
diverse psychiatric disorders (23). Its efficacy in SCI patients appears 
to be  variable and correlated with target region and stimulation 
parameters (24). As such, identifying and better understanding these 

Abbreviations: SCI, Spinal cord injury; ES, epidural stimulation; DBS, Deep Brain 

Stimulation; STN, subthalamic nucleus; CST, Corticospinal Tract; GPi, globus 

pallidus interna; PAG, periaqueductal gray; CnF, cuneiform nucleus; RS, 

reticulospinal tract; CPGs, central pattern generators; RuS, rubrospinal tract.
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targets and their role in recovery mechanisms is crucial for 
optimization of DBS. For example, the brainstem has become a 
therapeutic target of SCI due to its ability to coordinate locomotor 
systems via the integration of sensory, cognitive, endocrine, 
autonomic, and musculoskeletal systems in animal models (25). It 
additionally remains crucial to optimize techniques and stimulation 
parameters to achieve improved and sustained benefits while 
minimizing safety risks (26). Some advantages of DBS include its 
rather broad applicability to neurosystemic targets in addition to its 
dual hemispheric tolerability and customizability from the 
electrical source.

Effects of DBS on motor function after 
SCI

Early animal studies of direct activation of the corticospinal tract 
through DBS of the internal capsule demonstrated increased axonal 
outgrowth of the CST in non-human primates (27). DBS selectively 
activates axons specific orientations by modifying the stimulation 
configuration, and selectively stimulating axons, substantially 
enhancing the potential clinical outcomes of DBS in SCI patients (28). 
Additional research has provided comparable insights into the 
effectiveness of DBS in rodent models of SCI subsequent to targeted 

activation of subcortical locomotor regions. Other studies have 
similarly shed light on the efficacy of DBS in enhancing motor 
function in rat SCI models following specific activation of subcortical 
locomotor areas (25, 29). Bachmann and colleagues demonstrated that 
an MLR stimulation paradigm was sufficient to recover locomotor 
strength in just 4 weeks, re-establishing near pre-lesion walking 
capacity of injured rats (25). Hentall and colleagues reported that 
stimulation of the raphe magnus or periaqueductal gray (PAG) in 
lesioned rats produced sustained improvements in  locomotor 
performance and increased axon myelination and serotonergic 
terminals, noting that window of DBS treatment produced variable 
recovery (29). Other studies have reported functional improvements 
in hindlimb motor function (30) in response to stimulation, while 
others targeting neuromodulation of CnF observed accelerated 
forelimb locomotor recover and late-onset hindlimb activation and 
improved walking ability within 5 weeks (31). Several studies have 
revealed its application in improving motor function by targeting the 
subcortical motor area for stimulation in the animal SCI model (25). 
Differential functional recovery response across studies is likely due 
to degree of spared fibers within the injured spinal cord (variability of 
lesion protocol), target area stimulation, and DBS parameters 
(Figure 3).

To date, whether DBS could promote recovery of voluntary 
locomotor ability has not been clarified in humans. A current trial 

FIGURE 1

Timeline showing the role of DBS in SCI in the literature. NP, Neuropathic Pain; PAG, periaqueductal gray; NRM, nucleus raphe magnus; MLR, 
mesencephalic locomotor region. Created with BioRender.com.
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(NCT03053791) is underway for non-ambulatory SCI patients 
experiencing subchronic and chronic SCI. Based on experience gained 
from the first study participant in this clinical trial, the motor function 
of the SCI patients is most likely to benefit from MLR- DBS (5), which 
provides preliminary clinical evidence for the DBS in the restoration 
of motor functional recovery following SCI. The main endpoint for 
this human trial is enhanced locomotor recovery in chronic SCI 
patients undergoing intense neurorehabilitation (32). Nevertheless, 
few clinics evidence for the efficacy of DBS in the management motor 
functional following SCI, Instead, the vast majority evidence of 
SCI-related neuropathic pain patients who are the most likely to 
benefit from the DBS.

DBS regulation of cortical circuits

The descending reticulospinal tract (RS) is prime conveyor or 
locomotor commands from the brain to intraneuronal circuits. After 
SCI, the number of spared fibers is typically insufficient for appropriate 
control of sublesion locomotor circuits (5). Some of the compromised 
locomotor circuits include central pattern generators (CPGs), 
responsible for alternating motion and syncing. There is some 
evidence that with training, electrical stimulation can re-activate these 
CPGs (33, 34). Importantly, there is evidence that lumbosacral CPGs 
can respond to external electric stimulation, even in the absence of 
sub-lesion response to supraspinal inputs (which has important 
implications for complete SCI patients) (35). Due to the input source 
of reticulospinal fibers, the MLR has become a major target of 
neuromodulation approaches in SCI treatment. A caveat of 

MLR-applied DBS for the treatment of SCI is the required residual 
reticulospinal fibers, which are only observed in incomplete SCI cases. 
Fortunately, the estimated rate of incomplete human SCIs outnumbers 
complete SCIs about 2:1 (36).

The rubrospinal tract (RuS) has been implicated in the recovery 
of cortical-dependent locomotion, including walking, climbing and 
swimming (37). DBS of the subcortical-cerebellar pathway 
demonstrated recruitment of the cortico-basal ganglia circuit during 
both resting state and voluntary movement (38).

By creating a whole-brain tractogram, the reconstruction of CST, 
pallidothalamic (PT), and cerebellothalamic (CBT) pathways are 
directly relevant to DBS activates particular axonal pathways (39, 40). 
Additionally, DBS can increase the functional connectivity of the 
motor and premotor cortex, enhancing motor coordination and 
response to mechanical stimulation.

Sophisticated studies have revealed that glutamatergic MLR 
neuron activation is sufficient to initiate and regulate locomotor 
acceleration (41, 42). Similar observations have been reported on the 
function of glutamatergic CnF neurons during the initiation and 
regulation of gait (43). Conversely, glutamatergic PPN neurons may 
play an inhibitory role in locomotion, regulating variable pre-motor 
properties such as motor tone (43). It has been proposed that one of 
the ways MLR stimulation may be rehabilitative to the injured spinal 
cord is by increasing synaptic plasticity among surviving reticulospinal 
pathways (44) (Figure 4). Indeed, many neuromodulatory approaches 
have been adapted to leverage the spontaneous compensatory 
sprouting of proximal corticospinal fibers to promote functional 
reorganization of spinal sensorimotor networks (45) in ways akin to 
the activity-dependent plasticity that assists in functional recovery 

FIGURE 2

PRISMA flowchart depicting article selection.
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during post-injury rehabilitation (46). Raphe magnus neuron 
stimulation via inputs from the more accessible periaqueductal gray 
(PAG) have been safely accessed for drug-refractory pain treatment 
by DBS in human (47). In a rat model of SCI, 4–7 day stimulation 
protocol produced motor recovery and myelination (29). However, 
to-date, the large majority of DBS studies targeting the PAG have 
focused on the treatment of post-SCI functional recovery (24). 
Overall, DBS can enhance corticospinal circuit remodelling and elicit 
complex, meaningful locomotor patterns by utilizing preserved 
complex spinal cord circuits following SCI (43). SCI patients with 
preserved spinal cord circuit fibers may have a beneficial outcome 
from DBS treatment, which may potentially enhance their 
daily functioning.

Other circuits to be investigated more deeply include those that 
negatively affect functional recovery after SCI. For example, long 
ascending propriospinal neurons that regulate central pattern 
generator (CPG) to contribute to left–right coordination of hindlimbs 
have been shown to negatively impact the recovery of hindlimb 
locomotor function in a rat SCI model (48). Recently, the idea of 
silent synapse (AMPAR-deficient, glutamatergic post-synapse 
contacts) remodeling after SCI has also been proposed, prompting 
new questions about how neuromodulatory approaches may 
be applied to normalize these in the corticospinal motor circuitry 
post injury (45). Many SCI patients experience motor spasticity that 

negatively impacts quality of life. While no DBS studies have 
investigated its effect on post-SCI spasticity, recent meta-analysis and 
systematic review has outlined that repetitive transcranial magnetic 
stimulation (rTMS) significantly reduced spasticity in a population 
of multiple sclerosis patients (49). More research on the 
neuromodulation of targets responsible for voluntary muscle 
contraction (e.g., global pallidus internus) is needed in the 
SCI population.

Cellular and molecular mechanisms of 
DBS neuromodulation

Toward an improved understanding of the molecular mechanisms 
conferring the therapeutic and neuroadaptive effects of deep brain 
stimulation, one study has reported that DBS-derived synaptic 
plasticity is mediated in part by elevations in brain derived 
neurotrophic factor (BDNF) and downstream synaptic proteins (30). 
Other models of electrical stimulation have similarly observed 
upregulated BDNF (50, 51) DBS also elevates the BDNF receptor 
tropomyosin-related kinase B (TrkB), p70 ribosomal S6 protein 
kinase, and protein kinase B (30). This pathway is corroborated by 
other electrical stimulation paradigms including peripheral nerve 
stimulation (52). The BDNF/TrkB pathway is thought to activate 

FIGURE 3

The schematic diagram of the stimulation targets and neural circuit for DBS enhance motor and sensory function after SCI. ACC, anterior cingulate 
cortex; ReST, reticulospinal tract; STT, spinothalamic tract; RST, rubrospinal tract; CTS, corticospinal tract; AMG, amygdaloid nucleus; PFC, prefrontal 
cortex; PVG, periventricular gray; S1HL, somatosensory cortex hindlimb cortex; VPL, nucleus ventroposterolateral thalami; PAG, periaqueductal gray; 
NRM, nucleus raphe magnus; PPN, pedunculopontine nucleus; NRG, gigantocellular reticular nucleus; CPG, central pattern generators.
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neuroprotective, neuroplasticity, and pro-regenerative signals to aid 
in functional remodeling after SCI (53).

Improved understanding of the anatomical contributors to 
locomotor initiation and control come from optogenetic studies 
revealing the distinct physiological and functional subpopulations. 
For example, the glutamatergic CnF population were found to initiate 
short latency locomotion (41, 43) while ventrally-adjacent 
glutamatergic PPN neurons are thought to either not contribute to 
locomotor initiation or exploratory locomotion only (41). A study of 
the MLR in freely moving micropigs has provided electrical 
characterization including off-target effects of brainstem 
cardiovascular centers (54). This study corroborated the role of DBS 
on locomotor initiation and frequency-dependent speed regulation 
as well as (54). There are no clear boundaries for the sub-regions of 
the MLR, particularly in higher-order vertebrates. The PPN is largely 
characterized by its neuronal subpopulations, including cholinergic, 
glutamatergic, and GABAergic neurons. While optogenetic studies 
have proposed cholinergic PPN neurons play a role in locomotion 
(41), other studies have reported little to no effect on locomotion or 
speed (55).

Evidence from electrical stimulation studies has shown that while 
functional improvement is achieved with external stimulation after 
SCI, long-lasting functional improvements can be  observed 
chronically, in the absence of the external signal (37, 56). This 
indicates that sustained neuroplasticity occurs after therapeutic 
intervention to support long-term recovery. Indeed, epidural 
electrical stimulation (EES) paradigms have demonstrated robust and 
specific transcriptional and neurotransmitter changes to subsets of 
specialized interneurons in response to EES (57). In reality, the 
mechanisms of DBS on SCI remodeling are likely diverse and 
cumulative, including proximal and circuit-wide electrical and 
chemical effects to modulate activity, plasticity, and anatomical 
re-organization over time (58). As technical advances allow for more 
sophisticated experiments, we expect to increasingly delineate the 

contributory mechanisms and functional circuits that make-up the 
pathogenesis of SCI (Figure 5).

Trajectory and protocol optimization 
of DBS for SCI

One of the remaining challenges of DBS for neuromodulation of 
SCI is identifying precise and effective brain regions to achieve maximal 
therapeutic efficacy and minimizing off-target effects. This type of 
trajectory planning is required in part due to the poor characterization 
of many regions of the brain related to locomotor regulation in humans 
(59). Mapping anatomical substrates with their maximal therapeutic 
response can help build predictive tools for clinical decision-making 
and is a step toward fully personalized application of DBS.

One such approach is probabilistic stimulation maps (PSM) 
derived from retrospective DBS datasets. These maps are based on 
activation volumes observed by medical imaging across heterogenous 
populations. In short, using MRI imaging and activation volume 
modelling, PSMs were created and described in terms of their 
interactions with surrounding anatomical structures, defining areas of 
above-mean and below-mean response for each patient cohort. 
However, the major of limitations of current approaches to PSMs is the 
accuracy of predefined DBS targets. PSMs predictive capability was not 
high and likely reflects both technical limitations of the mapping 
technique as well as the merging of numerous patient data on MRI 
models, which failed to consider each patient’s individual 
neuroanatomical location and variations after SCI. Consequently, PSMs 
alone are currently insufficient as a robust and consistent predictor of 
clinical outcome (60). One center collected 15 years’ worth of data from 
482 patients, noting high correlations between PSMs and actual patient 
activation volumes (61). Another group created a machine learning 
model to predict optimal vs. non-optimal DBS parameters in a 
prospective cohort of 67 PD patients who underwent fMRI-observed 

FIGURE 4

DBS of the MLR improve remodeling of cortical circuits after SCI.
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stimulation. The predictive response maps generated were 88% accurate 
and maintained their topographic patterns across subtherapeutic and 
supratherapeutic stimulation parameters (62). More mapping efforts 
are reasonably expected. One important consideration as these 
trajectory planning strategies move forth are the different analytical 
methods being utilized, as these have substantial variability even within 
the same datasets (60). Although PSM accuracy needs to be thoroughly 
examined, it may enhance the comprehension of the effects of DBS and 
have potential applications for DBS targets in the treatment of SCI.

Electrophysiological mapping of MLR has been most notably 
investigated for the treatment of movement disorders with DBS. Some 
investigations have used local field potential monitoring across 
subregions of the MLR to examine the effectiveness of these targets in 
animal models. For example, voluntary locomotion in normal rats 
produces synchronized theta oscillations (6–12 Hz) in the MLR in 
intact rats and other regulatory regions of locomotor control. 
Interestingly, these theta oscillations persist after SCI in the MLR and 
may be useful in target planning during therapeutic DBS (63). On the 
other hand, the optogenetic stimulation of the PPN subregion at 
~40 Hz has been shown to reliably induce locomotion in animals (64). 
One study used a combination of electromyographic recording, 
genetic manipulation, and anatomical analysis in an animal SCI 
model, reporting that glutamatergic neurons within the CnF improve 

motor performance in the hindlimb muscles while glutamatergic PPN 
neurons inhibit locomotion when activated (65). Those findings are 
consistent with previous reports of DBS of the CnF, which produced 
enhanced motor drive in rats with incomplete SCI, allowing high-
intensity locomotor training after injury (44). Finally, a micropig 
model of radiologically-guided DBS found that functional stimulation 
of the MLR was based on deliberate targeting of a PPN cholinergic 
population and a CnF cluster dorsal to that (54). Thus, as more 
detailed evidence becomes available, investigators must work toward 
an increasingly defined “map” of the MLR for DBS targeting.

Finally, it remains important to optimize lead implantation and 
stimulation protocols to maximize efficacy and minimize risks of 
adverse events. Stereotaxic microelectrode implantation is an effective 
surgical approach for the treatment of movement disorders. 
Stereotaxic head frames are used to increase accuracy of electrode 
placement and trajectory, and coupled with peri-operative imaging, 
can be  very accurate. Advances in accessibility of 3D printing, 
robotics, and real time neuroimaging are further improving precision 
in surgical implantation (66–68).

Parameter optimization is equally important to resolve in the field 
of therapeutic DBS, and likely accounts for as much variability as 
anatomical factors. Several animal models of SCI have demonstrated 
maximal therapeutic responsiveness to low-threshold stimulation for 

FIGURE 5

Summarizing the cellular and molecular mechanisms of DBS improves SCI prognosis. Akt, Protein Kinase B; CnF, cuneiform nucleus; MNs, motor 
neurons; NSPCs, neural stem/progenitor cells; OPCs, Oligomeric proanthocyanidins; Ols, oligodendrocytes; PLC, phospholipase C; ERK, extracellular 
regulated protein kinases; PI3K, Phosphoinositide-3 kinase; PSD95, postsynaptic density-95.

https://doi.org/10.3389/fneur.2024.1442281
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Li et al. 10.3389/fneur.2024.1442281

Frontiers in Neurology 08 frontiersin.org

voluntary locomotion (25, 63, 69). Other studies report that step-wise 
increases in DBS stimulation frequency of the MLR not only initiate 
locomotion but increase locomotor frequency (54). There are 
distinctions between DBS targets CnF and PPN even if their 
mechanisms are similar. By comparison we  found that CnF may 
be more important than PPN in the initiation and regulation of gait, 
and facilitating speed of locomotion based on animals’ research (43, 70).

Model and stimulation parameters

Other pressing objectives in the field of DBS remains protocol 
standardization for improved summary of research findings and 
downstream applications. For example, one review synthesized DBS for 
Alzheimer’s disease, analyzing targets, stimulation frequency, duration, 
intensity, and treatment time from disease onset (71). While 
homogeneity of disease may limit such study or protocol synchronicity 
in humans, animal models for research are an opportunity for 
consolidation of knowledge generated from a standardized approach, 
and may thus allow for testing and validation of optimal DBS parameters 
for human extrapolation. In conjunction with advanced techniques such 
as MRI and optogenetics for trajectory mapping, refining stimulation 
parameters may maximize the therapeutic effect of DBS in SCI patients.

Other DBS protocol considerations include the orientation of the 
electrode relative to the target (28), signal intensity (pulse, frequency and 
amplitude), and stimulation mode (monopolar, bipolar, tripolar, etc.). 
For example, in animal models of severe SCI, gait improvements were 
only achieved with equivalent stimulation current as required to initiate 
involuntary movement in healthy controls (72). In humans, where 
device longevity is a concern, bipolar stimulation appears to improve the 
life of the mean pulse generator compared to monopolar mode (73). 
DBS parameters not only play an important role in its therapeutic 
efficacy, they may be  as crucial for safety and to prevent off-target 
adverse events as patient characteristics (surgical and pre-surgical) (74).

Finally, combining DBS with other interventions may enhance the 
efficacy of DBS as a monotherapy, as has been the case with other 
electrical neuromodulation approaches. For example, transcutaneous 
electrical nerve stimulation in combination with functional task 
practice promotes corticomotor excitability in patients with chronic 
cervical SCI, though stability of the response was not examined 
beyond 30 min (75).

In addition to isolated neruomodulatory approaches, combined 
strategies are theorized to yield significant improvements due to the 
overlap of spinal locomotor neurons activated during treatment (e.g., 
DBS/spinal cord stimulation) (44). Indeed, a variety of combinatorial 
techniques have demonstrated neuroplasticity-driven functional recovery 
after SCI particularly in corticospinal circuits (31, 54, 76), including 
combined electrostimulation and pharmacologic approaches (72, 77).

Meanwhile, the demand for pairing radiological imaging with 
DBS patients continues to grow in order to accommodate the need for 
personalized evaluation, however the risks aversion of such 
approaches remain high due to stringent contraindications (78). 
Recent studies have challenged these manufacturer-based guidelines, 
providing safety data on 102 patients with no adverse events or DBS 
impedance, and only a 1.4% intracranial artifact around the implant 
(79). The initial clinical report on the effects of DBS in patients found 
that stimulation frequencies >130 Hz were optimal for inducing 

locomotor movements (80). However, in various animal models 
suggesting 40–60 Hz with broad pulse sizes (200–1,000 μs) was the 
most efficient range to elicit locomotion (54). Continuing efforts to 
expand the safe use of radiological imaging include standardization 
across centers, device specifications, radiofrequency exposure 
characteristics, magnetic field strengths, and patient positioning 
protocols. As referred to previously, increased monitoring during DBS 
is likely to refine and optimize therapeutic efficacy (see Table 1).

Summary

Given that the quality of evidence for DBS for spinal cord injury 
in humans is very low, and that effective brain targets in animal 
models are uncertain, recommendations for the use of DBS in SCI 
patients remain uncertain. To determine the precise effects of 
DBS-mediated neuroplasticity on functional recovery following 
spinal cord injury, large-scale clinical trials and studies utilizing 
large animal models are required. Currently, there are very few 
clinical reports on DBS-related motor recovery in SCI patients 
available in databases, the first human clinical trial is underway to 
assess the impact of DBS on SCI populations (NCT03053791). 
Based on the literature a proposal for the ideal DBS treatment in 
SCI candidates may be an individual with motor incomplete SCI 
(confirmed by clinical and MRI examinations) and preservation of 
sacral function. In addition, medical imaging of DBS is a major 
problem, and radiological guidance may be  needed to place, 
evaluate, and reconfigure DBS, particularly in light of more recent 
developments and intricate directional electrodes. The proposed 
DBS protocol is predicated on pre-clinical studies which target the 
MLR/DBS with low frequency (≤50 Hz) at medium to broad pulse 
widths. Optimal stimulation parameters will have to be determined 
for each patient individually as reference values from human 
patients are not yet available. Moreover, a strategy to dissect and 
comprehend the distinct neuronal subpopulations and their exact 
location for DBS treatment in SCI patients is required, which will 
clarify the DBS’s neuronal targets, in which the MLR has gained 
scientific and clinical interest as target for DBS to improve motor 
recovery after SCI with the CNF being proposed as the primary 
therapeutic target in recent rodent studies. A particular challenge 
for preclinical translation to human clinical research remains DBS 
targets accuracy. While the PPN/CNF and their microstructure of 
rodents are currently well-characterized, the human PPN/CNF is 
inadequately described (41). Therefore, a more comprehensive 
description of the macroanatomy and microanatomy of the human 
MLR is urgently required. Finally, there is a significant trend in 
combination therapy models, such as the application of DBS during 
post-injury exercise training, safe pharmacological cocktails or 
stem cell implantation. The literature reviewed suggest that 
MLR-DBS combined with rehabilitation methods or EES, including 
gait rehabilitation or intensive locomotor training, might facilitate 
motor recovery after SCI. In conclusion, sustained characterization 
of neuroplasticity after SCI and the development of modulated 
approaches such as DBS are expected to promote neurological/
functional recovery in SCI patients. Certainly, advances in the field 
of DBS and other methods of electrical neuromodulation have 
revolutionized the long-held belief that SCI is irreversible.
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TABLE 1 The preclinical and clinical study of DBS in SCI.

Study Study details Brain target Physiological 
changes

Functional 
changes

Stimulation 
parameters

Analysis methods for 
mechanisms

Carmel et al. (81)
Preclinical study:

 - female rat (225–275 g; n = 10)
Unilaterally-M1 [B:2 mm /3.5 mm]

DBS induced CST axon 

terminations outgrowth in the 

ipsilateral spinal cord

DBS improve skilled motor 

performance following a 

unilateral SCI

 - 333 Hz,0.2 ms duration,

 - 6 h daily for 10 d

Behavioral testing; neural tracer 

technology; stereological analysis; 

regional axon length analysis

Hentall et al. (29)

Preclinical study:

 - female rat (250–275 g; n = 64)

 - T8 SCI

Midline-NRM [caudal: 2.3 mm, 

ventral: 0 mm]

R-PAG [ML: 0.7 mm, rostral: 1.2 mm, 

above the interaural line:4 mm]

DBS (NRM or PAG) 

promoted the recovery of 

myelinated axons in 

perilesional white matter

DBS improve sensory, motor 

and anatomical recovery 

following incomplete SCI

 - 8 Hz,1 ms,30 μA

 - 12 h daily over 4–7 days

Behavioral testing; histological 

analysis

Bachmann et al. 

(25)

Preclinical study:

 - female rat (220–250 g)

 - T10 SCI

Unilaterally-MLR [B: −7.80 mm, L: 

+2.00 mm, D: −5.80 mm/0°]

DBS (MLR) activated the 

supraspinal motor control 

pathway from the medial 

brainstem to the lumbar spinal 

cord

DBS improved the residual 

locomotor performance 

after severe SCI

 - 25,50,75 and 100 Hz,0.5 ms

Awake animals:

 - 50 Hz, 0.5 ms

Behavioral testing; neural tracer 

technology; EMG recordings

Noga et al. (44)

Preclinical study:

 - female rat (240–350 g; n = 28)

 - T9 SCI

L-MLR [AP:0.7–1.2 mm, ML:2.0 mm, 

DV:6.2 mm]

DBS (MLR) promoted the 

presence of theta rhythms in 

LFPs

DBS improved the 

locomotion after SCI.

 - 10–70 Hz (10, 20, 50 and 

70 Hz),0.2, 0.5, 1.0 and 2.0 ms

Behavioral testing; EMG 

recordings; immunohistochemistry

Wang et al. (30)

Preclinical study:

 - male rat (250–300 g; n = 36)

 - T10 SCI.

B-MLR [AP: −7.8 mm, ML: +2.0 mm, 

DV: −5.0 mm]

DBS improves synaptic 

plasticity by targeting BDNF, 

and mTOR

DBS improved hindlimb 

motor function in SCI rats

 - 100 Hz, 0.5 ms

 - half an hour per day 

for4 weeks.

Behavioral testing; western blot

Bonizzato et al. (72)

Preclinical study:

 - female rat (200–220 g)

 - T8 SCI.

L-PPN [AP: −7.9 mm ± 0.05, DV: 

−6.5 mm, ML: 2 mm]

DBS promotes the 

reconstruction of the 

remaining motor circuit

DBS promoted the SCI rats 

volitional walking

 - 40 Hz, 200 μs, 50–250 μA

 - 5 days/week

 - 30 min /day

Immunohistochemistry; 

neuromorphological evaluation; 

electrophysiology

Hofer et al. (31)

Preclinical study:

 - female rat (220–250 g; n = 127)

 - T10 SCI

L-CNF [AP: −7.8 mm, DV: −5.1 to 

−5.5 mm, ML: +2.0 mm]

DBS activated spared 

descending brainstem fibres

DBS improves motor 

recovery in the subchronic 

and chronic SCI phases.

 - 50 Hz, 0.5 ms
Behavioral testing; histological 

analysis; neural tracer technology

Spooner et al. (82)

Clinical study:

male patients (40 year; n = 1)

 - C4 level spinal cord injury

R-PVG [AP: −8.2 mm, lateral: 

+4.2 mm, vertical: +1.1 mm]

B-Cingula [20 mm]

The analgesic effect of DBS on 

bilateral cingulate gyrus is 

superior to that of PVG 

stimulation

DBS improves functional 

recovery in a complete 

spinal cord injury

 - PVG: 20 Hz

 - Cingula: 130 Hz

 - 1-week blinded stimulation 

trial prior

VAS evaluation

PVG, periventricular gray matter; CNF, cuneiform nucleus; PVG, periventricular gray matter; MLR, mesencephalic locomotor region; PPN, pedunculopontine nucleus; VAS, visual analog scale; B, bilateral; R, right; AP, antero-posterior; L, left; NS, no stimulation; ML, 
mediolateral; DV, dorsoventral; B, bregma; L, lambda; D, dura; BDNF, brain-derived neurotrophic factor, mTOR, the mammalian target of rapamycin; LFPs, local field potentials.
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