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Background: By 2020, obstructive sleep apnea (OSA), a prevalent respiratory 
disorder, had affected 26.6–43.2% of males and 8.7–27.8% of females worldwide. 
OSA is associated with conditions such as hypertension, diabetes, and tumor 
progression; however, the precise underlying pathways remain elusive. This 
study aims to identify genetic markers and molecular mechanisms of OSA to 
improve understanding and treatment strategies.

Methods: The GSE135917 dataset related to OSA was obtained from the GEO 
database. Differentially expressed genes (DEGs) were subsequently identified. 
Weighted gene co-expression network analysis (WGCNA) was conducted to 
pinpoint disease-associated genes. The intersection of these data enabled the 
identification of potential diagnostic DEGs. Further analyses included Gene 
Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment studies, 
exploration of protein–protein interactions based on these genes, and an 
examination of immune infiltration. Mendelian randomization was employed to 
validate core genes against the Genome-Wide Association Study database.

Results: A total of 194 DEGs were identified in this study. WGCNA network 
analysis highlighted 2,502 DEGs associated with OSA. By intersecting these 
datasets, 53 diagnostic DEGs primarily involved in metabolic pathways were 
identified. Significant alterations were observed in immune cell populations, 
including memory B cells, plasma cells, naive CD4 T cells, M0 macrophages, and 
activated dendritic cells. CETN3, EEF1E1, PMM2, GTF2A2, and RRM2 emerged 
as hub genes implicated in the pathogenesis. A line graph model provides 
diagnostic insights. Mendelian randomization analysis confirmed a causal link 
between CETN3 and GTF2A2 with OSA.

Conclusion: Through WGCNA, this analysis uncovered significant genetic 
foundations of OSA, identifying 2,502 DEGs and 194 genes associated with 
the disorder. Among these, CETN3 and GTF2A2 were found to have causal 
relationships with OSA.
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Introduction

Obstructive sleep apnea (OSA) is a prevalent chronic sleep 
disorder affecting individuals globally. In the United  States, 
approximately 10% of adults experience mild OSA, with moderate 
to severe cases ranging from 3.8 to 6.5% (1, 2). The primary 
symptom of OSA is repetitive upper airway collapse during sleep, 
largely due to the activity of the genioglossus muscle. This collapse 
leads to sleep disruptions and intermittent hypoxia, causing 
daytime fatigue and drowsiness. Moreover, OSA significantly 
increases the risk of various conditions, including coronary heart 
disease, diabetes, and cerebrovascular accidents, creating a 
substantial health and economic burden on individuals and 
society (3). Polysomnography is the primary diagnostic tool for 
OSA (4). However, its limited availability in specialized medical 
institutions and issues with patient discomfort challenge its 
widespread use (5). OSA often results in chronic intermittent 
hypoxia, which can lead to alterations in genes associated with 
hypoxic phenotypes (6). OSA is closely associated with a genetic 
basis. Studies utilizing allele models have identified 10 genetic 
variants that are linked to an increased risk of OSA. These variants 
demonstrate odds ratios ranging from 1.21 to 2.07 in the global 
population, indicating a significant genetic contribution to the 
risk of developing OSA (7). Understanding these genetic changes 
not only provides insights into the mechanisms underlying OSA 
but may also pave the way for innovative and precise 
diagnostic methods.

Weighted gene co-expression network analysis (WGCNA) is a 
specialized statistical tool designed for an in-depth analysis of gene 
expression data (8). It identifies co-expression patterns among 
genes or transcripts, groups genes with similar expression traits, 
and pinpoints gene modules linked to specific biological processes 
or diseases. Unlike traditional methods, WGCNA uses a weighted 
network strategy to emphasize significant gene correlations, 
providing a systematic view of gene interactions and disease 
mechanisms. Recent research employing WGCNA reveals genetic 
factors for diseases, yet gaps remain in identifying markers for OSA 
and understanding their roles (9, 10). The goal of utilizing WGCNA 
in our study is to identify diagnostic genes associated with OSA 
(11, 12).

Mendelian randomization (MR) is a genetics-based approach 
designed to assess causal relationships between exposures and 
diseases. By leveraging genetic variants, such as SNPs, as 
instrumental variables, MR evaluates associations between 
environmental or lifestyle factors and disease risk. One of its 
inherent strengths is the random allocation of genes at 
conception, which ensures independence from many confounding 
factors, thereby facilitating a more unbiased assessment of 
causality (13, 14). To validate the core diagnostic genes associated 
with OSA, they were included in an MR analysis, building upon 
the genes previously identified through WGCNA. This study 
aims to enhance our understanding of the genetic foundations of 
OSA through the use of advanced bioinformatics tools like 
WGCNA and MR analysis. By identifying and validating genetic 
markers associated with OSA, we seek to develop more accurate 
diagnostic tools and targeted therapeutic strategies, ultimately 
reducing the substantial health and economic burdens of 
this disorder.

Methods

Differentially expressed genes of the OSA 
gene dataset

In R v4.1.2, the analysis began by loading the “limma” and 
“pheatmap” packages. Gene expression data were obtained from the 
GSE135917 dataset available in the GEO database (15). The dataset 
involved two distinct groups: a control group comprising 8 individuals 
and an OSA patient group consisting of 34 individuals. The diagnosis 
of OSA within this cohort was primarily reliant on the respiratory 
disturbance index (RDI). Following initial data processing, a 
differentially expressed gene (DEG) analysis was conducted using the 
“limma” package. A logFC threshold of 0.585, equivalent to a 1.5-fold 
change, and an adjusted p-value criterion of adjusted p-value <0.05 
were applied to identify statistically significant genes. This threshold 
selection was based on common practices in other studies, ensuring 
that the identified gene changes were biologically meaningful and 
controlling the false positive rate, thereby ensuring the statistical 
validity and biological relevance of the results (16, 17). Subsequently, 
an expression heatmap was generated based on these identified genes.

WGCNA analysis of gene expression

Utilizing the WGCNA approach, the normalized expression data 
were analyzed. Genes with fluctuations below 0.1 were excluded, and 
sample clustering was performed to eliminate outliers. An optimal soft 
threshold was determined based on the softPower criteria. Using the 
TOM algorithm and the specified softPower value, a gene adjacency 
matrix was constructed. Dynamic cutting was applied with a depth of 
2 and a minimum module size of 100, and congruent modules were 
merged at a cut height of 0.35. Advanced analysis revealed correlations 
between modules and clinical markers, and core genes were identified 
by applying set thresholds: gene significance >0.5 and module 
association >0.8. These thresholds were chosen to ensure a high level of 
confidence in the biological significance of the findings, aligning with 
established practices in the field as illustrated in similar studies (18, 19).

Diagnostic DEG identification and 
enrichment analysis

By intersecting datasets, potential diagnostic DEGs were identified. 
The “clusterProfiler” and “enrichplot” packages were then used to perform 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology 
(GO) enrichment analyses (12, 13). The GO analysis focused on three 
dimensions: biological process, cellular component, and molecular 
function. A p-value <0.05 was considered statistically significant.

Diagnostic DEG analysis and interaction

The STRING database1 was used to evaluate diagnostic DEGs. 
Interactions among these genes were then visualized with Cytoscape 

1 https://cn.string-db.org/
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v3.9.0. To refine the module’s density and significance within the 
protein–protein interaction networks, the “cytoHub” plug-in in 
Cytoscape was utilized.

Receiver operating characteristic analysis 
for hub diagnostic genes diagnostic

The expression data from GSE13597 were meticulously analyzed 
using the “glmnet” and “pROC” packages. During this process, 
structured sample categorization was performed, hub diagnostic genes 
were identified and ranked, and receiver operating characteristic 
(ROC) curves were generated. These ROC curves provided an 
intuitive visual representation of the diagnostic capabilities of each 
core gene, with their performance quantitatively assessed using the 
area under the curve (AUC) values.

Calibrating hub diagnostic gene model

The “rms” and “rmda” packages were used to extract gene 
expression data from the GSE135917 dataset and identify key 
diagnostic genes. Samples were categorized into “high” or “low” based 
on their expression profiles. To optimize the logistic regression 
modeling approach, the “datadist” function was employed for data 
structuring. The “lrm” function was then used to create a logistic 
regression model, with sample categories as dependent variables and 
gene expression classifications as predictors. From this model, a 
nomogram was generated using the “nomogram” function, providing 
a graphical representation of the “risk of disease” in relation to gene 
expression levels. Subsequently, a logistic regression analysis yielded 
a plotted nomogram and a calibration curve, confirming the model’s 
calibration accuracy.

Immune cell infiltration and gene 
correlation analysis

The “CIBERSORT” method was utilized to evaluate immune cell 
infiltration within the expression data of the dataset (20). Cells were 
rigorously filtered based on a significance threshold of p < 0.05. For 
enhanced visualization, the “pheatmap” and “corrplot” packages were 
employed to generate heatmaps and correlation plots of immune cells, 
respectively. Subsequently, violin plots were constructed to provide a 
detailed depiction of the distribution of infiltrated immune cells. 
Furthermore, the relationship between the expression of the hub 
diagnostic gene and the abundance of immune cells was elucidated.

MR analysis

An MR study was conducted using the “TwoSampleMR” package 
to explore potential causal relationships. Exposure data were obtained 
from various eQTL IDs, including eqtl-a-ENSG00000171848, eqtl-a-
ENSG00000140307, eqtl-a-ENSG00000140650, eqtl-a-
ENSG00000124802, and eqtl-a-ENSG00000153140. Outcome data 
were sourced from the ebi-a-GCST90018916 ID (21). Following 
extraction, datasets were harmonized, and appropriate instrumental 

variables for MR were identified. Subsequent MR analyses were 
performed, and results were converted to estimate odds ratios. 
Additionally, the heterogeneity and pleiotropy of the instrumental 
variables were critically assessed. To facilitate visual interpretation of 
the findings, scatter plots, forest plots, funnel plots, and leave-one-out 
sensitivity plots were generated, offering a comprehensive overview of 
the MR results and the robustness of the conclusions.

Results

Integrated analysis reveals the diagnostic 
genes

A comprehensive DEG analysis was performed on the GSE135917 
OSA gene dataset, resulting in the identification of 194 DEGs. These 
genes, which may play a pivotal role in the progression and 
manifestation of OSA, were visually represented in a heatmap 
(Figure 1A). To gain further insights into the interplay and co-expression 
patterns among these genes, WGCNA analysis was employed. This 
analysis identified an optimal soft threshold of 12, ensuring a scale-free 
topology in the gene network, as illustrated in Figures 1B,C. Within this 
network analysis, the “MEblue” module emerged as a significant player, 
demonstrating a strong association with OSA. This module alone 
comprises an extensive set of 2,502 DEGs (Figure 1D). The magnitude 
and co-expression patterns within this module underscore its critical 
significance in the development of OSA, suggesting it may harbor genes 
or pathways central to the molecular mechanisms of the disease.

Diagnostic DEG enrichment analysis

By intersecting these datasets, 53 diagnostic DEGs predominantly 
associated with metabolic pathways were identified (Figure 2A). GO 
enrichment analysis highlighted key biological processes, including 
C-terminal protein amino acid modification, post-translational protein 
modification, blood vessel endothelial cell migration, and fatty acid 
derivative metabolic processes. In the cellular component category, the 
primary focus was on the lysosome and azurophil granule, while 
molecular function emphasized iron ion binding and monooxygenase 
activity (Figure 2B; Supplementary Figure S1). Additionally, KEGG 
analysis underscored metabolic pathways, the p53 signaling pathway, 
the cAMP signaling pathway, necroptosis, and peroxisome (Figure 2C).

Hub diagnostic genes identification and 
modelling

Through a comprehensive exploration of the diagnostic DEGs 
using the STRING database and further visualization in Cytoscape 
software, essential core genes, including CETN3, EEF1E1, PMM2, 
GTF2A2, and RRM2, emerged prominently in their relevance 
(Figures 3A,B). Within the context of the GSE13597 dataset, these 
genes were identified as potential diagnostic cornerstones. Their 
diagnostic effectiveness was reinforced by an AUC value exceeding 
0.85, demonstrating their strong diagnostic capability (Figure 4A).

Leveraging the predictive potential of key genes, including 
CETN3, EEF1E1, PMM2, GTF2A2, and RRM2, an advanced model 
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was meticulously developed to assess disease susceptibility based on 
gene expression nuances. Using the nomogram function, a detailed 
nomogram was created, providing a clear visual representation of the 
direct association between gene expression levels and the “risk of 
disease” (Figure  4B). Following data collection and processing, a 

logistic regression was implemented. The resulting analysis produced 
a comprehensive nomogram that visually elucidates the probability of 
various outcomes, considering multiple predictors. To validate the 
accuracy and robustness of the established model, a calibration curve 
was generated. The remarkable alignment of this curve with the 

FIGURE 1

DEG and WGCNA analyses of OSA from the GSE135917 dataset were conducted. (A) Heatmap of 194 DEGs linked to OSA. (B,C) WGCNA analysis 
revealing the optimal soft-thresholding power at 12, ensuring scale-free topology in the gene co-expression network. (D) The “MEblue” module 
containing 2,502 DEGs strongly associated with OSA. DEGs, differentially expressed genes; WGCNA, weighted gene co-expression network analysis; 
OSA, obstructive sleep apnea.

FIGURE 2

Diagnostic DEG enrichment analysis in OSA was conducted. (A) DEGs primarily associated with metabolic pathways. (B) GO enrichment analysis 
highlighting significant BPs, CCs, and MFs. (C) Principal pathways identified from KEGG analysis. DEGs, differentially expressed genes; GO, Gene 
Ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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45-degree reference line underscores the high consistency between 
predicted and observed outcomes, reaffirming the predictive strength 
of the model in categorizing gene expression levels (Figure 4C).

Immune infiltration in patients with OSA

In an in-depth analysis of immune infiltration within the 
dataset, specific patterns in cellular abundance were observed 

among patients with OSA. Notably, an increased presence of 
memory B cells and M0 macrophages suggested their potential role 
in OSA progression or response. Conversely, a noticeable decrease 
in plasma cells, naive T CD4 cells, and activated dendritic cells 
hinted at their diminished involvement in the OSA condition 
(Figures 5A,B). The intricate associations between these core genes 
and immune cells are visually illustrated in Figures 5C–J, elucidating 
the potential interactions and interplay between gene expression 
and immune cell profiles.

FIGURE 3

Analysis and visualization of diagnostic DEGs were performed. (A) Diagnostic DEG interactions mapped using the STRING database. (B) A highlighted 
representation of the hub diagnostic genes, including CETN3, EEF1E1, PMM2, GTF2A2, and RRM2, visualized with Cytoscape software. DEGs, 
differentially expressed genes.

FIGURE 4

Comprehensive analysis of gene expression and disease risk assessment was conducted. (A) The diagnostic significance of the hub diagnostic genes. 
(B) A nomogram illustrating the direct correlation between gene expression levels and the associated “risk of disease.” (C) A model validation curve 
illustrating its accuracy.

https://doi.org/10.3389/fneur.2024.1442835
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Gong et al. 10.3389/fneur.2024.1442835

Frontiers in Neurology 06 frontiersin.org

MR analysis

Crucial insights into the potential causal relationships between 
certain genes and the designated outcome were provided by the MR 
analysis. CETN3, in particular, exhibited a clear and statistically 
significant association with the outcome, as indicated by the following 
p-values: IVW at 0.005, weighted median at 0.028, and MR Egger at 
0.037. This compelling evidence suggests a noteworthy causal effect of 
CETN3 on the outcome (Figures 6A,B). GTF2A2 also emerged as a 
gene of significant interest, with its association with the outcome 
highlighted by the following p-values: 0.024 for IVW, 0.017 for 
weighted mode, and 0.026 for weighted median (Figures 7A–B).

Notably, the MR-Egger intercept method indicated no evidence of 
pleiotropy, and Cochran’s Q technique revealed an absence of 
heterogeneity (Table 1). These collective results provide compelling 
evidence of the nuanced associations between the genes CETN3 and 
GTF2A2 with the outcome, underscoring their significant 
linkage to OSA.

Discussion

OSA, a prevalent and severe sleep disorder, disrupts breathing 
during sleep. Typically, these interruptions last several seconds to a 
minute and occur when the throat muscles fail to keep the airway 
open, despite attempts to breathe. This obstruction often causes a 
decrease in blood oxygen levels and frequent awakenings throughout 
the night, leading to fragmented and non-restorative sleep (22, 23). 
The samples derived from GSE135917 originate from the 
subcutaneous adipose tissue of patients with OSA. This adipose tissue, 
readily accessible as a fat depot, plays a pivotal role in 
metabolic regulation.

The analysis included 8 healthy controls from Study Group 1 and 
34 patients with OSA from both groups. The GSE135917 OSA gene 
dataset was thoroughly examined, leading to the identification of 194 
DEGs crucial to the progression and manifestation of OSA. Network 
analysis via WGCNA identified a strong association of the “MEblue” 
module with OSA, indicating that this module may contain key genes 

FIGURE 5

Immune infiltration analysis in patients with OSA and associations with the hub diagnostic genes was conducted. (A) Patterns in cellular abundance 
observed among patients with OSA. (B) Identified relationships and interactions among various immune cell types. (C–J) Graphic elucidations 
illustrating the intricate relationships between the hub diagnostic genes and immune cells.
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FIGURE 6

Mendelian randomization analysis was conducted to investigate gene-outcome associations. (A) Outcomes of the Mendelian randomization analysis 
presented in a forest plot, highlighting the significant association of CETN3. (B) Correlation between exposure and outcome depicted in a scatter plot, 
further emphasizing CETN3’s critical role.

FIGURE 7

Mendelian randomization analysis was performed to examine GTF2A2-outcome associations. (A) Outcomes from the Mendelian randomization 
analysis presented in a forest plot, emphasizing the significant association of GTF2A2. (B) Correlation between exposure and outcome was detailed in a 
scatter plot, further spotlighting GTF2A2’s critical role.

TABLE 1 Heterogeneity and horizontal pleiotropy analyses between CETN3, GTF2A2, and OSA.

Exposure Outcome Egger intercept p-intercept Cochran’s Q p-value

CETN3 OSA 0.0121 0.199 24.027 0.728

GTF2A2 OSA 0.0053 0.460 52.804 0.156
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or pathways central to the disease’s molecular mechanisms. WGCNA 
has become a prominent tool in OSA research due to its ability to 
systematically explore the molecular complexities of the disorder (24, 
25). Utilizing WGCNA, gene co-expression modules relevant to OSA 
can be identified, critical driver genes can be discovered, and various 
data types such as transcriptomics, proteomics, and metabolomics can 
be integrated, providing a comprehensive understanding of the disease 
landscape (26, 27).

Through a thorough analysis of datasets, 53 diagnostic DEGs 
predominantly associated with metabolic pathways were precisely 
identified. These DEGs provide profound insights into the potential 
molecular mechanisms underlying OSA, particularly in terms of 
metabolic regulation. Identified biological processes, such as 
C-terminal protein amino acid modification, post-translational 
protein modification, blood vessel endothelial cell migration, and fatty 
acid derivative metabolic processes, are intriguing. These processes 
could potentially be  linked to metabolic abnormalities, vascular 
dysfunction, and delayed tissue repair often observed in patients with 
OSA (28). Regarding cellular components, the prominence of the 
primary lysosome and azurophil granule suggests an impact of OSA 
on cellular acidic environments and inflammatory responses. Notably, 
azurophil granules are associated with inflammatory responses in 
various ailments (29). Insights into molecular function, highlighting 
iron ion binding and monooxygenase activity, suggest a potential 
connection between OSA and red cell functionality and the oxidative 
stress response at the tissue level (30). The STRING database, 
combined with Cytoscape software, facilitated a detailed examination 
of diagnostic DEGs, uncovering the intricate interrelationships among 
these genes (31). Subsequent ROC curve analyses emphasized the 
robust diagnostic potential of the identified core genes. Additionally, 
the established gene model, utilizing logistic regression and model 
calibration, offers profound insights into the disease and illuminates 
new avenues for future diagnostic and therapeutic interventions.

The unique dynamics of immune cells in patients with OSA were 
revealed through an in-depth analysis of immune infiltration. Memory 
B cells and M0 macrophages showed a significant increase, suggesting 
their role in mediating inflammatory cascades and subsequent tissue 
impairments associated with the disease (32). In contrast, plasma cells, 
naive T CD4 cells, and activated dendritic cells exhibited a reduced 
prevalence, indicating a diminished regulatory capacity as the disease 
progresses, likely linked to the chronic hypoxic environment and 
persistent inflammation inherent in OSA (33). Particularly, the 
reduction in plasma cells may lead to weakened antibody-mediated 
immune responses in patients with OSA, diminishing their defense 
against pathogens (34). The decrease in naive T CD4 cells could affect 
the regulatory and activation functions of the immune system in OSA 
patients, weakening their resistance to infections (35). Furthermore, 
a reduction in activated dendritic cells suggests that OSA may interfere 
with effective antigen presentation and the initiation of immune 
responses, impacting overall immune regulation. These insights, 
combined with the complex interplay between cellular components 
and key genes, pave the way for a deeper exploration of the molecular 
and immunological foundations of OSA. Several studies have delved 
into SNPs and their connection to OSA, highlighting the discovery of 
rs11691765  in GPR83 and rs35424364  in C6ORF183 within the 
Hispanic/Latino American population. These genomic-level findings 
shed new light on the roles of inflammation and hypoxia signaling 
pathways in sleep apnea (36). OSA demonstrates distinct genetic 

disparities among various ethnic groups. In the case of European 
Americans, genetic variants in CRP and GDNF show a significant 
association with the AHI. Conversely, in African Americans, the 
rs9526240 variant within the HTR2A gene is notably correlated with 
the presence of OSA (37). Our study distinctively emphasized MR 
analysis within a European population, providing specialized insight 
into genetic influences. While our findings were primarily based on 
this demographic, we acknowledged the importance of comparing 
these results with SNP data reported in Hispanic/Latino and African 
American populations to understand broader genetic implications. 
The MR approach revealed pronounced correlations between certain 
genes and outcomes relevant to OSA. CETN3, in particular, showed 
distinct associations across various methodologies, underscoring its 
critical role in the genetic framework of OSA. Similarly, GTF2A2 
emerged as another significant contributor within the genetic context 
of the disease. On the other hand, several genes, including EEF1E1, 
PMM2, and RRM2, did not exhibit robust associations, highlighting 
the nuanced and multifaceted genetic architecture of OSA.

Investigations into family genetics have shown that in OSA, 
inherited traits may influence late sleep timing associated with 
increased IL-6 levels, and a genetic tendency towards more significant 
social jetlag corresponding with higher IL-1 levels (38). The genetic 
relationship between OSA and its pathological features is evident, as 
demonstrated by a twin study from Hungary on OSA. Specifically, the 
study found a significant shared genetic basis linking serum 
triglyceride levels with key indicators of OSA severity, such as the 
oxygen desaturation index and the proportion of sleep time with 
oxygen saturation below 90% (39). In summary, it is evident that 
genetic variations significantly contribute to the development and 
progression of OSA, underlining the importance of genetic factors in 
understanding and addressing this condition. CETN3, also known as 
centrin 3, encodes a protein belonging to the EF-hand protein 
superfamily. As calcium-binding proteins, centrins play a crucial role 
in centrosome dynamics, particularly in centrosome replication and 
separation, both essential for cell division (40, 41). Oxidative stress, 
commonly associated with conditions like OSA, can disrupt the cell 
cycle by affecting both protein functions and DNA integrity (42). 
Elevated oxidative stress could, therefore, compromise the functional 
integrity of CETN3, hindering its primary role in maintaining 
centrosome dynamics. Studies have shown that disruptions in cell 
cycle regulation are linked to sleep disturbances and respiratory 
dysfunction, highlighting the relevance of CETN3 in OSA pathology 
(43). Similarly, GTF2A2 encodes a critical subunit of the general 
transcription factor IIA, which is essential for the assembly of the 
preinitiation complex in gene transcription directed by RNA 
polymerase II. Composed of two main subunits, GTF2A2 represents 
one of them (44, 45). Given GTF2A2’s central role in transcription 
initiation, oxidative stress induced by elevated ROS levels, often seen 
in OSA, might impede its function or expression (46). The potential 
of ROS to alter transcription regulators and their target genes suggests 
that the cellular imbalances caused by OSA could indirectly modulate 
the function of genes such as GTF2A2. This impairment may lead to 
altered transcriptional regulation, which has been shown to affect 
cellular function and contribute to the systemic effects observed in 
OSA patients, such as enhanced inflammatory responses and 
metabolic dysregulation (47).

Additionally, we recognize that due to limited sample sizes and 
selection biases, our findings may need to be validated in a broader 
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population to confirm their generalizability. Variations and potential 
biases may occur from exclusive reliance on specific datasets and 
sample origins. Despite strong associations identified with CETN3 
and GTF2A2, further investigation is necessary for genes such as 
EEF1E1, PMM2, and RRM2. It’s critical to experimentally validate the 
causal roles of these genes in OSA. Although the MR approach is 
robust, it requires cautious interpretation due to its foundational 
assumptions. Future research should expand to include a wider range 
of tissues and functional validations to deepen our understanding.

Conclusion

In-depth analysis has identified critical genes, notably CETN3 and 
GTF2A2, with potential roles in the etiology and progression of 
OSA. Insights into immune cell dynamics further emphasize the 
multifaceted nature of the disease. While promising, inherent 
limitations in the study must be considered, particularly concerning 
potential biases in the datasets and assumptions in the methodology. 
These findings offer a foundation for future OSA research, highlighting 
the need for experimental validation and broader exploration.
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