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Background: Alzheimer’s disease (AD) is a progressive and irreversible

neurodegenerative disorder that has become one of the major health concerns

for the elderly. Computer-aided AD diagnosis can assist doctors in quickly and

accurately determining patients’ severity and a�ected regions.

Methods: In this paper, we propose a method called MADNet for computer-

aided AD diagnosis using multimodal datasets. The method selects ResNet-10

as the backbone network, with dual-branch parallel extraction of discriminative

features for AD classification. It incorporates long-range dependenciesmodeling

using attention scores in the decision-making layer and fuses the features based

on their importance across modalities. To validate the e�ectiveness of our

proposed multimodal classification method, we construct a multimodal dataset

based on the publicly available ADNI dataset and a collected XWNI dataset, which

includes examples of AD, Mild Cognitive Impairment (MCI), and Cognitively

Normal (CN).

Results: On this dataset, we conduct binary classification experiments of

AD vs. CN and MCI vs. CN, and demonstrate that our proposed method

outperforms other traditional single-modal deep learning models. Furthermore,

this conclusion also confirms the necessity of using multimodal sMRI and DTI

data for computer-aided AD diagnosis, as these twomodalities complement and

convey information to each other. We visualize the feature maps extracted by

MADNet using Grad-CAM, generating heatmaps that guide doctors’ attention to

important regions in patients’ sMRI, which play a crucial role in the development

of AD, establishing trust between human experts and machine learning models.

Conclusion: We propose a simple yet e�ective multimodal deep convolutional

neural network model MADNet that outperforms traditional deep learning

methods that use a single-modality dataset for AD diagnosis.

KEYWORDS

Alzheimer’s disease, convolutional neural network, multi-modality, sMRI and DTI-MD,

residual technique
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative

disorder and one of the primary causes of cognitive decline and

behavioral changes in the elderly (1–3). It significantly impairs

patients’ memory and cognition, leading to symptoms such as

memory loss, disorientation, and difficulty understanding simple

instructions, which profoundly impact daily life (4). Currently,

there is no definitive cure for AD; thus, early diagnosis becomes

particularly crucial for timely and effective medical intervention in

individuals with cognitive impairments (5).

Traditionally, accurate diagnosis of AD has relied on doctors’

extensive experience in analyzing a large amount of neuroimaging

and clinical data to determine the symptoms (6). In recent

years, computer-assisted disease diagnosis has gained increasing

attention (7–10). For AD diagnosis, these methods primarily utilize

computer vision techniques to extract discriminative features

related to AD from neuroimaging, providing doctors with assisted

diagnostic results. Specifically, structural magnetic resonance

imaging (sMRI) measures structural changes in the brain, such

as ventricular volume and cortical thickness (11). Functional

magnetic resonance imaging (fMRI) investigates functional activity

differences in patients during specific tasks by observing changes

in brain oxygen levels (12). Positron emission tomography (PET)

uses radioactive tracers to observe their distribution in the

brain, providing insights into changes in neurotransmitters and

metabolism in AD patients (13). Diffusion tensor imaging (DTI)

analyzes the direction, extent, and integrity of neural fiber bundles

by examining the diffusion process of water molecules in tissues

(14).

Deep learning is amachine learning approach based on artificial

neural networks that enables the extraction and recognition of

nonlinear features through stacked neural networks (15). In

recent years, deep learning techniques have achieved remarkable

results in computer-aided disease diagnosis and have been widely

applied in clinical practice (16, 17). HGGAN (18) generates

multimodal brain network connectivity based on resting-state

fMRI and DTI data, while MP-GAN (19) captures salient global

features through a novel multidirectional mapping mechanism

and efficiently visualizes the morphological features of AD by

learning class-discriminative mappings for multiple classes with

a single generator. Both hold potential application value for

AD analysis. In medical image analysis, deep learning leverages

large amounts of training data and high-performance computing

platforms to learn and extract features from images (20). BSFL

(21) decomposes the feature space into the union of the

common and unique spaces for DTI and fMRI data through

a decomposition-fusion framework, and then adaptively fuses

them to analyze MCI. PALH (22) integrates prior-guided learning,

adversarial learning, and hypergraph perception, capturing the

complementarity within multimodal information through the

fusion of learned representations, thereby improving the accuracy

of disease diagnosis. Fuzzy-VGG (23) effectively enhances the

accuracy of AD stage prediction based on brain MRI through

fuzzy theory and a two-stage image enhancement strategy. MRL-

AHF (24) enhances the accuracy of AD detection by extracting

features through Graph Generative Adversarial Networks and

Graph AutoEncoders, followed by the fusion of features from

differentmodalities using an adversarial training strategy. However,

existing deep learning models are often structurally complex,

requiring a large amount of data, and may face gradient vanishing

ormodel degradation issues. At the same time, the decision-making

process of the models lacks interpretability, which can hinder

doctors from understanding and trusting the diagnostic results of

the models.

To address the aforementioned issues, we attempt to achieve

high-precision AD diagnosis using sMRI and DTI. The choice of

sMRI and DTI is primarily due to the fact that: sMRI reflects

changes in brain structure, such as atrophy and lesions (25, 26).

These local structural changes are associated with AD and can

be effectively captured by convolutional neural networks. DTI

measures the integrity and connectivity of neural fiber bundles.

By analyzing DTI data, the degree of damage to white matter

fiber bundles can be quantitatively evaluated. The combined use

of sMRI and DTI can provide a more comprehensive perspective

to assist in the diagnosis of AD. In this study, therefore, our main

contributions are as follows:

(1) We propose a residual convolutional neural network model

named MADNet for the classification of AD multimodal

datasets. The residual networks within MADNet effectively

tackle the issues of gradient vanishing and model degradation

(27). MADNet is a straightforward yet potent network

architecture that utilizes sMRI and DTI to accurately perform

computer-aided diagnosis of AD.

(2) We construct a multimodal dataset based on the publicly

available ADNI (Alzheimer’s Disease Neuroimaging

Initiative) dataset and the collected XWNI (Xuanwu Hospital

Neuroimaging) dataset. This dataset includes 66 AD, 40 MCI,

and 79 CN subjects, totaling 185 samples, which can be used to

train and validate deep learning models for distinguishing these

different groups.

(3) Our experimental results demonstrate that MADNet achieves

superior performance, while visualization techniques reveal that

MADNet focuses more on the cerebral cortex and ventricles,

areas closely related to the development of AD, helping doctors

establish trust in deep learning models.

2 Materials and methods

2.1 Dataset and preprocessing

The multimodal neuroimaging data used in this study are

obtained from the AD Neuroimaging Initiative (ADNI, http://

adni.loni.usc.edu) (28) and Xuanwu Hospital, Capital Medical

University, Beijing. The modalities we utilize include sMRI and

diffusion tensor imaging mean diffusivity (DTI-MD). The ADNI

dataset is a large-scale collection of data that encompasses multiple

neuroimaging modalities and has been widely utilized in AD

research, including studies on disease progression, diagnosis, and

treatment (29). In our research, we employ neuroimaging data

from T1-weighted MRI and DTI modalities. The Xuanwu Hospital

Neuroimaging (XWNI) dataset is obtained from Xuanwu Hospital,
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Capital Medical University, Beijing, China. This dataset includes

data from AD, MCI, and CN patients utilizing sMRI, DTI, and PET

modalities. Similarly, we utilize sMRI and DTI modalities for our

investigation.

Due to the small sample size of the XWNI dataset, it is not

suitable for use as a standalone training set and test set; therefore,

we have combined the data from both datasets (XWNI and ADNI).

For the AD vs. CN task, our training data consists of 764 CN

samples and 121 AD samples. Specifically, we have 58 CN samples

from XWNI and 706 CN samples from ADNI, along with 30 AD

samples fromXWNI and 91 AD samples fromADNI. In our testing

data, we have 198 CN samples and 34 AD samples. Among these,

21 CN samples are from XWNI and 177 CN samples are from

ADNI. Additionally, we have 11 AD samples from XWNI and 23

AD samples fromADNI. For theMCI vs. CN task, our training data

includes 765 CN samples and 397 MCI samples. Out of these, we

have 59 CN samples from XWNI and 706 CN samples from ADNI.

Furthermore, we have 11 MCI samples from XWNI and 386 MCI

samples from ADNI. In our testing data, we have 197 CN samples

and 33 MCI samples. Specifically, 20 CN samples are from XWNI

and 177 CN samples are fromADNI. Additionally, we have 10MCI

samples from XWNI and 23 MCI samples from ADNI.

2.2 Preprocessing

MNI152_T1 is a standardized neuroimaging template

developed collaboratively by McGill University, Montreal

Neurological Institute (MNI), and the International Consortium

for Brain Mapping (ICBM). This template is created based on

the average brain morphology of a large number of participants

and serves as a common reference space for researchers in

neuroimaging data analysis. To ensure accurate brain region

characterization, we have paired the raw T1-weighted sMRI with

MNI152_T1_1mm considering the impact of spatial resolution on

image quality (30). In the context of DTI in magnetic resonance

imaging, mean diffusivity (MD) represents the average diffusion

rate of water molecules and serves as a measure for describing

their speed and direction within tissues (31). By utilizing DTI data,

we calculate the average diffusion coefficients concerning different

directions to obtain anisotropic mean diffusivity, enabling the

assessment of the overall rate of water molecule diffusion in tissues.

After preprocessing the data, the whole dataset (mix of XWNI

and ADNI) consists of 66 AD subjects, 40 MCI subjects, and 79

CN subjects, totaling 185 patient samples. Figure 1 presents the

preprocessed sMRI and DTI-MD modal images of the AD, MCI,

and CN subjects. Both modalities provide three-dimensional (3D)

data, from which deterministic images are extracted in the axial,

coronal, and sagittal planes.

2.3 Single-modal feature extraction using
residual convolutional neural network

The method we propose follows a typical multimodal

late fusion strategy, which necessitates accurately extracting

discriminative features from the multimodal data in the early

stages of the model, based on the fusion requirements (32, 33).

We select ResNet-10 as the feature extractor, whose architecture is

demonstrated in Figure 2. This is an artificial neural networkmodel

that combines convolutional operators with multiple residual

branches. It is known for its ease of training and ability to

capture local spatial features, making it well-suited for our task.

The raw neural images are downscaled by ResNet-10 through five

layers of 1/4 subsampling. After each subsampling, the channel

dimension is doubled to compensate for the spatial information

lost due to downsampling. After undergoing all convolutional

operations in the network, the features are spatially aggregated

into semantic information across channel dimensions by a global

pooling layer.

2.4 Multi-modal joint construction of
discriminative representations

In practice, the importance of different modalities of data

for the same task may vary. Therefore, it is crucial to allow the

model to adaptively adjust its perspective and allocate attention to

each modality based on their respective importance when making

decisions. In our method, We initially utilize ResNet-10 as the

backbone network to extract discriminative features from two data

modalities (27). This is because residual networks can resolve the

vanishing gradient problem in deep network training through the

introduction of residual learning. ResNet adds skip connections

or shortcuts, allowing gradients to flow directly to shallower

layers of the network, thereby enhancing the training efficiency

and accuracy of the network. ResNet-10 is a variant of ResNet

with fewer layers, making it effective even when computational

resources are limited while maintaining the core advantages of

residual networks. Secondly, ResNet-10 combines convolutional

operators with multiple residual branches, making it highly suitable

for automatic feature extraction in medical image analysis. Lastly,

ResNet-10 downsizes the original neural images through five layers

of 1/4 subsampling, and after each subsampling, the channel

dimension is doubled to compensate for the spatial information

lost due to downsampling. In this way, the network can capture

local structural changes through convolutional operations, which

are associated with Alzheimer’s disease.

Next, taking into account the advantage of attention

mechanisms in capturing long-range dependencies, we apply

an attention mechanism at the decision-making layer to construct

global representations between modalities (34). Specifically, the

features from the two data modalities are concatenated along

the channel dimension, followed by the use of a fully connected

layer to obtain attention scores for each feature dimension.

These attention scores are then element-wise multiplied with the

multimodal features to obtain comprehensive features related to

the importance of multiple data modalities. This approach allows

the model to adaptively adjust its perspective and allocate attention

based on the relative importance of each modality when making

decisions. In this way, the model can more effectively integrate

information from sMRI and DTI-MD, thereby providing more
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FIGURE 1

sMRI and DTI-MD brain structural images from the AD, MCI, and CN subjects.
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FIGURE 2

The specific structure of the feature extractor ResNet-10.

reliable evidence for the diagnosis of AD. The detailed structure of

the model is illustrated in Figure 3.

3 Results

3.1 Implementation details

The proposed method in this study is implemented using

Python 3.7.0 and PyTorch 1.10.0. We perform end-to-end training

of the network using the AdamWoptimizer, with an initial learning

rate of 2e-4, which decays in a cosine annealing manner during

iterations. To address the optimization challenges in the early

stages of training, we employ a linear warm-up strategy, gradually

increasing the learning rate for the first 30 epochs, with a total

training duration of 200 epochs. The loss function utilizes cross-

entropy loss, without any additional pretraining process. The batch

size is set to 8, and the optimizer’s weight decay is set to 5e-4.

Considering the class imbalance in the dataset, we utilize weighted

random sampling to balance the number of samples for each class.

Specifically, we assign a weight to each class in the dataset that

is inversely proportional to the number of its samples. During

each training epoch, samples are randomly selected based on

these weights to form a training batch, which means that samples

from classes with higher weights are more likely to be included

in the training batch. We train the model using this batch of

weighted samples, ensuring that the model is not biased toward

the majority classes but can better learn the characteristics of all

classes. Additionally, to enhance data diversity, we apply horizontal

flipping and random intensity transformations to the original

medical images using the renowned medical image processing

library, MONAI.

3.2 Comparison with other existing
methods

Considering that there is currently nomultimodal classification

method for AD using both sMRI and DTI modalities, we compare
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FIGURE 3

The structure of MADNet.

TABLE 1 Quantitative comparison of our proposed MADNet and other

existing methods only using sMRI for AD and CN binary classification.

Method ACC REC PRE F1 SPE AUC

3D-ResNet-10 0.9394 0.7273 0.8276 0.7742 0.9747 0.9587

3D-ResNet-18 0.9524 0.7879 0.8667 0.8254 0.9798 0.9518

AMSNet 0.9264 0.6364 0.7222 0.7536 0.9495 0.9637

ResAttNet-10 0.9351 0.7576 0.7812 0.7692 0.9644 0.9247

ResAttNet-18 0.9307 0.6364 0.8400 0.7241 0.9798 0.9206

MADNet (ours) 0.9654 0.8182 0.9310 0.8710 0.9899 0.9597

The best results are in bold.

TABLE 2 Quantitative comparison of our proposed MADNet and other

existing methods only using DTI-MD for AD and CN binary classification.

Method ACC REC PRE F1 SPE AUC

3D-ResNet-10 0.9481 0.7273 0.8889 0.8000 0.9848 0.9242

3D-ResNet-18 0.9091 0.6970 0.6765 0.6866 0.9444 0.9276

AMSNet 0.9610 0.8182 0.9000 0.8571 0.9848 0.9343

ResAttNet-10 0.9524 0.7879 0.8667 0.8254 0.9798 0.9476

ResAttNet-18 0.9610 0.7879 0.9286 0.8525 0.9899 0.9343

MADNet (ours) 0.9654 0.8182 0.9310 0.8710 0.9899 0.9597

The best results are in bold.

it with existing single-modal AD diagnostic methods, performing

classification separately on sMRI and DTI modal data to assess

their performance. The compared methods included AMSNet (35),

ResAttNet-10 (36), ResAttNet-18 (36), and Tencent YouTu’s open-

source pre-trained 3D medical image models, 3D-ResNet-10 and

3D-ResNet-18 (37). We evaluate the performance of these models

based on accuracy (ACC), recall rate (REC), precision (PRE), F1

score, specificity (SPE), and AUC metrics.

TABLE 3 Quantitative comparison of our proposed MADNet and other

existing methods only using sMRI for MCI and CN binary classification.

Method ACC REC PRE F1 SPE AUC

3D-ResNet-10 0.7767 0.6337 0.6809 0.6564 0.8492 0.8094

3D-ResNet-18 0.8200 0.8020 0.7043 0.7500 0.8291 0.8862

AMSNet 0.8600 0.8182 0.8172 0.7835 0.9146 0.8619

ResAttNet-10 0.7200 0.6337 0.5766 0.6038 0.7638 0.7533

ResAttNet-18 0.8567 0.8000 0.7959 0.7839 0.8995 0.8999

MADNet (ours) 0.8333 0.6337 0.8312 0.7191 0.9347 0.8634

The best results are in bold.

TABLE 4 Quantitative comparison of our proposed MADNet and other

existing methods only using DTI-MD for MCI and CN binary classification.

Method ACC REC PRE F1 SPE AUC

3D-ResNet-10 0.7933 0.7030 0.6893 0.6961 0.8392 0.8666

3D-ResNet-18 0.8000 0.6238 0.7412 0.6774 0.8894 0.7964

AMSNet 0.7967 0.6535 0.7174 0.6839 0.8693 0.8509

ResAttNet-10 0.7800 0.6436 0.6842 0.6633 0.8492 0.7905

ResAttNet-18 0.7933 0.7030 0.6893 0.6961 0.8392 0.8666

MADNet (ours) 0.8333 0.6337 0.8312 0.7191 0.9347 0.8634

The best results are in bold.

3.3 Experimental results

We conduct binary classification experiments on AD vs.

CN and MCI vs. CN respectively using multimodal datasets.

Mathematically speaking, a higher numerical value for the six

aforementioned metrics indicates better performance of the model.

As shown in Tables 1, 2, our MADNet achieves better performance

compared to existing single-modal classification methods in the
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FIGURE 4

ROC curves. (A, C) are AD vs. CN task, and (B, D) are MCI vs. CN task. All methods except MADNet used sMRI data as inputs in (A, C), and used

DTI-MD data in (B, D).

AD vs. CN binary classification problem. This is attributed

to the utilization of multi-modal data, which provides more

reliable evidence for the diagnosis of AD using deep neural

networks. Furthermore, we can observe that the 3D-ResNet-10

and 3D-ResNet-18 models perform better when using only sMRI

modality data compared to using only DTI-MD modality data.

However, the DA-MIDL, AMSNet, and ResAttNet models, which

incorporate attention mechanisms, are more sensitive to the DTI-

MD modality. This may be due to the attention mechanisms

modeling global representations, which are more conducive to

capturing discriminative features for AD diagnosis from the DTI-

MD modality data.

MCI is a transitional stage from CN to AD. The diagnosis of

MCI plays a crucial role in early intervention for AD patients.

Tables 3, 4 present the performance of our proposed multimodal

algorithm compared to existing methods in the MCI vs. CN binary

classification task. It can be observed that MADNet achieves better

performance in the MCI vs. CN binary classification task compared

to existing methods that use single-modality approaches. MCI

patients exhibit less pronounced changes in brain region structure

compared to AD patients. As a result, the performance of MCI vs.

CN binary classification is expected to be lower than that of AD vs.

CN binary classification.

In our research, we employ receiver operating characteristic

(ROC) analysis to evaluate the performance of different

methods. Among the evaluated methods, our proposed approach

demonstrates better performance, as evidenced by Figure 4.

3.4 Visualization

To provide accurate and reliable computer-aided diagnostic

results for human experts, we use Grad-CAM to generate heatmaps

of brain regions from sMRI slices. This is a model weight

visualization technique that can help model developers identify

the reasons behind the model’s decisions. For instance, researchers
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FIGURE 5

The visualized feature maps generated by Grad-CAM.

utilize Grad-CAM to assess the model’s capability to effectively

recognize dark spots and flames within images (38). Furthermore,

utilizing this technique in medical imaging can assist doctors in

building trust with deep learning models. These heatmaps guide

human doctors to focus on key areas of brain changes in AD

patients, as shown in Figure 5 (39). We choose to visualize the

feature map weights of a resolution of 36 × 44 × 36 and overlay

them onto the raw sMRI. Through visualizing the heatmaps,

we observe that our proposed model pays more attention to

the cerebral cortex and ventricles. Upon consulting with the

physicians in our team, we learn that the cerebral cortex and

ventricles play crucial roles in AD. The cerebral cortex is the

outer layer of the brain, responsible for processing complex

cognitive functions such as memory, language, attention, and

perception. Certain areas of the cerebral cortex in individuals with

AD, particularly the hippocampus and entorhinal cortex, undergo

significant atrophy and neuronal loss. This atrophy leads to a

decline in cognitive functions and is one of the key indicators

for the early diagnosis of AD. The ventricles are cavities within

the brain, usually filled with cerebrospinal fluid. In patients

with AD, the ventricles abnormally enlarge due to the shrinkage

of brain tissue, leading to an increased spatial volume of the

ventricular system. The enlargement of the ventricles can serve

as a sign of AD progression and is associated with cognitive

decline. This indicates that the features extracted by our model

are not only meaningful for model decisions but also provide solid

evidence for guiding human experts in quick and accurate lesion

localization.
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4 Discussions and conclusion

We propose MADNet, a model developed for computer-

aided diagnosis of AD using sMRI and DTI-MD data, which has

demonstrated superior performance over traditional single-modal

deep learning methods. This multimodal approach emphasizes

the complementarity of different neuroimaging datasets, offering

a more nuanced understanding of the disease’s progression and

its impact on brain structure. Our findings indicate that the

integration of sMRI and DTI-MD through a dual-branch parallel

feature extraction enhances the model’s ability to capture the

intricate patterns associated with AD. The application of an

attention mechanism at the decision-making layer allows for

dynamic integration of multimodal features, considering the long-

distance dependencies between modalities, which is crucial for

accurate diagnosis. We utilize Grad-CAM for visualizing heatmaps

to gain insights into the model’s focus on the cerebral cortex

and ventricles. These areas, known to be significantly affected in

AD, further validate the model’s capability to identify relevant

pathological changes.

5 Limitation

This study presents a novel deep learning approach for AD

diagnosis using sMRI and DTI-MD data through the MADNet.

Despite the promising results, several limitations should be

acknowledged to provide a comprehensive understanding of the

scope and applicability of our findings:

(1) The current dataset, while multimodal, is limited in size, which

may affect the generalizability of the model. Future studies

should aim to include a larger and more diverse cohort to better

represent the patient population and ensure the robustness of

the model across different demographics.

(2) While sMRI and DTI-MD are utilized, the integration of

additional modalities such as fMRI can provide temporal

insights into brain structural changes associated with AD.

Expanding the model to incorporate a broader range of imaging

data can enhance diagnostic accuracy and provide a more

holistic view of the disease progression.

(3) The MADNet is trained from scratch without the benefit of

pretraining on large-scale datasets. Pretraining can potentially

improve the model’s ability to learn more complex features

and representations, which could be particularly beneficial for

medical imaging tasks where data can be scarce.

By addressing these limitations, we can develop artificial

intelligence-assisted diagnostic models with higher precision

in the future, ultimately contributing to the improvement

of care and disease management for patients with AD and

other conditions.
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