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Background: Due to the absence of biomarkers, the misdiagnosis of essential 
tremor (ET) with other tremor diseases and enhanced physiologic tremor is very 
common in practice. Combined radiomics based on diffusion tensor imaging 
(DTI) and three-dimensional T1-weighted imaging (3D-T1) with machine 
learning (ML) give a most promising way to identify essential tremor (ET) at the 
individual level and further reveal the potential imaging biomarkers.

Methods: Radiomics features were extracted from 3D-T1 and DTI in 103 ET 
patients and 103 age-and sex-matched healthy controls (HCs). After data 
dimensionality reduction and feature selection, five classifiers, including the 
support vector machine (SVM), random forest (RF), logistic regression (LR), 
extreme gradient boosting (XGBoost) and multi-layer perceptron (MLP), were 
adopted to discriminate ET from HCs. The mean values of the area under the 
curve (mAUC) and accuracy were used to assess the model’s performance. 
Furthermore, a correlation analysis was conducted between the most 
discriminative features and clinical tremor characteristics.

Results: All classifiers achieved good classification performance (with mAUC 
at 0.987, 0.984, 0.984, 0.988 and 0.981 in the test set, respectively). The most 
powerful discriminative features mainly located in the cerebella-thalamo-
cortical (CTC) and visual pathway. Furthermore, correlation analysis revealed 
that some radiomics features were significantly related to the clinical tremor 
characteristics in ET patients.

Conclusion: These results demonstrated that combining radiomics with ML 
algorithms could not only achieve high classification accuracy for identifying 
ET but also help us to reveal the potential brain microstructure pathogenesis in 
ET patients.
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Introduction

Essential tremor (ET) brings about a considerable global health 
burden, affecting approximately 1% of the world’s population (1). 
Recently, the International Parkinson and Movement Disorder Society 
redefined ET as a bilateral isolated upper limb action tremor 
syndrome lasting for a minimum of 3 years, and ET with other soft 
neurological signs such as impaired tandem gait, questionable 
dystonic posturing and memory impairment were referred to as 
ET-plus (2). The design of a “pure” ET subtype with a more precise 
and narrow definition seemed to make the diagnosis of ET easier in 
clinical settings. However, due to the absence of pathological, genetic 
and neuroimaging biomarkers, the misdiagnosis of ET with 
Parkinson’s disease (PD), dystonia and enhanced physiologic tremor 
is very common in practice (3, 4). Therefore, establishing biomarkers 
of ET, especially imaging markers, is an extremely urgent task 
at present.

Diffusion tensor imaging (DTI) and high-resolution three-
dimensional T1-weighted imaging (3D-T1) as non-invasive and in 
vivo magnetic resonance imaging (MRI) sequences have been widely 
used to measure brain microstructural changes and further construct 
the potential imaging markers in a lot of neurodegenerative diseases 
and movement disorders, such as Alzheimer’s disease, PD, dystonia, 
and multiple system atrophy (5–7). Recently, using 3D-T1 and DTI 
analysis, very few studies gained some variable and inconsistent 
findings, and some of these studies supported that the dentato-rubro-
thalamic tract and its structure connectivity brain areas were 
associated with ET patients (8, 9). However, most of these studies were 
traditional mass univariate analyses, and they could not be used to 
predict ET patients at an individual level. Furthermore, these 3D-T1 
and DTI analysis methods limited to traditional metrics such as the 
average value of gray matter (GM) volumes or thickness, fractional 
anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD) and 
mean diffusivity (MD), and actually, these images not only provided 
information on different aspects of these microstructures but also 
contained vast numbers of quantitative information, such as radiomics 
features. Radiomics analysis can abstract vast quantitative features, 
including first-order statistical information from DTI and 3D-T1, and 
then these features are inputted for machine learning (ML) algorithms 
(10). ML builds optimal models by learning and training from massive 
input data and then applies the model to new data to predict and 
analyze diseases based on a single-subject level (11). To our knowledge, 
up to now, no studies have combined radiomic analysis based on DTI 
and 3D-T1 to identify ET patients from HCs.

Moreover, it is crucial to understand the potential clinical 
implications of these imaging markers. Radiomic features extracted 
from imaging data can potentially correlate with clinical variables, 
which may offer deeper insights into the pathology and progression 
of ET. Establishing these correlations can not only aid in the accurate 
diagnosis of ET but also help in monitoring disease progression and 
treatment response.

Hence, we aimed to explore whether combined radiomic analysis 
of DTI and 3D-T1 with multiple ML algorithms could be used to 
effectively distinguish ET patients from HCs and to evaluate the 
radiomics correlates with clinical variables of interest for ET 
pathology. We also expected that our proposed method would not 
only reveal the brain microstructural changes but also further help to 
understand brain microstructural pathogenesis in ET.

Materials and methods

Participants

This study was approved by the Ethics Committee of the First 
Affiliated Hospital of Chongqing Medical University (Chongqing, 
China) in accordance with the Helsinki Declaration ethical 
principles. All patients fulfilled the following criteria: (1) the ET 
diagnosis met the 2018 Movement Disorders Consensus Criteria 
(2), and all patients had annual follow-ups through the outpatient 
department or telephone; (2) the patients had an onset age between 
18 to 55 years, and patients with earlier or later onset were not 
included; (3) the patients were without any apparent cognitive 
impairment (Mini-Mental State Examination (MMSE) scores >24); 
(4) the patients were without PD, dystonia, psychogenic tremor, 
thyroid disease, stroke, epilepsy, head injury or any other 
neurological dysfunction; (5) the patients were without other 
neurological soft signs, such as dystonia, ataxia, parkinsonism, rest 
tremor or non-motor symptoms, that is ET-plus patients did not 
include in this study. In addition, none of the HCs reported having 
first-or second-degree relatives with ET, and all subjects met DTI 
image quality control standards. Ultimately, 206 participants were 
enrolled, including 103 ET patients and 103 age-, sex-, and 
education-matched HCs, all right-handed.

Tremor severity was assessed with the Fahn-Tolosa-Marin Tremor 
Rating Scale (TRS). Meanwhile, to consider a ceiling effect for severe 
tremor while tremor amplitude >4 cm for the TRS scale, the Essential 
Tremor Rating Assessment Scale (TETRAS) was also adopted to assess 
tremor severity. The Hamilton Anxiety Rating Scale (HARS-14) and the 
17-item Hamilton Depression Rating Scale (HDRS-17) were adopted to 
assess the anxiety and depression severity of all participants. The MMSE 
was used to briefly assess cognitive function and screen for dementia.

MRI acquisition and data preprocessing

3D-T1, DTI and T2-FLAIR images were acquired using a GE 
Signa Hdxt 3-T scanner (General Electric Medical Systems, 
Milwaukee, WI, United  States); for detailed parameters, see 
Supplementary material S1. Data preprocessing was conducted using 
the VBM implemented in SPM12 software1 and PANDA toolbox 
version 2.2,2 and detailed data preprocessing steps are provided in 
Supplementary material S2.

Radiomics feature extraction

Previous studies have demonstrated that the brain microstructural 
changes were not only limited to white matter (WM) fiber tracts but also 
extended to gray matter (GM) areas. To capture these changes, the 
automated anatomical labeling 3 (AAL3) (12) and Johns Hopkins 
University (JHU) (13) tractography atlases were utilized. The FA, AD, RD, 
and MD maps of DTI were partitioned into 214 volumes of interest 

1 http://www.fil.ion.ucl.ac.uk/spm/software/spm12

2 http://www.nitrc.org/projects/panda
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(VOIs), which included 164 regions defined by AAL3 and 50 regions 
defined by JHU-ICBM. Similarly, the GM maps of 3D-T1 were 
partitioned into 164 VOIs by AAL3, while the WM maps of 3D-T1 were 
partitioned into 50 VOIs by JHU-ICBM. The open-source Python 
package, pyradiomics, was employed to extract 15 first-order features, 
including the mean, median, maximum, range, variance, skewness, 
kurtosis, 10th percentile, 90th percentile, inter-quartile range, mean 
absolute deviation, robust mean absolute deviation, root mean squared, 
energy and total energy. These features were used to describe the voxel 
intensity distribution within the image mask (detailed information about 
extracted features is reported in Supplementary Table S1) (14). After the 
above process, 12,300 (164 × 15 × 5) GM features and 3,750 (50 × 15 × 5) 
WM features were obtained for every subject. GM features were sourced 
from GM regions defined by AAL3 in the FA, AD, RD, and MD maps of 
DTI, as well as the GM maps of 3D-T1. WM features were sourced from 
WM regions defined by JHU-ICBM in the FA, AD, RD, and MD maps of 
DTI, as well as the WM maps of 3D-T1.

Feature selection

The machine-learning analysis was performed by using a scikit-learn 
open-source package3 in Python. Due to the curse-of-dimensionality or 
small-n-large-p problem, a total of 16,050 features greatly exceeded the 
sample size, while most features were redundant and irrelevant (15). 
Therefore, dimensionality reduction and feature selection were necessary 
steps to obtain the most important features and improve the accuracy of 
the model. Before the feature selection, the dataset was partitioned into 
training and testing sets in the ratio of 7:3, and a Z-score standardization 
was performed, respectively, to keep the data in sets mutually independent. 
Then, dimensionality reduction and feature selection were conducted in 
the training set in three steps. First, we conducted a two-sample t-test to 
assess the statistical significance of the relationship between each feature 
and the target variable. Features with a p-value below 0.05 were deemed 
statistically significant. Next, we  employed the mutual information 
method to filter out features that showed a low correlation with the target 
variable, setting a threshold of 0.05. Lastly, we  utilized the absolute 
shrinkage and selection operator (LASSO) algorithm in the feature 
selection process. LASSO is a regression method that addresses the issue 
of multicollinearity by shrinking the coefficients of less critical features 
toward zero, thereby effectively eliminating redundant features from the 
model. The key to LASSO’s effectiveness lies in its penalization parameter 
λ, a hyperparameter that controls the degree of regularization of the 
model. It was tuned under the criteria of minimal mean squared error 
(MSE) to construct the optimal subset of features via a 10-fold cross-
validated grid-search approach, and the weight coefficients of each feature 
were calculated. The loss function of LASSO is as follows:
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where yi are the observed values, ŷi  are the predicted values, λ is 
the penalization parameter, β j are the coefficients of the features, n is 
the number of observations, and P is the number of features.

3 version 0.20.1, freely available: http://scikit-learn.org/.

Model construction and evaluation

In order to enhance the performance and generalization 
ability of our models, we  employed nested loops to perform 
hyperparameter tuning and make full use of subject data. Initially, 
the entire dataset was split into a training set and a test set in a 
7:3 ratio using stratified splitting, ensuring that the proportions 
of the two classes were balanced in both sets. The independent 
test set served as the outer loop for evaluating model performance, 
while the training set after dimensionality reduction and feature 
selection was used as the inner loop for 10-fold cross-validation 
and grid search to determine the optimal classifier parameters. 
In each fold of the inner loop, various hyperparameter 
combinations were attempted, and model scores were recorded, 
with the combination yielding the highest score selected as the 
optimal hyperparameters, which were then fitted to the entire 
training set and evaluated on the test set. We employed several 
common machine learning classifiers, including the support 
vector machine with radial basis function kernel (RBF-SVM) 
(16), random forest (RF) (17), logistic regression with the linear 
kernel (Linear-LR) (18), extreme gradient boosting (XGBoost) 
(19) and multi-layer perceptron (MLP) (20), to build models 
based on the preserved features from feature selection. 
Specifically, we  searched for the optimal hyperparameters for 
RBF-SVM (penalty parameter C), Linear-LR (parameter C), RF 
(number of decision trees), XGBoost (number of decision trees, 
maximum depth, learning rate), and MLP (hidden layer size, 
activation function, optimizer) classifiers. To ensure unbiased 
classification estimates, the entire framework was repeated 100 
times. The whole procedure for the nested loop is illustrated in 
Supplementary Figure S1.

The model’s performance was evaluated using an independent test 
set in the outer loop, ensuring a more representative evaluation of the 
model’s ability to generalize. To gage model performance, we computed 
metrics, including mean accuracy (mACC), mean balanced accuracy 
(mBACC), mean sensitivity (mSN), and mean specificity (mSP). We also 
constructed the mean receiver operating characteristic (mROC) curve 
and calculated the mean area under the curve (mAUC) to gauge the 
models’ classification performance and diagnostic accuracy. The model 
that achieved the highest mAUC value was considered the best-
performing model. To compare the different classification algorithms, 
we utilized the Friedman test followed by the Wilcoxon signed-rank test 
for pairwise comparisons when significant differences were identified. 
To correct for multiple comparisons, we applied the Bonferroni method, 
considering an adjusted alpha (α) level of <0.05 as statistically significant. 
The formulae are as follows:

 Sensitivity TP TP FN= +( )/

 Specificity TN TN FP= +( )/

 Balanced accuracy Sensitivity Specificity= +( ) / 2

where TP represents the number of positive samples correctly 
classified, TN represents the number of negative samples correctly 
classified, FP represents the number of negative samples incorrectly 
classified, and FN represents the number of positive samples 
incorrectly classified.
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To assess the statistical significance of the classification model, 
we conducted permutation testing by randomly shuffling the labels of 
both patients and HCs. This process was iterated 1,000 times, and the 
entire framework was executed on each occasion. We then compared 
the obtained classification performance metrics with those generated 
using randomly reassigned labels and calculated the corresponding 
p-value (21). A p-value below the significance threshold of 0.05 indicates 
a robust classification performance, providing compelling evidence that 
the classifier effectively distinguishes between the two groups.

Identification of discriminative features

Considering that the dataset was randomly divided into a 7:3 ratio 
and the entire process was repeated 100 times, each iteration resulted 
in slightly different compositions of training and testing sets. This 
inherent variability meant that different features might be selected 
during each iteration of the feature selection process. To ensure that 
the final subset of features is representative and robust, features that 
were selected in more than 60 iterations were deemed relevant for 
distinguishing between individuals with ET and HCs. This method 
helps mitigate the risk of overfitting to any particular random split of 
the data, enhancing the generalizability of our model. Moreover, 
features that appear consistently across numerous iterations are likely 
to capture fundamental patterns and relationships within the data, 
making them more reliable for distinguishing between ET and HCs. 
We then computed the average feature weights. The absolute value of 
the average feature weight indicates the feature’s contribution to the 
model’s classification performance. Features with larger average 
feature weights are considered more significant in terms of their 
impact on the model’s discriminative capability. The whole radiomics 
analysis workflow is illustrated in Supplementary Figure S2.

Statistical analysis

We analyzed the demographic data and clinical characteristics of 
both groups using SPSS statistical software. Initially, we assessed the 
normality of continuous variables with the Kolmogorov–Smirnov test 
(K-S test). For normally distributed variables, we  conducted a 
two-sample t-test, while for non-normally distributed variables, 
we employed the Mann–Whitney U test. To examine differences in 
qualitative data, such as gender, we used the chi-square test. A two-tailed 
p-value <0.05 was regarded as significant. Furthermore, we performed 
partial Pearson correlation analysis to explore potential relationships 
between the selected features and clinical tremor status, as indicated by 
scale scores. Meanwhile, the age, gender, education years, and scores of 
the MMSE, HARS-14, and HDRS-17 as covariates, applying Bonferroni 
multiple comparison correction (p < 0.05/10*(10–1)/2 = 0.001).

Results

Demographic and clinical characteristics

Demographic and clinical data for all participants are summarized 
in Table 1. There were no statistically significant differences between 
the ET group and HCS group in age, gender, education level, 

handedness, smoking status, HDRS-17, HDRS-14 scores, etc. 
(p > 0.05). However, there was a significant difference in MMSE scores 
between the two groups, with the ET group scoring lower than the 
HCS group (p = 0.0006).

Discriminative features

Following three steps of feature reduction, an average of 
approximately 46 features were retained (range: 16 to 82) per round, 
with an average Lasso penalization parameter λ of 0.0052. Due to the 
complete random sampling of the training and test sets, the training 
set samples for feature selection were different, and the retained 
features varied in each round. With 100 repetitions of the entire 
framework, a total of 100 feature subsets containing different selected 
features were obtained. For the final distinguishing subset of features, 
we considered only those features that were selected in more than 60 
iterations. Ultimately, 10 features met this criterion (Table 2; Figure 1): 
mean MD in left inferior cerebellar peduncle (ICP), mean FA in right 
inferior cerebellar peduncle (ICP), energy FA in left inferior cerebellar 
peduncle (ICP), mean FA in left inferior cerebellar peduncle (ICP), 
skewness GM in left pulvinar inferior(tPuL), kurtosis MD in right 
ventral posterolateral(tVPL), energy MD in left ventral 
posterolateral(tVPL), kurtosis GM in left calcarine fissure and 
surrounding cortex(CAL), energy GM in left cerebellar lobule 
IV ~ V(CER4_5) and mean MD in left superior cerebellar 
peduncle(SCP). The most frequent and highest-weighted feature was 
Mean in the FA map located in the left inferior cerebellar peduncle, 
occurring 100 times out of 100 rounds with an average weight of 0.416.

Classification performance

In our automated classification framework, we employed five 
classifiers. To thoroughly evaluate the classification performance, 
we repeated the entire framework 100 times and assessed the model’s 
average performance across these 100 rounds. All classifiers achieved 
good classification performance with little overfitting (Figure 2 and 
Table 3). Evaluating a machine learning model’s performance on a 
test set is crucial, as it provides a critical assessment of the model’s 
ability to accurately classify or predict previously unseen data. This 
evaluation determines the model’s effectiveness and reliability in 
practical applications (22). In the test set, the RBF-SVM, linear-LR, 
RF, XGBoost, and MLP classifiers achieved mean accuracy and mean 
AUC values of 97.63% and 0.987, 97.66% and 0.984, 95.01% and 
0.984, 95.41% and 0.988, and 95.06% and 0.981, respectively. 
Considering the highest mAUC value in the test set, we selected 
XGBoost as the optimal classifier for our model, with average 
learning rate, max depth, and n_estimators values of 0.20, 3.56, and 
187, respectively. Furthermore, it demonstrated a mean balanced 
accuracy of 93.67%, a mean sensitivity of 95.41%, and a mean 
specificity of 97.15%. The Friedman test revealed statistically 
significant differences in AUC values among the classifiers 
(p < 0.0001). Wilcoxon signed-rank test indicated that the differences 
between RBF-SVM and RF, RBF-SVM and MLP, RF and XGBoost, 
and RF and LR were statistically significant, with p-values <0.05 
(Figure  3). The results of the permutation test confirmed the 
reliability of accuracy and AUC values for all models, with p-values 
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consistently less than 0.001  in the iterations. Detailed 
hyperparameters for each round for all models are shown in 
Supplementary Table S2.

Correlation analysis

Figure 4 showed the partial Pearson’s correlation analysis results, 
and three features were significantly correlated with clinical tremor 
characteristics in ET patients. The mean MD in left superior cerebellar 
peduncle and the energy GM in left cerebellar lobule IV ~ V had a 
negative correlation with TRS parts A&B (p < 0.001, r = − 0.41 

and - 0.47, respectively), and the kurtosis GM in left calcarine gyri had 
a positive correlation with TRS parts A&B (p < 0.001, r = 0.43).

Discussion

In our study, we combined radiomics features extracted from 
3D-T1 and DTI with multiple machine learning algorithms to 
identify ET patients from HCs and had three main findings. First, 
all ML algorithms (RBF-SVM, linear-LR, RF, XGBoost, and MLP 
classifiers) achieved excellent classification performance (with 
mAUC at 0.987, 0.984, 0.984, 0.988 and 0.981, respectively), and 

TABLE 1 Demographic and clinical features of ET and HCs.

Measure ET HCs Statistics p-value

Demographic

  Sample size 103 103 NA NA

  Age (years) 48.06 ± 14.38 44.34 ± 13.79 T = 1.89 0.0596

  Gender (M:F) 47:56 58:45 Z = −1.53 0.1261

  Education (years) 12.53 ± 4.55 12.41 ± 4.65 T = 0.18 0.8559

  Handedness (R/L) 103:0 103:0 Z = −0.00 1.0000

  Cigarette smoker 47 58 Z = −1.53 0.1261

Clinical of tremor

  Tremor of onset (years) 35.68 ± 10.70 NA NA NA

  Tremor of duration (years) 12.38 ± 8.31 NA NA NA

Positive family history NA NA NA

  Positive 37 NA NA NA

  Negative 66 NA NA NA

Alcohol sensitivity NA NA NA

  Positive 37 NA NA NA

  Negative 40 NA NA NA

  NA 26 NA NA NA

Tremor medication NA NA NA

  Propranolol 30(43.33 ± 16.47 mg) NA NA NA

  Primidone 4 (200.00 ± 91.29 mg) NA NA NA

Tremor symmetry NA NA NA

  R = L 93 NA NA NA

  R < L 7 NA NA NA

  R > L 3 NA NA NA

Tremor frequency 6.84 ± 2.13 NA NA NA

  TRS-parts A&B 22.93 ± 7.91 NA NA NA

  TRS-part C 12.57 ± 7.15 NA NA NA

  TETRAS 21.09 ± 6.84 NA NA NA

  TET-ADSL 12.72 ± 6.28 NA NA NA

Clinical of psychology and cognitive

  HDRS-17 2.05 ± 1.01 2.11 ± 1.32 T = −0.34 0.7326

  HARS-14 2.75 ± 1.15 2.50 ± 1.84 T = 1.18 0.2408

  MMSE 28.57 ± 1.30 29.18 ± 1.23 T = −3.45 0.0006

ET, essential tremor; HCs, healthy controls; HDRS-17, 17-item Hamilton Depression Rating Scale; MMSE, Mini-Mental State Examination; HARS-14, 14-item Hamilton Anxiety Rating Scale; 
TRS, Fahn-Tolosa-Marin Tremor Rating Scale; NA, not available.
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among these classifiers, XGBoost performed the best (mAUC value 
at 0.994). Second, the most powerful discriminative features came 
from both the brain GM and WM tract, and primarily located in 
the cerebello-thalamo-cortical (CTC) and cerebello-visual 
pathway. Third, some radiomics features in cerebellar GM, WM 
tract and visual gyri could be  used to explain partially clinical 
tremor symptoms.

In the recent decade, due to the inherent advantages of 
allowing the simultaneous evaluation of multiple different source 
features without any a priori knowledge, that is, the multivariate 
approach, machine learning algorithms have been widely applied 
to identify ET (23). Using clinical characteristics such as gait and 
postural transition parameters (24), voice samples underwent 
sound signal (25), Archimedes’ spiral and wearable multi-segment 

TABLE 2 The significant discriminative features between ET and HCs.

Brain region Hemisphere Image type Statistics Frequency

Inferior cerebellar peduncle Left Mean diffusivity Mean 100

Inferior cerebellar peduncle Right Fractional anisotropy Mean 99

Inferior cerebellar peduncle Left Fractional anisotropy Energy 95

Inferior cerebellar peduncle Left Fractional anisotropy Mean 92

Pulvinar inferior Left Gray matter Skewness 87

Ventral posterolateral Right Mean diffusivity Kurtosis 80

Ventral posterolateral Left Mean diffusivity Energy 79

Calcarine fissure and surrounding cortex Left Gray matter Kurtosis 77

lobule IV,V of cerebellar hemisphere Left Gray matter Energy 67

Superior cerebellar peduncle Left Mean diffusivity Mean 60

FIGURE 1

The selected most power discriminative features. (A) Showed the alignment diagram based on the coefficients in the LASSO analysis of the most 
discriminative features, with the black horizontal line segments representing the range of the coefficients, with the left end indicating the minimum 
value and the right end indicating the maximum value. The blue line represented the mean value of the coefficients. (B) Showed the most power 
discriminative features between ET and HCs groups and the color bar value represents the frequency of the features. FA, fractional anisotropy; MD, 
mean diffusivity; GM, gray matter.
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upper limb tremor assessment system (26, 27), some studies have 
achieved good classification performance to discriminate ET from 
PD or ET from HCs. Meanwhile, few studies adopted MRI data as 
input features performed the above work, resulting in similar 
results. For instance, Zhang et al. employed resting-state fMRI 
data with SVM, Gradient Boosted Decision Tree, RF and Gaussian 
Naïve Bayes algorithms, achieving classification accuracies of 
82.8, 79.4, 78.9, and 72.4%, respectively (28). Additionally, Jia 
et al. used DTI and found that the apparent diffusion coefficient 
(ADC) value of the red nuclei in ET patients was significantly 
higher compared to controls (0.90 vs. 0.77; p = 0.000), although no 
significant differences were found for FA or ADC values of other 
structures (29).In another study, Prasad et  al. utilized 3D-T1 
imaging and observed significant atrophy in the bilateral middle 
cerebellar peduncle, ICP, and cerebellar gray matter. Their multi-
variate classifier discriminated ET from controls with a test 
accuracy of 86.66% (30). Compared to the above studies, our 
research obtained excellent classification performance, and 
we attributed this improvement to the following advantages: First, 
the diagnosis of ET patients was according to the 2018 consensus 
criteria in our studies, and most of the above studies just adopted 
the traditional consensus criteria. Almost all researchers agree 
that ET is a heterogeneous disease, and the heterogeneous traits 
cause variable and inconsistent results between different studies 
(31). The traditional consensus criteria paid little attention to the 
heterogeneity of ET, and the 2018 consensus criteria, with a more 
precise and narrow definition, let the cohorts of ET be  more 
highly homogeneous. Second, 3D-T1 and DTI were used as input 
data, and these structural MRI images made the results more 
robust. The clinical characteristics and resting-state fMRI data are 
easily disturbed by multiple factors, such as different observers, 
indicators, and physiological states. However, these factors have 
less impact on 3D-T1 and DTI, and some metrics of 3D-T1 and 
DTI have been adopted as imaging markers in a lot of 

neurodegenerative diseases, such as Alzheimer’s disease and 
multiple system atrophy. Third, an AAL3 and JHU-ICBM atlas 
were used to comprehensively and simultaneously observe GM 
and WM microstructural changes, and most of the above studies 
only focused on GM or WM changes with tract-based spatial 
statistics or region of interest (ROI) methods based on some priori 
knowledge (32). Fourth, a large sample size (103 ET patients and 
103 HCs) made our study easier to gain stable and consistent 
results, and except for our previous studies based on resting-state 
fMRI data, most of the above studies only included 20 to 40 ET 
patients. Therefore, we suggested that combining the radiomics 
features extracted from 3D-T1 and DTI with multiple machine 
learning algorithms would provide another important way to 
discriminate ET from HCs, and it would be adopted as a routine 
analysis in clinical practice.

The most powerful discriminative features came from both 
the brain GM and WM tracts, and primarily located in the 
cerebello-thalamo-cortical (CTC) pathway, consistent with the 
previous clinical, pathological and neuroimaging findings. The 
ventral intermediate nucleus (VIM) of the thalamus is an 
established therapeutic target. An increasing number of treatment 
methods, including stereotactic thalamotomy, deep-brain stimulus 
(DBS), gamma knife and focused ultrasound, have selected the 
VIM as the prime treatment target for ET and achieved good 
therapeutic effects (33–36). The VIM anatomical projects to the 
cerebellum and motor cortices and comprise the CTC pathway. 
Combined the above features give powerful evidence that the CTC 
pathway plays a crucial role in the generation or transmission of 
tremors in ET patients. Meanwhile, growing pathologic evidence 
is attributable to the key pathogenesis role of the cerebellum in 
ET. Post-mortem studies reported that loss or swelling of Purkinje 
cells and reducing GABA receptor density in the dentate nucleus 
were related to ET patients (37). Again, neuroimage from PET, 
structure, task, and resting-state fMRI also supported that the 

FIGURE 2

Receiver operating characteristic (ROC) curves and area under the curve (AUC) of five machine learning models. (A) Showed the confusion matrix of 
the best classifier-XGBoos based on 100  cycles. (B) Showed the ROC curves and AUC values of all classifiers on the test set. SVM, the support vector 
machine; RF, random forest; LR, logistic regression; XGBoost, extreme gradient boosting; MLP, multi-layer perceptron.
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CTC pathway was associated with ET (38–41). However, our 
results were not fully consistent with the above studies. First, some 
radiomics of VIM, such as kurtosis MD in right ventral 
posterolateral (VPL) and energy MD in left ventral posterolateral 
(VPL), acted as the most powerful discriminative features to 
discriminate ET from HCs, but a correlation analysis did not 
explore any relationships between these features and clinical 
tremor status. We suggested that the VIM perhaps served as a 
relay station for tremor transmission from the cerebellum to the 
cerebral cortex in the CTC pathway and did not undertake tremor 
generation. Second, among the 10 most powerful discriminative 
features selected, 4 features, including mean MD in left inferior 
cerebellar peduncle (ICP), mean FA in right inferior cerebellar 
peduncle (ICP), mean FA in left Inferior cerebellar peduncle (ICP) 
and mean MD in left superior cerebellar peduncle (SCP), could 
be  obtained by the traditional methods and the remaining 6 
features existed in radiomics analysis. This profile further 
suggested that radiomics analysis can abstract vast quantitative 
features and these features also contain important information to 
discriminate ET from HCs.

The most powerful discriminative features located in the visual 
pathway seemed to be contract to most of previous studies. There is 
still a debate about whether the visual pathways are associated with 
tremors in ET patients. Using morphometric analysis of 3D-T1, 
most other researchers and our previous studies did not reveal any 
morphometric changes, including the visual areas in ET patients. 
However, some other studies from grip-force task fMRI reported 
that the visual feedback and visual areas played a vital role in 
modulating the severity of tremor in ET patients (42). Meanwhile, 
a VBM study reported that GM density changes in the visual 
pathway were related to ET patients (43). Again, the tremor 
improvement after stereotactic radio-surgical thalamotomy were 
involvement in the high-level visual areas (44). Finally, the most 
powerful discriminative features located in the visual pathway were 
kurtosis GM in left calcarine fissure in the present studies, and they 
could not be  measured by the above traditional morphometric 
analysis methods. Therefore, we suggested that our results provide 
complementary information rather than contradictory information 
from previous studies.

Limitations

There are several limitations that should be noted. Firstly, although 
the sample size of this study was relatively larger than others, it was 
recruited from a single center, which limited the generalizability and 
stability of the proposed model. Secondly, we  employed strict 
inclusion criteria to recruit patients and had annual follow-ups. 
Misdiagnosing is common due to the diagnosis being strongly 
dependent on clinical symptoms and nervous system examinations 
and a lack of biomarkers in ET patients. Thirdly, the present study 
utilized only first-order radiomics features without considering a wide 
range of textural features, which are now widely used in the context of 
studies of neurological diseases. Additionally, some deep learning 
algorithms could automatically and directly extract discriminant 
information from the raw images. Therefore, in our future study, 
we  hope to apply deep learning algorithms combined with MRI 
images to provide new insights into the microstructural changes of ET.T
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Conclusion

Combined radiomics features based on 3D-T1 and DTI with 
multiple machine learning algorithms have achieved good 
classification performance for discriminating ET from HCs. The most 
powerful discriminatory features were not only confined to the typical 
tremor networks but also extended into the visual pathway, and these 
features would help to understand the brain microstructural 
pathogenesis mechanisms in ET patients.
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