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Background: Neurodegenerative diseases are progressive disorders that severely 
diminish the quality of life of patients. However, research on neurodegenerative 
diseases needs to be refined and deepened. Single-cell polyomics is a technique 
for obtaining transcriptomic, proteomic, and other information from a single 
cell. In recent years, the heat of single-cell multiomics as an emerging research 
tool for brain science has gradually increased. Therefore, the aim of this study 
was to analyze the current status and trends of studies related to the application 
of single-cell multiomics in neurodegenerative diseases through bibliometrics.

Result: A total of 596 publications were included in the bibliometric analysis. 
Between 2015 and 2022, the number of publications increased annually, with 
the total number of citations increasing significantly, exhibiting the fastest rate of 
growth between 2019 and 2022. The country/region collaboration map shows 
that the United States has the most publications and cumulative citations, and 
that China and the United States have the most collaborations. The institutions 
that produced the greatest number of articles were Harvard Medical School, 
Skupin, Alexander, and Wiendl. Among the authors, Heinz had the highest 
output. Mathys, H accumulated the most citations and was the authoritative 
author in the field. The journal Nature Communications has published the 
most literature in this field. A keyword analysis reveals that neurodegenerative 
diseases and lesions (e.g., Alzheimer’s disease, amyloid beta) are the core and 
foundation of the field. Conversely, single-cell multiomics related research (e.g., 
single-cell RNA sequencing, bioinformatics) and brain nerve cells (e.g., microglia, 
astrocytes, neural stem cells) are the hot frontiers of this specialty. Among 
the references, the article “Single-cell transcriptomic analysis of Alzheimer’s 
disease” is the most frequently cited (1,146 citations), and the article “Cell types 
in the mouse cortex and hippocampus revealed by single-cell RNA-seq” was the 
most cited article in the field.

Conclusion: The objective of this study is to employ bibliometric methods to 
visualize studies related to single-cell multiomics in neurodegenerative diseases. 
This will enable us to summarize the current state of research and to reveal key 
trends and emerging hotspots in the field.
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1 Introduction

In recent years, the incidence of neurodegenerative diseases has 
continued to increase globally with age, and is now one of the leading 
causes of death (1, 2). Neurodegenerative disease is a brain dysfunction 
caused by the loss of neurons and/or their myelin sheaths which includes 
both acute and chronic, and this article focuses on chronic 
neurodegenerative diseases, including Alzheimer’s, Parkinson’s, 
frontotemporal dementia, and multiple sclerosis. Patients often have 
lesions of hallmark amyloid deposits in the brain (3), and this pathologic 
change in the brain is often progressive and irreversible (4). As a result 
of the direct or indirect effects of altered protein conformation in the 
brain, patients often experience neurological abnormalities such as 
cognitive deficits and ataxia, which in turn affects the normal functioning 
of the patient’s other organ systems (5, 6). Another pathological feature 
of neurodegenerative diseases is neuronal inflammation, a complex 
process that involves the lesion and influence between various types of 
nerve cells, such as microglia and astrocytes (7, 8). In different regions 
of the brain, neurons will be selectively lost (9). The mechanism may 
be related to the protein conformational changes mentioned above or 
excitability downstream of neurotransmitter signaling and so on (10, 
11). Therefore, in studies targeting the pathogenesis of neurodegenerative 
disorders, the application of single-cell multiomics can detect the single-
cell multiomics features of neurons that are specifically sensitive to 
neurodegenerative disease and obtain the specific information of the 
affected neuronal subtypes, which will provide an invaluable reference 
for future basic and translational research on cellular heterogeneity in 
neurodegenerative disease (7, 12). Single-cell multiomics technology is 
a cellular sequencing method, including single-cell transcriptomics, 
proteomics, genomics and so on, whose research has increasing 
popularity in the field of neurodegenerative disease in recent years (13). 
Through statistics and sequencing of cytogenetic data, methods such as 
cellular mapping and genealogical analysis are utilized at the cellular 
level to perform disease studies with greater accuracy (14). Notably, 
single-cell sequencing is now playing an important role in the analysis 
of molecular subtypes of susceptible neurons in neurodegenerative 
diseases as well as the identification of novel mechanisms and therapeutic 
targets (15). It has also identified changes in the expression of disease-
specific genes in certain diseases (16), such as amyotrophic lateral 
sclerosis which are advancing the course of clinical treatments (17). For 
the study of various diseases in the field of neuroscience, it is 
indispensable to explore the lesions at the cellular level. Thus, single-cell 
genomics has the obvious advantage of precise measurements, so the 
choice of single-cell sequencing method can undoubtedly complement 
the existing shortcomings of the research, especially in the context of the 
current increasing sophistication of single-cell multiomics technologies 
(18, 19).

The concern in neurodegenerative diseases continues to rise, 
therefore, there is a need to do a visual data statistical analysis, also 

known as bibliometric analysis, of existing studies on 
neurodegenerative diseases using single-cell sequencing. Bibliometric 
analysis is a method of assessing scholarly outcomes using statistics to 
quantitatively analyze information from purposeful literature, which 
includes but not limited to citations, journals, authors, and research 
institutions (20). The value of bibliometric methods is demonstrated 
in medical research (21). By fully utilizing the efficacy of bibliometric 
analysis, we can gain a more comprehensive understanding of the 
trends in the field of purposeful research (22). In this study, we used 
CiteSpace and VOSviewer to count the studies on the association 
between neurodegenerative diseases and single-cell genomics in 
recent years, aiming to analyze the research trends and hotspots of the 
related studies through bibliometric methods, and the overall analysis 
obtained can also be used as a reference for related researchers.

2 Methods

2.1 Data sources

Web of Science is a powerful citation search database founded in 
1985 which contains a large number of interdisciplinary high-quality 
literature, providing a platform for researchers around the world to 
retrieve academic information (23). The search formula chosen for 
this study was set to TS = (“Single-cell transcriptome” OR “Single-cell 
RNA-seq” OR “Single-cell transcriptomic” OR “single-cell 
transcriptomics” OR “Single-Cell RNA sequencing” OR “single-cell 
multiomics sequencing” OR “Single-cell multiomics” OR “single-cell 
multiomics” OR “Single-cell genome” OR “Single-cell epigenome” OR 
“Single-cell epitranscriptome” OR “Single-cell proteome” OR “Single-
cell metabolome” OR “scRNA-seq”) AND TS = (Alzheimer’s Disease 
OR Parkinson’s Disease OR Frontotemporal Dementia OR Multiple 
Sclerosis OR Neurodegenerative Disease OR Neurodegenerative 
Disorder OR Neuro-degenerative disease OR Neuro-Degenerative 
Disorder OR Huntington’s Disease OR Amyotrophic Lateral Sclerosis 
OR Alzheimers Disease OR Parkinsons Disease OR Huntingtons 
Disease). We searched all relevant literature between 2015 and 2024, 
limiting the type of literature to ARTICLE and REVIEW and the 
language to English during the screening process, thus excluding other 
types or languages, and retrieved a total of 596 articles. For a more 
in-depth study of single-cell sequencing, we manually screened a total 
of 267 articles in the field of ND that were sequenced by the authors 
themselves and their specific sequencing methods. To prevent data 
bias due to database updates, all articles in this study were collected 
and downloaded on June 8, 2024.

2.2 Data analysis and visualization

CiteSpace is a citation visualization and analysis software. 
Through proper use of CiteSpace, it can assist in the processing of 
article information and obtain an all-round and in-depth view of the 
cutting-edge hotspots, key information, potential trends and dynamic 
changes in a specific research field (24). Under the technical premise 
of scientometrics and data visualization, CiteSpace can also provide 
researchers with a diversified perspective for revealing the different 
fields of citation crossover, knowledge intersection and so on, 
providing diversified perspectives (25). CiteSpace focuses on the 

Abbreviations: ND, Neurodegenerative disease; RNA, Ribonucleic acid; DNA, 

Deoxyribonucleic acid; WOS, Web of Science; USA, United States of America; UK, 

United Kingdom; MIT, Massachusetts Institute of Technology; ScRNA-seq, Single-

cell RNA sequencing; HMS, Harvard Medical School; CNV, Copy number variation; 

VOSviewer, Visualization of Similarities viewer; CiteSpace, Citation Space; TS, Topic 

Search; PD, Parkinson’s disease; ALS, Amyotrophic lateral sclerosis; AD, Alzheimer’ 

disease.
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knowledge mapping analysis of literature to reveal the development 
history and research trends of literature, which helps researchers to 
have a more in-depth understanding of the past foundations of the 
research and the emerging hotspots (26). VOSviewer is a JAVA-based 
literature tracking software for all kinds of web data or literature data 
for visual analysis. VOSviewer can analyze different indicators of the 
literature such as the number of citations to the literature, the 
frequency of keywords, etc. one by one, and generate visual 
relationship diagrams to help researchers assess the impact of the 
literature and facilitate their intuitive understanding and analysis. 
VOSviewer focuses more on cluster analysis of the cited literature, 
showing the network of relationships between the literature, and is 
also capable of constructing a collaborative network of authors or 
institutions, which helps the researcher to understand the competitive 
or collaborative relationships in the process of research scholarship 
(27). In our study, we used CiteSpace to analyze reference bursts, 
keyword bursts, citation authors, journal bi-graph overlays, and 
reference collaborations and distributions. Meanwhile, we  use 
VOSviewer to analyze country/region and institutional distribution, 
author distribution and collaboration, and keyword distribution 
and collaboration.

3 Results

3.1 Annual publications and citation trends

The number of literature publications can reflect directly the 
scientific activity and process development in a given field. 
Similarly, the trend in the number of citations can be  used to 
indicate the increase in academic communication. Figure 1 show 
the number of publications and their corresponding citation trends 
from 2015 to 2024. It can be  seen that the first literature on 
neurodegenerative disease was published in 2015. Between 2015 
and 2023, the number of literature publications about 
neurodegenerative disease increased annually. The growth rate 
accelerated significantly between 2019 and 2022, with the highest 

number of literature publications about neurodegenerative disease 
in 2023, which was as high as 155. The data for 2024 were not yet 
available at the time of writing, but it is anticipated that the number 
of literature publications will continue to increase at a substantial 
rate, in line with the growth trend observed in Table 1. Concurrently, 
the number of citations has also risen significantly, indicating that 
research on neurodegenerative disease is gradually maturing 
and developing.

3.2 Distribution of country/region

The geographical nature of literature publication reflects to some 
extent the contribution of the country or region to the field. Currently, 
country/regional independent or collaborative research takes place 
mainly in the Northern Hemisphere. Table  1 shows the top  10 
countries/regions, along with their total connection strength and 
citation frequency. The country/regional distribution of our 
publications is based on the units of all authors. As can be seen from 
the table, the country with the highest number of articles published in 
the field is the United States (303), followed by China (141), Germany 
(82), and the United Kingdom (53). For citations to the literature, the 
US has the highest cumulative number of citations (13,676), followed 
by the UK (4,612), Germany (3,997) and China (2,006), with the 
cumulative number of citations in the US being almost three times 
that of the UK. In terms of overall connection strength, the US 
remains in first place, followed closely by Germany, the UK and 
China. In all three evaluation dimensions, the United States ranked 
first, and the role and status it plays in this field is evident. This may 
be due to the fact that there are many research institutes, associations, 
and universities in the U.S. that are well funded in the field of ND. At 
the same time, the United States has accumulated a large number of 
publications because of the early start of research in ND (28). 
Meanwhile, the number of publications from the UK is only 53, yet 
the number of citations is as high as 4,612, indicating that the overall 
quality of the literature published in the UK in this field is high and 
the recognition of the academic achievements is high.

FIGURE 1

Top 10 annual neurodegenerative disease-related publications and number of related citations.
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As can be seen from Figure 2A, we used Charticulator to perform 
the data processing and visual analysis, and counted the countries/
regions with more than 5 publications in this field and visualized the 
frequency of their collaborations. Figure 2A shows the cooperation 
between countries/regions in the field of using single-cell omics to 
study neurodegenerative disease with the United States and China 
cooperating most closely, followed by the United States and Germany. 
Countries/regions with collaborative relationships can support each 
other in this field of research, promote each other’s academic research 
process and maximize research efficiency. Figure 2B presents a map of 
the cooperation between countries and regions. It can be observed 
that North America, Europe, and East Asia in northern hemisphere 
are the most active in this field while Russia, Saudi Arabia and India 
are also involved in research in this direction. In conjunction with 
Figure 2A, it can be discerned that China and the United States are in 
frequent contact with Europe.

3.3 Distribution by institutions

Table  2 shows the top  10 institutions in terms of number of 
publications and citations related to single-cell multiomics in the 
neurodegenerative disease research area. The institution with the 
highest number of publications was Havard Med Sch (29), followed 
by Broad Inst MIT & Havard (23), Univ Calif San Diego (23), and 
Univ Calif San Francisco (22). In terms of the number of citations in 
the literature, the institution with the highest number of citations was 
Broad Inst MIT & Havard (4,175), followed by Havard Med Sch 
(3,018) and MIT (2,568). Most of the top 10 institutions are from the 
United States, which means that the United States has a significant 
presence and contribution in this field. The leading status of Havard 
Med Sch and Broad Inst MIT & Havard among these agencies suggests 
that these two agencies play a significant role in this regard.

Figure 3A, generated by VOSviewer, screens for collaborating 
institutions with more than 5 publications, revealing the distribution 
of institutional collaborations in studies related to single-cell 
multiomics in neurodegenerative disease. The collaborative 
relationships between institutions are grouped into eight tightly knit 
clusters, which are differentiated by color in the figure. The network 
of lines formed by Broad Inst MIT & Havard and Havard Med Sch can 
be seen to be very densely distributed and occupies a central position 

in the cooperation map, reflecting the close cooperation and influence 
of the two. Furthermore, the Stanford University, Chinese Academy 
of Sciences, and other institutions in the red group, as well as the Johns 
Hopkins University, University of Pittsburgh, and other institutions in 
the blue group, engage in close collaboration with the Karolinska 
Institute and the University of Cambridge, which are included in the 
purple group. Figure 3B, generated by VOSviewer, shows the average 
posting time for organizations from 2020.5 to 2022.5. Institutional 
nodes such as Havard Med Sch & Washington Univ are mainly 
indicated by light red color, indicating relatively new involvement in 
this direction but a high number of publications. Some institutions 
such as Broad Inst MIT & Havard and Karolinska Inst have larger blue 
nodes, indicating that they have been involved in the field earlier to 
conduct research. The remaining organizations with smaller nodes 
with red color, such as Shanghai Jiao Tong Univ and Sun Yat Sen Univ, 
participated in the study later and published little literature, but may 
play a leading role in future studies.

3.4 Distribution of authors

A co-cited author is a co-cited relationship between two authors 
when a third author cites both authors. A higher frequency of 
common citations indicates a closer academic interest and research 
density (29). Table 3 shows the number of publications, co-citations, 
affiliation, corresponding country/region, and total link strength for 
the top 10 authors. Most published authors are Skupin, Alexander 
(Luxembourg Institute of Health) are Wiendl, Heinz 
(Universitätsklinikum Münster), both of which have published seven 
articles. It shows that these two authors have contributed more in this 
domain. The author with the highest total number of co-citations 
regarding this line of research is Mathys, H from University of 
Pittsburgh, with a cumulative total of 185 citations and a total 
connection strength of 2,654. It is noteworthy that half of the authors 
who ranked in the top 10 in respect of co-citations in this field were 
from the United States, reflecting the larger impact and academic 
credibility of the United States in using single-cell multiomics to study 
neurodegenerative disease.

We screened co-authors with more than 3 publications and 
visualized them with VOSviewer. Figure  4A depicts the clusters of 
co-authors’ collaborations. The more connected group, led by Prat, 

TABLE 1 Top 10 countries/regions in terms of number of articles published and number of citations accordingly.

Rank Countries Documents Countries Total link 
strength

Countries Citations

1 USA 303 USA 207 USA 13,676

2 China 141 Germany 123 England 4,612

3 Germany 82 England 97 Germany 3,997

4 England 53 China 64 China 2,006

5 Canada 47 Netherlands 53 Sweden 1,932

6 Sweden 30 Switzerland 50 Canada 1,831

7 Switzerland 24 Canada 47 Singapore 1,343

8 Italy 21 France 45 Switzerland 1,206

9 Japan 19 Sweden 43 Netherlands 1,062

10 Netherlands 19 Denmark 38 Israel 959
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Alexandre (including Antel, Jack and Zandee, Stephanie et  al.), is 
represented by red, which symbolizes their more frequent collaborations. 
Next came the yellow-green group (including Skupin, Alexander, and 
Grzyb et  al.) and the green group (including Parmar, Malin, and 
Gillberg, Linda et al.) In addition, other cluster authors have some 
collaborations, such as the brown group (including Zu Horste, Gerd 
Meyer and Wiendl, Heinz et al.) and the light blue group (including Yao, 
Lifen and Wang Pingping et al.). Figure 4B represents the number of 
documents produced by co-authors, again, Prat, Alexandre and his 
co-authors have the larger red nodes, indicating that Prat, Alexandre 
and Zandee, Stephanie et al. are the core force in this research area and 
play an significant role in the current research process. In addition, two 
clusters of co-cited authors, Skupin, Alexander and Colonna, Marco, 

have published more articles. We also analysed the co-cited-authors of 
articles in the ND field that were sequenced by the authors themselves, 
which are pictured in Supplementary Figure S8. By comparing 
Supplementary Figure S8 with Figure 4B, we found an emerging cluster 
(in yellow) that consists of Keren-Shaul H and his other co-authors. It 
indicates that Keren-Shaul H, Wang, Ym, and Krasemann, S et al. have 
made more use of single-cell sequencing methods in ND research, and 
have provided helpful databases for single-cell studies in ND. Based on 
the timeline plot of the authors’ outputs (Supplementary Figure S3) 
we can see that Amit, Ido and Zhang, Bin published their articles earlier, 
suggesting that they were early adopters of single-cell multiomics 
approaches in the field of neurodegenerative disease research. 
Meanwhile, all authors on the 2021 graph have published relevant 

FIGURE 2

(A) Country/regions that have cooperation. The thickness of the lines reflects the frequency of cooperation, with thicker lines indicating more frequent 
cooperation. (B) Map of the geographic location of global collaboration. The darker the blue color in the map, the more the country/region 
collaborates with other countries/regions.
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literature, indicating that a trend toward applying single-cell multiomics 
to neurodegenerative disease research arose during this period. As 
illustrated in the graph of the distribution of corresponding authors by 
country (Supplementary Figure S2), China and the United  States 
continue to occupy the top positions, with the majority of them 
exhibiting a greater number of transnational co-authorships than 
domestic co-authorships. Germany, Canada, the United Kingdom and 
Sweden followed.

3.5 Distribution of journal

We identified a total of 596 articles on Alzheimer’s disease 
microglia published in 201 journals. Through the application of 
VOSviewer, we visualized the number of journal publications and 
clustering collaboration. As shown in Table 4, the journal with the 
highest number of relating publications was Nature Communications 
(29), followed by Frontiers in Immunology (27), Cell Reports (17) and 
Cells (17). Among the top 10 journals by number of publications, five 
journals have an IF value of 10 or more. Among the top 10 journals in 
terms of co-citation frequency, eight journals have an IF value of 10 or 
more. The most cited journals were Nature (2,021) and Cell (1,770), 
reflecting the overall high quality of research in the field in these 
journals. The top 10 journals in terms of publications and the top 10 
journals with regard to citations are all from the Q1 division, 
indicating that journals from the Q1 division are more inclined to 
be regarded as reliable sources of citations and have a more influential 
impact. Figure 5A presents the results of the clustering analysis of 
journals. It is evident that the clustering network diagram of journals 
is centered on Nature Communications. The journals in the red group 
are the primary sources of literature in the field, including Nature 
Communications, Cell Reports, and others. The green group 
comprises journals that are also highly regarded, such as Frontiers in 
Immunology and the Journal of Neuroinflammation. The blue group 
includes journals such as Cells and Scientific Reports, which are also 
considered to be of significant importance. Among all these groups, 
red and green groups take center stage. These journals that dominate 
the field have a higher impact factor and greater authority in their own 
right. In the field of neuroscience, the Journal of Neuroinflammation 
is a specialised journal and is therefore favoured by authors. In 
Supplementary Figure S4, we can see intuitively that the journals with 

more publications, such as Nature Communications, Cell Reports and 
Nature, etc. published the relevant literature earlier, indicating that 
they have made many prospective studies, laying a solid foundation 
for the subsequent research process. While Brain, International 
Journal of Molecular Science and Journal of Neuroinflammation are 
late in publishing relevant literature. As Table  4 and Figure  5B 
illustrate, the collaborating journals have been classified into four 
primary clusters. The red cluster encompasses journals such as 
J. Neuroscience, Glia, and Brain, which concentrate on the 
neurological aspects of the brain. The blue group encompasses a 
number of highly regarded scientific journals, including Nature, 
Neuron, Cell, and Science. These journals cover a diverse range of 
content and exert a considerable influence within the pharmaceutical 
field. The green group includes journals such as Nature Methods, 
Nature Genetics, and Bioinformatics, which focus on bioinformatics. 
The light green group Includes journals such as Immunity, J Exp Med, 
and J Immunol, which focus on bioimmunity-related content. 
Similarly, we analysed the co-cited journals for articles in the field of 
ND whose authors had performed single-cell sequencing 
(Supplementary Figure S9). We  found some adjustments in the 
clustering of co-cited journals compared to Figure 5B. The clustering 
of some of the articles changed, e.g., Nat Neurosci is now grouped with 
journals such as Neuro and J Neruo. It may indicate that citations to 
journals categorised according to specialisation are more frequent in 
articles where single-cell sequencing has been performed.

Figure  5C shows the journal overlay diagram generated by 
CiteSpace, where journals citing other journals are located on the left 
side while the cited journals are distributed on the right side. The 
journal overlay graph can visualize the citation relationship between 
journals, citation frequency, and the disciplinary crossover between 
different fields (30). In the figure we observe the most obvious a yellow 
connecting line connecting the left and right areas, denoting that 
studies published in journals related to the field of Molecular, Biology, 
and Genetics mainly cited literature published in journals related to 
the field of Molecular, Biology, and Immunology, and the two are 
closely linked under the research direction. At the same time, we can 
also see that relevant literature from the fields of Medicine, Medical, 
Clinical, Psychology, Education, Health, and Mathematics, Systems, 
and Mathematical are highly cited, which means that the theoretical 
content of the research is closely related to the reality of clinical care. 
The close connection of the theoretical research content with the 

TABLE 2 Top 10 institutions in neurodegenerative disease related to single cell omics.

Rank Institution Publications Original 
country

Institution Citations Original 
country

1 Harvard Med Sch 29 United States Broad Inst MIT & Harvard 4,175 United States

2 Broad Inst MIT & Harvard 23 United States Harvard Med Sch 3,018 United States

3 Univ Calif San Diego 23 United States MIT 2,568 United States

4 Univ Calif San Francisco 22 United States Univ Cambridge 1,890 United States

5 Washington Univ 21 United States Univ Freiburg 1,738 Germany

6 Karolinska Inst 20 Sweden Karolinska Inst 1,716 Sweden

7 Johns Hopkins Univ 19 United States Rush Univ 1,701 United States

8 Icahn Sch Med Mt. Sinai 17 United States Stanford Univ 1,355 United States

9 Mcgill Univ 16 Canada Tech Univ Munich 1,354 Germany

10 Stanford Univ 15 United States Univ Calif San Francisco 1,343 United States
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reality of clinical medical care further illustrates that the academic 
intersection of different research fields contributes to our 
understanding of the use of single-cell multiomics in the context of 
neurodegenerative disease. The core journal area is clearly visible in 
Supplementary Figure S5, which includes journals such as Nature 
Communications, Frontiers in Immunology, and Cell Reports. This is 
consistent with the data in Table  4. Supplementary Figure S5 
graphically visualizes the comparison of journal publications, with 
Nature Communications and Frontiers in Immunology having about 
twice as many publications as the other journals.

3.6 The analysis of hotspots and frontiers

3.6.1 Keyword cluster and timing analysis
Keywords can succinctly summarize the research focus of an 

article, and the analysis of keywords assists us in understanding the 
research focus, research trends, and emerging areas in the intended 
research direction. Table 5 demonstrates the top 20 keywords that 
appeared in the articles related to single-cell multiomics in the 
neurodegenerative disease study. The keywords “single-cell RNA 
sequencing” (171) and “Alzheimer’s disease” (120) have the highest 

FIGURE 3

(A) Analysis of collaborative network visualization of different institutions in VOSviewer. The figure shows the collaborative institutions with more than 1 
number of documents. The nodes of different colors represent the collaborative relationships between institutions with different clusters, and the size 
of the nodes indicates their number of publications. (B) The average publication time of the institution is indicated by the color of the node. Blue 
indicates an earlier average publication time, while red indicates a later average publication time. The size of the node is proportional to the number of 
articles published by the partner institution.
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frequency and the corresponding total link strength. Then followed by 
“microglia” (68) and “multiple sclerosis” (47). Alzheimer has more 
publications than other neurodegenerative diseases. This may be due 
to the fact that Alzheimer’s disease itself has a large patient base, a low 
cure rate, a high impact on life, and a high level of societal concern 
(31). At the same time, Alzheimer’s disease has the typical pathological 
changes of neurodegenerative diseases, and research on Alzheimer’s 
disease can also contribute to the research on other neurodegenerative 
diseases to a certain extent.

The cluster analysis of the keywords is shown in Figure 6A. The 
brown nodes are grouped to symbolize the neurodegenerative 
diseases themselves and the basic research methods that include 
“Alzheimer’s disease” “spatial transcriptomics”; the light blue nodes 
include the keywords of single-cell multiomics and its related 
researches including “single-cell RNA sequencing” “bioinformatics” 
etc.; red nodes include keywords related to brain cell such as 
“astrocyte” “glia” and so on; the dark green nodes contain keywords 
for pathological changes such as “amyloid beta” “inflammation” etc. 
The dark blue nodes contain keywords for cerebrospinal fluid 
components such as “multiple sclerosis” “myeloid cells” etc.; the light 
green nodes contain keywords for nerve cells such as “hippocampus” 
“myeloid cells” etc. The purple nodes include keywords related to 
diseased cells such as “disease-associated microglia” “B cells” and so 
forth. Orange nodes include keywords for data analysis methods such 
as “big data” “machine learning” and so forth. We  also analysed 
keyword clustering for articles using single-cell sequencing methods. 
In the Supplementary Figure S10 it can be seen that the keywords of 
these articles are more centred on the level of the cells and their 
connections to each other. Supplementary Figure S6 presents a clear 

analysis of the average year of occurrence of each keyword with the 
change from blue to red indicating the temporal progression. One 
can see that keywords such as “ran-seq” and “macrophage” appear in 
2021. Keywords such as “astrocyte” “single-cell RNA sequencing” 
“amyloid beta” “neuron” and “Alzheimer’s disease” appear mainly in 
2022 which indicating their centrality to the research in the field. The 
remaining keywords such as “multiomics” “monocyte” “cerebrospinal 
fluid” “neuron” and “autoimmunity” appeared later which 
undoubtedly provide directional references for future research. This 
suggests that the frontier of the field may be focused on research in 
the direction of cerebrospinal fluid autoimmunity and so on. The 
average year of occurrence of each keyword in articles in the ND field 
where single-cell sequencing was performed can be  seen in the 
Supplementary Figure S11. It can be  seen that words such as 
“microglia” and “amyloid beta” appear earlier and words such as “t 
cells” and “memory b cells” appear later. We  can see that in the 
visualization of the average number of citations per year for keywords 
(Supplementary Figure S7) several keywords with high cumulative 
citation counts such as “Alzheimer’s disease” “astrocyte” 
“neurodegenerative disease” have a high average number of citations 
per year representing the key part of this domain. However the terms 
“myeloid cells” and “deep learning” have a lower average number of 
citations per year indicating that research in these areas may not be as 
abundant. In the Supplementary Figure S12 you can see the average 
number of citations per year for the keywords of the articles that 
sequenced single cells. We found that the keywords with the higher 
average number of citations were “microglia,” “astrocyte” and 
“neuroinflammation.” It can be seen that microglia and astrocyte are 
popular targets for single-cell sequencing. Figure 6B also shows the 

TABLE 3 Top 10 authors and co-cited authors in neurodegenerative disease related to single-cell multiomics.

Rank Author Documents Countries/
regions

Institution Author Co-
citations

Countries/
regions

Institution

1
Skupin, 

Alexander
7 Luxembourg

Luxembourg Institute 

of Health
Mathys, H 185 United States

University of 

Pittsburgh

2
Wiendl, 

Heinz
7 Germany

Universitätsklinikum 

Münster

Keren-Shaul, 

H
149 Israel

Weizmann Institute 

of Science

3 Amit, Ido 6 Israel
Weizmann Institute of 

Science Israel
Stuart, T 145 United Kingdom Cranfield University

4
Colonna, 

Marco
6 United States

Washington 

University
Butler, A 105 United Kingdom University of Sussex

5
Grzyb, 

Kamil
6 Luxembourg

University of 

Luxembourg
Masuda, T 97 Japan

Universidad de 

Bienestar Médico de 

Kawasaki

6
Parmar, 

Malin
6 Sweden Lund University Grubman, A 94 United States

Tufts University 

School of Medicine

7
Prat, 

Alexandre
6 Canada

Université de 

Montréal
Zeisel, A 85 United States

University of North 

Carolina at Chapel 

Hill

8
Prinz, 

Marco
6 Germany

University Hospital 

Freiburg
Zhou, YY 85 United States

University of 

California, San Diego

9
Zu Horste, 

Gerd Meyer
6 Münster University of Münster, Zhang, Y 79 China Xiamen University

10 Antel, Jack 5 Canada
Montreal Neurological 

Institute

Hammond, 

TR
73 United States

Harvard Medical 

School
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FIGURE 4

(A) Collaborative network of authors associated with single-cell multiomics in ND. Different colour clusters represent different author collaborations. 
(B) Co-cited authors in neurodegenerative disease related to single-cell polyomics. Different node colors represent authors in different clusters, with 
larger nodes representing stronger co-authorship links or a higher number of published articles.
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timeline of the keywords. We can see that the earliest and largest 
cluster is #0 Alzheimer disease illustrating that the research in this 
field is basically centered around this central keyword. At the same 
time 2 out of these 10 clusters are still developing, i.e., the research 
direction represented by the keyword is frontier of research. The 
emerging keyword clusters include #3 “gene networks” and #8 “single 
cell RNA.” This in part reveals that gene network interactions may 
be  an emerging hotspot for ND research while single-cell RNA 
sequencing is an effective tool to help probe. In the annual heat map 
of keyword (Figure 7A) we can see more specific keyword heat over 
time. Over time the keywords that received more attention changed 
from “differentiation” “dementia” “differential expression” and 
“systemyeloid cells biology” to “neuroinflammation” “dopamine 
neuron” “gwas” and “cellular heterogeneity” etc. In recent years terms 
like “blood-brain barrier” “myeloid cells” “disease-associated 
microglia” “feature selection” “cerebrospinal fluid” and “astrocyte” has 
emerged as popular concepts. It can be observed that the keyword 
heat represents the focal point of research and that people’s attention 
to neurodegenerative disease gradually shifts from superficial 
diseases to deep cellular and molecular mechanisms. This year’s hot 
keywords include “neurovascular unit” “aging” “trem2” and “glia.” 
Due to the incomplete statistics the results of this year’s keywords 
may have some deviation. Figure  7B illustrates the correlation 
between keywords with those that are more prevalent during a given 
period grouped into distinct clusters of 6 colors. This includes blue 
clusters (“SYSTEMYELOID CELLS” “MACROPHAGE” 
“DIFFERENTIAL EXPRE MACROPHAGE” “DIFFERENTIAL 
EXPRE” “NEUROGENESIS” etc.) the red clusters 
(“INFLAMMATION” “ATHEROSCLEROSIS INFLAMMATION” 
“ATHEROSCLEROSIS” “RNA-SEQ” and “BIOINFORMATICS” etc.) 
yellow clusters (“AGE-RELATED MACULA” “AGING” and “GLIA” 
etc.) green clusters (“AUTOIMMUNITY” “SPINAL CORD INJURY” 
“BIOMARKER” and “AMYLOID BETA” etc.) orange clusters 
(“MACHINE LEARNING” “MACHINE LEARNING” etc.) and the 
“MACHINE LEARNING” cluster (“MACHINE LEARNING” etc.). 
(“MACHINE LEARNING” “MASS CYTOMETRY” and “APOE” etc.) 

purple clusters (“BIG DATA” “MASS CYTOMETRY” and 
“AMYLOID BETA” etc.) purple clusters (“BIG DATA” “MOLECULAR 
MECHANIS” “TREM2” and “STRIATUM” etc.).

3.6.2 New insights from single-cell sequencing
As technology advances, the use of single-cell sequencing in ND has 

become more diverse. A new technology that has emerged in recent 
years is spatial transcriptomics, and spatially resolved transcriptomics 
has been named “Method of the Year” for 2020 by Nature Methods (32). 
Due to the limitations of single-cell sequencing, single-cell multiomics 
alone may result in the loss of three-dimensional information about cell 
populations (33). Therefore, single-cell sequencing combined with 
spatial transcriptomics will be a future trend (34). There are now some 
articles on single-cell sequencing combined with spatial transcriptomics 
studies of ND, but the number is not large (35). Here we propose this 
possible hotspot in the hope that it can provide some help to future 
researchers studying neurodegenerative diseases.

3.7 References bursts and references 
distribution

Table 6 and Figure 8A present a visual representation of the 15 most 
frequently cited articles in the retrieved paper pool. The article “Single-
cell transcriptomic analysis of Alzheimer’s disease” was the most 
frequently cited article (1,146) (19), which employed single-cell 
sequencing (SCS) to assess the frontal cortex of Alzheimer’s disease 
(AD) patients and quantify the correlation between gene expression in 
specific cell types and pathological trait variability. This approach 
revealed the heterogeneity of diseased neuronal cells in Alzheimer’s 
disease patients and facilitated a deeper understanding of the 
pathological features and pathogenesis of AD. The second most cited 
article is “Single-cell RNA sequencing of microglia throughout the 
mouse lifespan and in the injured brain reveals complex cell-state 
changes” (36). This article is intended to use scs to determine the 
different states of microglia, and in turn help to identify specific markers 

TABLE 4 Top 10 journals in the neurodegenerative disease field concerning the number of publications and citations related to single-cell polyomics.

Rank Journal Publications IF 
(JCR2022)

JCR 
quatile

Co-cited-
journal

Citations IF 
(JCR2022)

JCR 
quatile

1 Nature Communications 29 16.6 Q1 Nature 2,021 64.8 Q1

2 Frontiers In Immunology 25 7.3 Q1 Cell 1,770 64.5 Q1

3 Cell Reports 17 8.8 Q1 Nat Neurosci 1,467 25 Q1

4 Cells 17 6 Q1 Science 1,359 56.9 Q1

5
Journal OF 

Neuroinflammation
15 9.3 Q1 Nat Commun 1,230 16.6 Q1

6

Proceedings of the National 

Academy of Sciences of the 

United States of America

15 11.1 Q1
Proc Natl Acad 

Sci USA
1,160 11.1 Q1

7
Frontiers In Cellular 

Neuroscience
12 5.3 Q1 Neuron 1,109 16.2 Q1

8 Nature Neuroscience 12 25 Q1 J Neurosci 926 5.3 Q1

9
Molecular 

Neurodegeneration
11 15.1 Q1 Cell Rep 843 8.8 Q1

10 Nature 9 64.8 Q1 Nat Methods 714 48 Q1
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of microglia state that can be used to diagnose disease, providing a new 
advancement in the study of therapeutic targets for neurodegenerative 
disease “Developmental heterogeneity of microglia and brain myeloid 
cells revealed by deep single-cell RNA sequencing” is the third most-
cited (37). In this article, researchers reveal the heterogeneity of 
microglia, and complement the current gene expression dataset of 
microglia from adult and diseased brains. “Genetic architecture of 
Parkinson’s disease” is the fourth most-cited (38). This study takes full 
advantage of single-cell multiomics to accurately measure cell 
specificity, summarizes the current status and progress of Parkinson’s 
disease research and predicts the future of Parkinson’s genetics. By 
analyzing the network of citation relationships of the articles, we made 
a visual graph of the clusters of the citation counts of the articles 
(Figure 8B). Cluster #0 “systems biology” is the largest cluster, indicating 
that the paper associated with it has been cited the most times. It can 
be seen that the most frequent keyword in the clustering of all articles 
is “systems biology,” followed by #1 “multiple sclerosis,” #2 “microglia” 

and #3 “astrocyte,” indicating that brain nerve cells are the major 
research focus and supporting basic theories in this field. The arrows in 
the figure indicate the evolution of the article clusters. The earliest 
research in the field is represented by the following clusters: #1 “multiple 
scleriosis,” #9 “neurod6,” #13 “retrograde tracing,” #15 “cerebellum,” and 
#16 “neuroinflammation.” These clusters are independent of each other. 
Subsequently, cluster #1 evolved into #0 “systems biology,” #2 
“microglia,” #5 “Alzheimer disease,” #7 “trem2,” #8 “transcription factor” 
and #12 “pathology angiogenesis,” while the evolutionary domains of 
#0 highly overlap with #1. It is noteworthy that both #2 and #5 represent 
the direction of evolution in numerous areas, thereby underscoring the 
significance of this cluster. Figure 8C shows the time span analysis of 
the burst references, with statistics collected between 2015 and 2024. 
The article with the strongest outburst was “Cell types in the mouse 
cortex and hippocampus revealed by single-cell RNA-seq” by Zeisel 
et al. in 2015, revealing diversity of brain cell types and transcriptomes. 
The articles that are still bursting are “Integrated analysis of multimodal 

FIGURE 5

(A) Graph of the number of literature related to single-cell multiomics in journal publication neurodegenerative disease The size of the node area 
corresponds to the number of journal releases. Different clusters are distinguished by color. (B) Journal collaboration clustering graph. Different 
colored nodes indicate different clusters of collaborating journals. (C) The dual-map overlay of journals publishing articles related to single-cell 
multiomics in neurodegenerative disease. The width of the connecting lines represents the strength of the citation relationship, with thicker lines 
indicating stronger citation relationships.
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single-cell data” and “The single-cell transcriptional landscape of 
mammalian organogenesis.” Both articles employed single-cell 
polyomics to determine cellular subtypes, thereby revealing cellular 
heterogeneity. It is worth mentioning that the article “The single-cell 
transcriptional landscape of mammalian organogenesis” broke out at a 
later time, but still has strong total connectivity strength, suggesting that 
the research direction of single-cell multiomics to measure cellular 
subtypes involved in this article may be a current research hotspot.

4 Discussion

In this bibliometric analysis, we examined 586 research articles 
pertaining to single-cell histology in neurodegenerative disease 
studies using CiteSpace 6.3R2 Advanced, VOSviewer 1.6.18, and 
Charticulator. The data were retrieved on June 8, 2024 from the Web 
of Science Core Collection database and were utilized evaluate the 
spatial and temporal distribution, contributions, core articles, research 
hotspots, and frontiers of this field. It is essential to count articles that 
use two or more multiomics approaches that provide us with different 
research perspectives on the same organisation.

4.1 General information

The annual number and trends of papers may help to understand 
the development and progress of this study. As shown in Figure 1, 
from 2015 to 2018, the number of papers was within 10, with a slow 
growth, indicating that single-cell multi omics research on 
neurodegenerative diseases is still in its early stages. From 2019 to 
2023, there has been a significant increase in articles related to this 
field, indicating that this research field is becoming increasingly 
important. It should be noted that over half (51.18%) of the papers 
have been published in the past 2 years (2022–2023), indicating that 
single-cell multi omics research on neurodegenerative diseases has 
received increasing attention from scholars in recent years.

From the distribution of countries/regions, it can be seen that the 
top three countries with published papers are the United States, China, 
and Germany. The papers published in the United States have also 

been cited the most, indicating its dominant position in this field. In 
addition, among the top 10 institutions that publish papers, 8 are from 
the United States; Among the top 10 institutions in terms of citation 
frequency, 7 also come from the United States. These findings indicate 
that the United States plays a decisive role in this field.

Table 4 reveals that Nature Communications has published the 
most papers on single-cell omics research on neurodegenerative 
diseases and ranks fifth among the most cited journals. Among the 
top 10 journals with the most published papers, 7 of them also 
ranked among the top  10 with common citations (Nature 
Communications, Cell Reports, Cells, Proceedings of the National 
Academy of Sciences of the United  States of America, Nature 
Neuroscience, Nature, Journal of Neuroinflammation), which 
reveals their high academic value in this field. Furthermore, it is 
worth mentioning that the top 10 journals with the highest number 
of published papers are Q1 or Q2, indicating that the quality of 
publications in this field is generally high. Among the top  10 
journals, 4 mainly involve the field of neuroscience, while other 
journals are related to biochemistry, molecular biology, cell biology, 
and interdisciplinary fields (by number of publications).

According to Figure 4B, the green clustering is represented by 
Keren Shaul, H, and Mathys, H, which focus on using single-cell omics 
to analyze cell heterogeneity in neurodegenerative diseases. The main 
articles cited in this clustering are “Single cell transcriptomic analysis 
of Alzheimer’s disease” and “A Unique Microglia Type Associated with 
Restricting Development of Alzheimer’s Disease,” which fully utilize 
single-cell omics for cell heterogeneity analysis in the exploration of 
neurodegenerative diseases and have achieved significant results. The 
blue clustering, represented by Hammond and TR, focuses on the 
research of the occurrence and development of various neurological 
diseases, focusing on the role of neural cells, especially microglia, in 
neurodegenerative diseases. Red clustering, represented by Stuart and 
T, tends to favor single-cell omics analysis methods and techniques. It 
should be pointed out that the scholar’s paper titled “Comprehensive 
Integration of Single Cell Data” presents a strategy for the assembly of 
harmonized references and transfer of information across datasets, 
enabling the researchers to integrate single-cell measurements not 
only across scRNA-seq technologies, but also across different 
modalities, and has significant influence in this field (39).

TABLE 5 Top 20 keywords with appearances related to single-cell polyomics in the neurodegenerative disease field.

Rank Keyword Occurrences Total link 
strength

Rank Keyword Occurrences Total link 
strength

1
single-cell RNA 

sequencing
171 332 11 RNA-seq 13 38

2 Alzheimer’s disease 120 261 12 machine learning 12 33

3 microglia 68 186 13 inflammation 10 30

4 multiple sclerosis 47 89 14 brain 9 33

5 Parkinson’s disease 36 71 15 cellular heterogeneity 9 20

6
neurodegenerative 

disease
34 84 16

experimental autoimmune 

encephalomyelitis
9 23

7 neuroinflammation 27 58 17 ipsc 9 21

8 astrocyte 21 59 18 bioinformatics 8 16

9 transcriptome 21 51 19 glia 8 25

10 aging 19 43 20 heterogeneity 8 18
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FIGURE 6

(A) Cluster analysis of keywords. Nodes of different colors represent keywords of different clusters. (B) A timeline view of the keywords. Each horizontal 
line represents a cluster; the smaller the number, the larger the cluster. The size of the nodes reflects the co-citation frequency, and the connecting 
lines between the nodes indicate the co-citation relationship of the keywords.
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FIGURE 7

(A) The following graph depicts the annual keyword heatmap from 2015 to 2024. The annual heat value of each keyword is calculated by dividing the 
number of citations in a given year by the total number of citations that citations in the year. (B) Keyword relevance heatmap. Keyword with high 
popularity in a similar time period are grouped together, with different categories distinguished by different colors.
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4.2 Effects of cellular communication 
between different cells on 
neurodegenerative disease

Keywords such as “glia,” “neural stem cells” and “T cells” represent 
the forefront of single-cell multiomics research in neurodegenerative 
diseases (ND), with numerous studies in this field related to 
intercellular communication (40). Single-cell multiomics can play a 
significant role in the study of intercellular communication, which 

undoubtedly holds an important position in the disease process of ND 
(41). Here, we explore intercellular communication in ND research 
based on different cell types. T cells are a crucial component of the 
human immune system, and studies have indicated that an increase 
in T cell numbers is associated with tau pathology, highlighting their 
significant role in ND (42). A study has pointed out that in Alzheimer’s 
disease (AD), there is extensive inferred communication between 
CD4+ T cells and CD8+ T cells. CD4+ T cells appear to facilitate the 
recruitment and adhesion of CD8+ T cells, potentially promoting T 

TABLE 6 Top 15 cited articles related to single-cell polyomics in the field of ND.

Rank Author Article title Source title Cited Year Document 
type

DOI

1
Mathys, H. 

et al.

Single-cell transcriptomic analysis of 

Alzheimer’s disease
Nature 1,146 2019 Article 10.1038/s41586-019-1195-2

2
Hammond, 

TR. et al.

Single-cell RNA sequencing of microglia 

throughout the mouse lifespan and in the 

injured brain reveals complex cell-state 

changes

Immunity 1,092 2019 Article 10.1016/j.immuni.2018.11.004

3 Li, QY. et al.

Developmental heterogeneity of microglia 

and brain myeloid cells revealed by deep 

single-cell RNA sequencing

Neuron 564 2019 Article 10.1016/j.neuron.2018.12.006

4
Blauwendraat, 

C. et al.

The genetic architecture of Parkinson’s 

disease

Lancet 

Neurology
537 2020 Review

10.1016/S1474-

4422(19)30287-X

5
Jordao, MJC. 

et al.

Single-cell profiling identifies myeloid cell 

subsets with distinct fates during 

neuroinflammation

Science 513 2019 Article 10.1126/science.aat7554

6
Cochain, C. 

et al.

Single-cell RNA-seq reveals the 

transcriptional landscape and 

heterogeneity of aortic macrophages in 

murine atherosclerosis

Circulation 

Research
505 2018 Article

10.1161/

CIRCRESAHA.117.312509

7
La Manno, G. 

et al.

Molecular diversity of midbrain 

development in mouse, human, and stem 

cells

Cell 490 2016 Article 10.1016/j.cell.2016.09.027

8 Gate, D. et al.
Clonally expanded CD8 T cells patrol the 

cerebrospinal fluid in Alzheimer’s disease
Nature 462 2020 Article 10.1038/s41586-019-1895-7

9
Kapellos, TS. 

et al.

Human monocyte subsets and phenotypes 

in major chronic inflammatory diseases

Frontiers in 

Immunology
442 2019 Review 10.3389/fimmu.2019.02035

10
Mathys, H. 

et al.

Temporal tracking of microglia activation 

in neurodegeneration at single-cell 

resolution

Cell Reports 433 2017 Article 10.1016/j.celrep.2017.09.039

11
Gaublomme, 

JT. et al.

Single-cell genomics unveils critical 

regulators of Th17 cell pathogenicity
Cell 416 2015 Article 10.1016/j.cell.2015.11.009

12
Xiong, XL. 

et al.

Landscape of intercellular crosstalk in 

healthy and NASH liver revealed by single-

cell secretome gene analysis

Molecular Cell 412 2019 Article 10.1016/j.molcel.2019.07.028

13 Olah, M. et al.

Single cell RNA sequencing of human 

microglia uncovers a subset associated with 

Alzheimer’s disease

Nature 

Communications
301 2020 Article 10.1038/s41467-020-19737-2

14
Falcao, AM. 

et al.

Disease-specific oligodendrocyte lineage 

cells arise in multiple sclerosis
Nature Medicine 291 2018 Article 10.1038/s41591-018-0236-y

15
Molgora, M. 

et al.

TREM2 modulation remodels the tumor 

myeloid landscape enhancing anti-PD-1 

immunotherapy

Cell 275 2020 Article 10.1016/j.cell.2020.07.013
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FIGURE 8

(A) Visual mapping of article citation counts. Nodes are represented by the first author for the corresponding article. (B) Visual mapping of article 
citation counts. Nodes in different colored regions represent different article clusters. (C) The top 25 citations with the strongest reference bursts and 
their total connection strength and publication time. The blue line marks the time interval, while the duration of the reference burst is shown by the red 
line.
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cell infiltration into the brain parenchyma (43). In Parkinson’s disease, 
research has found that CD4 cytotoxic T lymphocytes (CTLs) are 
recruited by SPP1 and secrete the cytokine IFNG, thereby activating 
endothelial cells (ECs), disrupting the blood-brain barrier (BBB), 
promoting the recruitment of immune cells, and ultimately advancing 
the progression of Parkinson’s disease (PD). Wang’s et al. (40) research 
found that the number and strength of outgoing communications 
from CD8 TEMRA cells, which communicate with CD8 TEM and 
CD4 TEM, are downregulated in AD patients, indicating weakened 
intercellular communication. This leads to a corresponding weakening 
of control by other immune cells such as CD4 TEM and CD8 TEM 
over CD8 TEMRA cells, thereby exacerbating the development of 
AD. Subsequent studies have further confirmed that the immune 
mechanism of AD involves the clonal expansion of T cells in the 
cerebrospinal fluid (44). Concurrently, pathological interactions 
between TFH cells and B cells in the cerebrospinal fluid may also 
locally drive autoimmune responses in the central nervous system 
(45). Jorfi’s et al. (46) research revealed the role of infiltrating T cells 
in triggering INF/inflammatory-related pathways, including 
associations with microglia and IFN (e.g., IFITM1 and STAT1), 
antigen presentation (e.g., MHC-I and MHC-II), and 
pro-inflammatory cytokines or chemokines (e.g., CXCL10 and IL-32). 
This study also points out the potential role of the CXCL10 receptor 
CXCR3 in AD. Additionally, research has found that communication 
mediated by CXCL16-CXCR6 between microglia and CD8 T cells 
exists in multiple AD mouse models (47). The CXCR6-CXCL16 axis 
may be  involved in the recruitment and maintenance of clonally 
expanded CD8 T cells in the cerebrospinal fluid of patients with 
multiple sclerosis (48). In the cerebrospinal fluid environment of 
individuals with cognitive impairment, myeloid cells communicate 
with CD8 T cells through the CXCL16-CXCR6 pathway (49). In other 
words, the CXCL16/CXCR6 pathway between T cells and microglia 
may be an important target for the treatment of other neurological 
diseases and neurodegenerative diseases related to neuroinflammation 
in the central nervous system (50).

Microglia can regulate the homeostasis of the central nervous 
system and play a significant role in the development of the neural 
environment and neuroinflammation (51). A study using sequencing 
identified microglial genes associated with aging with genes positively 
correlated with age including those controlling interferon signal 
transduction such as Cxc16 and Gas6 antigen presentation such as 
H2-D1 and H2-Q7 lipid metabolism regulation genes immune 
response regulation genes phagocytosis regulation genes and oxidative 
stress response regulation genes; negatively correlated genes include 
microglial marker genes chemokine signal genes ER-associated 
protein degradation genes and iron metabolism genes (52). Another 
study pointed out that the OA2 microglial cell subset promotes 
age-related brain inflammation by expressing some unique 
inflammatory signals (such as Lgals3 Cst7 Ccl4 Ccl3 Il1b) (36). Since 
aging is a major influencing factor of neurodegenerative diseases (53) 
such research not only plays a key role in elucidating the mechanisms 
of aging but also provides innovative methods for the treatment of 
neurodegenerative diseases in the future. A study pointed out that the 
SPP1-CD44 ligand-receptor pair in microglia has the highest 
contribution to ALS disease (54). Another study showed that microglia 
target oligodendrocytes through the APP-NGFR and CXCL12-
CXCR4 axes and target OPCs through the FGL1-EGFR axis activating 
the apoptosis of necrotic cells and thus promoting the development of 

AD. In addition CXCR4 epidermal growth factor receptor MAP4K4 
and IGF1R were identified as potential biomarkers and candidate 
therapeutic targets for the disease (55). Mifflin et al. (56) discovered a 
type of inflammatory microglia regulated by the RIPK1 gene 
RIMM. In RIMM cytokines such as TNF are upregulated promoting 
inflammatory pathways in ALS which can be  treated with RIPK1 
inhibitors. Notably Lee’s et al. (57) research revealed that increased 
communication between excitatory neurons L6b and microglia drives 
a significant upregulation of the cerebrospinal fluid pathway in AD 
patients which is an inflammatory pathway. The study found ligand-
target links such as APOE-ABCA1 and PSEN1-APP between 
microglia and neurons with mutations in PSEN1 and PSEN2 being 
associated with the early onset of amyloid precursor protein in AD. In 
addition in the communication from astrocytes to neurons the study 
also found ligand-target links that connect neuro-risk genes with 
potential upstream effectors such as APP-TREM2 and 
APP-ABCA1 links.

Astrocytes are supportive cells for neurons and are also involved 
in the composition of the blood-brain barrier, the perception of 
neurotransmitters, and the nutritional delivery of neurons (58). An 
innovative study used the snATAC-seq method to directly compare 
two epigenetic data types in glial cells and found that C9-ALS-related 
changes in chromatin accessibility were positively correlated with 
H3K27ac in both astrocytes and microglia (59). Sun’s et al. (60) article 
indicated that increased communication between astrocytes and 
neurons in the mouse brain promotes neuronal energy metabolism. 
They found that the supplementation of short-chain fatty acids can 
significantly regulate neurotransmitter uptake and upregulate genes 
involved in astrocyte-neuron metabolic coupling (including Glul, 
Slc1a2, and Gstm1), thereby improving Alzheimer’s disease symptoms 
in mice. Conversely, impaired energy metabolism leads to neuronal 
dysfunction. Although this study cannot directly apply the results to 
humans, it does provide new insights and emphasizes the importance 
of intercellular communication in neurodegenerative diseases. 
Another study observed that the ligand BMP7 and receptor 
BMPR1A + ACVR2A, BMPR1B + ACVR2A, and BMPR1B + BMPR2 
displayed close communications in normal astrocytes to OPC (61). 
In ALS and FTD diseases, research has found that endoplasmic 
reticulum (ER) stress and DNA damage response (DDR) are the 
main pathways affecting diseases in astrocytes and C9 ALI-COs 
neurons. Related genes include DDIT3, SP1, NFE2L2, and EGR1 in 
astrocytes and DDIT3, FOSL1, ATF3, LEF1, and NFATC1 in neurons 
(62). Siddiqui’s et  al. (63) research showed that when the nerve 
growth factor (Ngfr) signal is induced and activated in the 
hippocampus of an AD pathological mouse model, it reduces the 
reactive glial state by inhibiting Lcn2/Slc22a17 signal transduction 
and enhances the neurotrophic function of astrocytes. Some 
astrocytes are characterized by reduced gene expression driven by 
NRF2 and increased signaling of MAFG and MAT2a, promoting 
central system inflammation in experimental autoimmune 
encephalomyelitis, which may lead to the pathogenesis of MS. (64) 
In addition, during the literature review process, the important role 
of extracellular vesicles (EVs) in communication between neurons 
was also discovered. A study found that communication between 
glial cells and neurons through vesicles is necessary for neuronal 
growth and cell survival. There is evidence that EVs are involved in 
the physiological interactions between all cells that make up the 
neurovascular unit and the intrinsic development and protection of 
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neuronal tissue (65). Another study also focused on vesicles and 
neurons, finding that vesicle exocytosis abnormalities related to the 
development of axonal spheroids near amyloid-beta plaques, a 
marker of AD lesions. Vesicles containing CD63 occur and 
accumulate at the axonal terminals to form spherules, which can 
damage synaptic connections in the hippocampal-commissural 
pathway (66). A study using a zebrafish single-cell sequencing 
database to map all possible communication maps conducted 
through fgfr3 and its ligands (67).

The above cells are not all the cells involved in critical 
communication in ND, and we have discussed only a few of the most 
heated cells. And technological advances in single-cell multiomics 
have the ability to break down technical barriers and take disease 
research to the next level (68). In response to these specific diseases, 
the exchange of information between different cells forms a complex 
communication network that either promotes or antagonizes each 
other (61). This feature represents a significant challenge in the field 
of neurodegenerative disease therapeutic research. In conclusion, the 
cellular communication information obtained through the single-cell 
multiomics assay has advanced the study of neurodegenerative disease 
pathogenesis, pathogenesis, and drug targets. Moreover, this 
information will continue to play an important role in 
subsequent studies.

4.3 Using single-cell RNA sequencing 
decoding cellular heterogeneity in AD

Neurodegenerative diseases are typically characterized by delayed 
progressive damage to specific (sub)cell populations of the nervous 
system that are critical for mobility, coordination, strength, sensation 
and cognition. The selection and study of these specific cells has 
become feasible with the advent of single-cell histology techniques, 
which are now state-of-the-art methods capable of analyzing the 
heterogeneity of complex tissues, including the human post-mortem 
brain, at very high resolution (69). In recent years, more and more 
attention has been paid to exploring the cell heterogeneity in the 
occurrence and development of neurodegenerative diseases by using 
monocytomics. The research on cell heterogeneity of various cells in 
AD has also become a hotspot in recent years. The single cell 
sequencing of ND is mainly used in the research of mouse models and 
postmortem human brains, and mouse models are widely used to 
simulate the occurrence and development of diseases. However, in the 
research of human neurodegenerative diseases, human tissues, that is, 
postmortem human brains, are also essential research materials, 
which can provide the most practical data for disease research to build 
appropriate models.

Astrocytes are the most widely distributed type of cells in 
mammalian brain, and also the largest type of glial cells. This kind of 
glial cells are star shaped and send out many long and branching 
protrusions from the cell body, which extend and fill between the 
nerve cell bodies and its protrusions, playing the role of supporting 
and separating nerve cells. In view of its important role in brain 
homeostasis, the heterogeneity of this cell has attracted the attention 
of researchers. Mathys et al. (19) identified pathologically related glial 
cell types and genes through scRNA seq in AD patients: AD 
pathologically related OL lineage cells characterized by high 
expression of CRYAB or QDPR, GLUL and CLU are preferentially 

expressed in AD pathologically related astrocyte subtypes. These genes 
may become markers of the pathologically related glial cell subtypes 
in AD. It is worth noting that the heterogeneity and function of disease 
related reactive astrocytes are also related to a variety of 
neurodegenerative diseases. After that, Smith et al. (70) found that the 
inflammatory pathway was significantly enriched in astrocytes in the 
sequencing of the dead brain, and the phagocytosis, inflammation and 
protein inhibition pathways were enriched in microglia and 
perivascular macrophages, with a high content of tissue amyloid 
protein. The researchers also found that there are some distinguishable 
subsets in astrocytes and microglia. In the study of mouse models, 
Habib et  al. (71) defined AD related astrocytes (DAA) in the 
hippocampus and prefrontal cortex of AD mice, and their number 
increased with the progress of the disease. They successfully 
demonstrated that DAA plays a role in the initial stage of AD by 
regulating the pathway related to A β accumulation and hydrolysis. Su 
et  al. (72) used mononuclear RNA sequencing to generate 
transcriptome maps of the human hippocampus throughout the 
postnatal life cycle, and further characterized the spatiotemporal 
heterogeneity of GFAP rich astrocyte subsets in hippocampal 
formation using immunohistochemistry, which significantly expanded 
the understanding of human glial cell diversity, population dy namics 
and AD disorders in the postnatal life cycle, and provided a reference 
map for stem cell based glial cell differentiation. In view of the 
remarkable heterogeneity of astrocytes in the cortex and other regions, 
future studies exploring the characterization of astrocytes in the white 
matter and their relationship to neurodegeneration will be of even 
greater interest (73).

Microglia are resident macrophages in the central nervous system 
(CNS). It has the characteristics of multiple synapses and plasticity. It 
is an innate immune effector cell in the central nervous system and 
plays an extremely important role in the physiological process of the 
central nervous system. Tay et  al. (74) identified some microglia 
subsets in the mouse brain, one of which is a unique transient 
microglia subset found at the beginning of disease recovery, 
characterized by the FNX dependent upregulation of APOE 
corresponding to no change in Trem2 expression. The researchers also 
elaborated that C9 microglia, which upregulates APOE, supports the 
opening of TREM2-APOE pathway in the recovery process to drive 
the unstable microglia phenotype, which may provide a new target for 
regulating microglia mediated brain health recovery. Li et al. (37) used 
deep single cells RNA sequencing (scRNA seq), found that most adult 
microglia expressing similar genes in mouse brain transcriptome 
stably. In contrast, microglia in early postnatal mice are more 
heterogeneous. In the early postnatal microglia, researchers found a 
proliferation region associated microglia (PAM) subpopulation, which 
mainly exists in the developing white matter and has amoeba 
morphology and metabolic activity. It shares the same genetic 
characteristics with degenerative disease associated microglia (DAM). 
Leaving the study on mice, Gupta and Kuznicki (75) used scRNA seq 
to explore the heterogeneity of microglia from healthy and 
neuropathological human tissues. This study found 13 different, time - 
and region dependent microglia clusters in the brains of healthy 
people and patients. Ten of these 13 clusters exist during development, 
two exist during demyelination and myelin regeneration, and one 
exists during neurodegeneration. This can provide a deeper 
explanation for the demyelination process of neurodegenerative 
diseases. Alsema et al. (76) studied the transcriptome of microglia at 
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the large cell and single cell levels in non dementia elderly people and 
AD donors using human cortical brain samples, and identified seven 
human microglia subsets with heterogeneous gene expression. Olah 
et al. (77) used single cell RNA sequencing to find some subpopulations 
rich in disease related genes and RNA characteristics. The existence of 
four subgroups of microglia was confirmed histologically. Through 
further research on microglia cluster 7, it was found that these clusters 
were rich in depleted genes in the cortex of Alzheimer’s disease 
patients. Cell heterogeneity between the two AD pathological 
processes was also found, cluster 2 and cluster 5 enriched genes related 
to beta amyloid, while PHF tau related genes were enriched in cluster 
1, 2, 4, 7, 8, and 9. This indicates that different subsets of microglia 
may participate in different aspects of AD. In a study based on an AD 
mouse model, Hemonnot-Girard et al. (78) combined cell specific 
laser capture microdissection and RNA seq analysis to identify genes 
and gene networks that are dysfunctional in PAM or PCM at the three 
critical stages of the disease without preconceived concepts of 
molecular and/or functional changes, and found potential 
contributions of plaque related and microglial cells far away from the 
plaque. In addition, some researchers have combined the mouse 
model and postmortem human brain for research. Sousa et al. (51) 
used single-cell transcriptomics and multi-color flow cytometry to 
show a comprehensive overview of mouse microglia after LPS 
injection. They found that the steady-state characteristics of microglia 
were mainly lost in acute systemic inflammation, inflammation 
induced microglia separated into two different reactive states, and the 
characteristics of inflammation induced microglia were different from 
those related to neurodegenerative diseases. In the research combining 
mouse and human brain, Marschallinger et al. (79) found that aging 
microglia in hippocampus would accumulate grease drops. They 
called these cells lipid droplet accumulating microglia (LDAM) and 
found that they were preferentially located around amyloid plaques in 
AD brain transcriptome analysis. It shows that LDAM may have 
proinflammatory effect, and there are also defects in phagocytosis. 
Silvin et al. (80) found that the disease associated microglia (DAM) 
population previously detected in the mouse Alzheimer’s disease 
model actually includes two different cell lineages: the embryonic 
derived trigger receptor expressed on myeloid cell 2 (TREM2) 
dependent DAM expresses neuroprotective characteristics and the 
monocyte derived TREM2 expresses inflammatory macrophages 
(DIM) of disease. These two different populations seem to 
be conservative in the human brain. Keren Shaul et al. (81) introduced 
the results of the scRNA seq experiment in this article, in which the 
microglia of wild-type mice, 5XFAD mice (AD model) and AD 
patients were evaluated. This study revealed a specific microglial 
subtype associated with neurodegeneration, characterized by 
increased expression of Cst7 and Lpl, indicating a specific increase in 
phagocytosis and lipid metabolism. The results of this study also 
showed that there was a relationship between the up-regulated 
expression of these genes and the two-step process of Trem2 activation 
in these microglia. In addition, these microglia subtypes have been 
found to be associated with amyotrophic lateral sclerosis (ALS), and 
they may be associated with more neurodegenerative diseases.

Oligodendrocytes wrap around axons in the central nervous 
system, form an insulated myelin sheath structure, assist in the 
jumping and efficient transmission of bioelectrical signals, and 
maintain and protect the normal function of neurons. Another part 
of researchers focus their attention here. Because APOE4 is a strong 

genetic risk of AD, Blanchard et al. (82) used scRNA-seq to study the 
relationship between human APOE4, myelination and memory 
deficit, and found that APOE4 impairs myelination through 
cholesterol imbalance in oligodendrocytes. This suggests that 
interventions to improve and promote cholesterol transport may 
enhance myelination of oligodendrocytes and alleviate cognitive 
deficits associated with APOE4 and AD. Lee et al. (83) sequenced 13 
cell types in three different mouse models of Alzheimer’s disease (AD) 
to capture the pathological effects of tau only, amyloid only or 
combined tau amyloid, from which they determined two different 
transcriptional states of oligodendrocytes in different disease models 
and their spatial distribution.

Neurons are the basic units of the structure, function and genesis 
of the nervous system, and many researchers focus on such cells. 
Mathys et al. (84) sequenced a large number of human brain tissues 
with and without AD, from which 76 cell types were identified, 
including astrocytes, region-specific subtypes of excitatory neurons, 
and thalamus-specific populations of atypical inhibitory interneurons. 
Vulnerable populations of excitatory and inhibitory neurons in 
specific brain regions of AD patients were also identified. Li et al. (37) 
used Ion AmpliSeq to obtain gene expression data from a single 
neuron or a collection of neurons in the human brain. They found that 
the number of CA1 neurons in AD hippocampus with genes related 
to the olfactory system continued to decrease, especially in the 
olfactory receptor family. In addition to olfactory receptors, they also 
provided evidence that receptors (but not transmitters) of other 
neurotransmitters (dopamine, GABA and 5-hydroxytriamine 
receptors) are also down regulated in AD hippocampal neurons. These 
results may have therapeutic significance: improving the sensitivity of 
receptors may be  more effective in clinical practice than simply 
increasing the level of neurotransmitters themselves. Deng et al. (85) 
found 9 and 11 excitatory neuron subsets in the human entorhinal 
cortex and superior frontal gyrus, respectively, and described region 
specific genes. The authors found neuronal subsets in these two 
regions, which are more likely to degenerate in the early and late 
stages, indicating their susceptibility to disease. This can be a basis for 
diagnosis and treatment. In addition, each cell in the nervous system 
is not an isolated individual, and the pathological changes of the 
nervous system will be reflected in a variety of cells. Sun et al. (86) 
identified three phenotypes of astrocytes and microglia, expanding 
from the past classification of “homeostasis and reactivity” to three 
classifications including “intermediate type.” Using snRNA seq, 
researchers found that reactive microglia not only expressed all 
reactive markers at a high level, but also expressed high levels of 
steady-state markers. The intermediate type expresses medium or low 
reactivity and steady-state markers, and applies the research results to 
high signal strength data (gradient enhancer) or machine learning 
models directly applied to image features (convolutional neural 
network), which is helpful to accurately distinguish control and AD 
diagnosis at the single cell level. The entorhinal cortex is closely related 
to human cognitive function, and it is also one of the first cortical 
regions to describe the neurofibrillary inclusion bodies and neuron 
loss in early AD. Grubman et al. (87) demonstrated the heterogeneity 
behind this early affected region by using postmortem human brain. 
It reveals how transcriptional changes of specific cell subsets are 
related to Alzheimer’s disease. For example, in AD patients, APOE is 
found to be down regulated in OPC and up regulated in astrocytes and 
microglia. In general, scRNA seq has played an important role in the 
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molecular subtype analysis of diseases and in identifying new 
mechanisms and therapeutic targets. At present, three major 
molecular subtypes of AD have been identified through 
monocytomics. Each subtype is related to tau mediated 
neurodegeneration, amyloid beta neuroinflammation, synaptic signal 
transduction, immune activity, mitochondrial tissue and myelin 
sheath formation (88). On the other hand, the application of single cell 
multiomics also requires the ability to process large quantities of 
multiomics data. In view of this, researchers have conducted many 
meaningful multiomics data integration and analysis in the past 
research, and some meaningful markers and computational models 
have also been found and established in this process. Lee et al. (89) 
conducted an integrated analysis using multi group data generated 
from substantia nigra (SN). SN is the brain region most affected by 
PD. Mononuclear RNA sequencing (snRNA seq) and chromatin 
accessibility (snaTAC seq) established the cell type distinguishing 
transcriptome and epigenome of PD and control SN. It also revealed 
that the specific imbalance of dopaminergic neurons and glial cells 
(including oligodendrocytes and microglia) in cRE has a strong 
transcriptional effect on PD related genes. In addition, Elkjaer et al. 
(90) studied multiple sclerosis by combining transcriptome and 
proteome, explaining the mechanism and role of oligodendrocytes, 
microglia, astrocytes and neurons in the pathogenesis and 
development of disease, and also indicating that chronic active disease 
is the most unique type of disease in multiple sclerosis. In terms of 
computing model, Jin et  al. (91) developed a computing pipeline 
scGRNom, which is used to integrate multi omics data and predict 
gene regulatory networks (GRNs). These networks link TFs, 
non-coding regulatory elements (such as enhancers) and target genes. 
By applying to human brain single cell multiomics data (such as 
epigenomics and single cell transcriptomics), researchers predicted 
the cellular GRN of neurons (such as excitability and inhibition) and 
glial cell types (such as microglia and oligodendrocytes). In addition, 
the research of Li et al. (92) introduced STREAM, which is a new 
method using Steiner forest problem model, mixed bicluster pipeline 
and submodulation optimization. It can jointly analyze single cell 
transcriptome (snRNA seq) and chromatin accessibility (snATAC seq) 
data, and infer enhancer driven gene regulatory network (eGRN) from 
them. Compared with existing methods, STREAM shows enhanced 
performance in TF recovery, TF enhancer connection prediction and 
enhancer gene relationship discovery.

5 Conclusion

Single-cell omics offers a novel approach to the study of 
neurodegenerative diseases, allowing researchers to identify the 
targets and mechanisms of disease occurrence from the perspective of 
cellular heterogeneity. This approach also facilitates the development 
of new disease models and the proposal of new diagnostic and 
therapeutic methods.

5.1 Limitations

This study used bibliometric visualization to analyze the research 
on single-cell omics in neurodegenerative diseases over the past 

10 years. However, this study inevitably has certain limitations. 
Firstly, the data analyzed in this study only comes from the WOSCC 
database and does not include data from other databases such as 
PubMed, Cochrane Library, and Google Scholar. Different databases 
can affect bibliometric results. It has been shown that utilizing 
combined databases may produce different results compared to 
studies based on individual citation databases (93), which may make 
our article more comprehensive. Whereas it has been shown that 
national output and impact obtained from WOS and PubMed are 
highly correlated, but PubMed has a narrower field of research (94). 
The most important point is that the PubMed database cannot export 
citation-related data. And citation-related data can help us to 
understand the trend of the research object well. Also, both Scopus 
and WOS have research field and language preferences, but Scopus is 
currently limited to recent articles (published after 1995) (95). 
Therefore, although WOSCC has its comprehensiveness and 
reliability, there are more or less omissions in its database. Secondly, 
we  excluded literature outside the English language, which may 
introduce biases. We  searched 596 documents and excluded 1 
non-English language document (German) from the search process. 
We searched in Mesh and found 117 articles, with English language 
literature making up the vast majority (117 articles). Due to the 
largest number of articles in English, we have chosen only English 
articles for statistical purposes. Choosing to count all languages may 
be more comprehensive. Finally, the data in this study may vary in 
various aspects, such as the same research institution using different 
names at different time stages. At the same time, some of the good 
quality articles may have received a low citation rate because of the 
recentness of their publication. These are issues that should 
be considered in a bibliometric analysis.
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