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Toward the Bayesian brain: a
generative model of information
transmission by vestibular
sensory neurons

Michael G. Paulin1, Kiri F. Pullar1 and Larry F. Ho�man2*

1Department of Zoology, University of Otago, Dunedin, New Zealand, 2Department of Head and Neck

Surgery and Brain Research Institute, David Ge�en School of Medicine at UCLA, Los Angeles, CA,

United States

The relative accessibility and simplicity of vestibular sensing and vestibular-

driven control of head and eye movements has made the vestibular system an

attractive subject to experimenters and theoreticians interested in developing

realistic quantitative models of how brains gather and interpret sense data and

use it to guide behavior. Head stabilization and eye counter-rotation driven by

vestibular sensory input in response to rotational perturbations represent natural,

ecologically important behaviors that can be reproduced in the laboratory

and analyzed using relatively simple mathematical models. Models drawn from

dynamical systems and control theory have previously been used to analyze

the behavior of vestibular sensory neurons. In the Bayesian framework, which

is becoming widely used in cognitive science, vestibular sense data must

be modeled as random samples drawn from probability distributions whose

parameters are kinematic state variables of the head. We show that Exwald

distributions are accurate models of spontaneous interspike interval distributions

in spike trains recoded from chinchilla semicircular canal a�erent neurons.

Each interval in an Exwald distribution is the sum of an interval drawn from

an Exponential distribution and a Wald or Inverse Gaussian distribution. We

show that this abstract model can be realized using simple physical mechanisms

and re-parameterized in terms of the relevant kinematic state variables of the

head. This model predicts and explains statistical and dynamical properties of

semicircular canal a�erent neurons in a novel way. It provides an empirical

foundation for realistic Bayesian models of neural computation in the brain

that underlie the perception of head motion and the control of head and

eye movements.

KEYWORDS

hair cell receptor, spike train analysis, neural coding, stochastic point process,

computational neural model, perception as Bayesian inference, cerebellum, cerebellar-

like

1 Introduction

Mathematical modeling of the vestibular system was pioneered by Steinhausen (1)

[reviewed by Straka et al. (2)], who developed a differential equation model of the

mechanics of transduction in the semicircular canals during head movement. This

equation, which became known as the torsion pendulum model, provided a foundation

for later dynamical models of the sense organ, afferent neurons, central neural circuitry,

and head and eye stabilizing reflexes during head rotation (3). Researchers showed that
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torsion pendulum-like dynamical models can predict firing rates of

semicircular canal afferent neurons during head rotation in species

drawn from all vertebrate orders from fish to mammals. However,

they also discovered unexpectedly high variability in response

properties and correlations between parameters of models fitted

to different neurons (3). These discoveries led to population rate-

coding models, in which the idiosyncratic behavior of individual

neurons is quantified by differential equations or equivalent

transfer function models that predict firing rate (4–9). Stochasticity

was modeled by a descriptive statistic, CV∗, which measures the

relative variability of spontaneous interspike intervals (10).

Analysis of model parameters revealed that dynamical response

properties co-vary systematically with each other and with CV∗

across the afferent population. The same pattern is found in all

species. Units with more regular spontaneous firing activity (low

CV∗) tend to have higher spontaneous and average firing rates,

to be less sensitive to rotation, and to fire in phase with angular

velocity (11). Units with more irregular spontaneous firing activity

(high CV∗) tend to have lower spontaneous and average firing rates,

to be more sensitive to rotation, and to be phase-advanced relative

to angular velocity. Parameters vary continuously between these

two extremes. Goldberg and Fernandez (10) introduced the terms

“regular” and “irregular” as a “rhetorical convenience” associated

with simple bivariate statistical analysis on artificially defined

subsets of the data. This has led to a persistent misconception that

there are two naturally occurring functional subclasses of neurons

in the afferent nerve (3, 12).

These models could describe the data but did not explain

why the neurons behave as they do or why the patterns occur.

We suggest approaching such questions by considering models

of behaviors that depend on information provided by vestibular

sensory neurons. Borah et al. (13) developed a model of head-

eye coordination in the framework of stochastic optimal control

theory. A stochastic optimal controller decomposes mathematically

into two components in series. The first component, called a

state estimator or observer, estimates the relevant state variables

from noisy data. The second component uses the state estimate

to compute an optimal control signal, taking into account the

observer’s uncertainty about the true state [reviewed by (14)].

Optimal stochastic control models were able to predict dynamical

and psychophysical features not predicted by earlier deterministic

models developed in the framework of classical control theory. This

suggests not only that the brain takes account of uncertainty in

sense data when it computes control signals but also that head-

eye coordination may involve two stages of neural information

processing. In the first stage the brain uses sense data to construct

a belief about (i.e., perceive) relevant world and body states, and

in a second stage the brain decides how to respond given what it

perceives, i.e., how to act given what it believes. The prediction

that the vestibular-cerebellar hindbrain contains (or is) a neural

analog of a dynamical state estimator is supported by a range of

anatomical, behavioral and psychophysical evidence (15).

Despite its success in modeling the dynamics of head-eye

coordination, stochastic optimal control theory has had little

impact on models of underlying neural mechanisms, no doubt

partly because the theory is restricted to systems with linear

dynamics and Gaussian errors, and employs an algebraic formalism

that cannot be mapped onto neural mechanisms in a realistic way

(16, 17). But linear-Gaussian stochastic optimal control theory is

now recognized as a special case of Bayesian decision and control

theory (18, 19), which has become a standard modeling framework

in cognitive science (20, 21). A Bayesian observer computes the

conditional probability distribution of states, a.k.a. the posterior

distribution, given somemeasurements. In the special case of linear

dynamical systems with Gaussian measurement errors the mean

and covariance of this distribution, i.e., the entire distribution in

that case, can be calculated algebraically by an algorithm called the

Kalman filter (22).

The success of Kalman filter models at the psychophysical and

behavioral level (23) suggests that a way forward at the neural

level is to model semicircular canal afferent neuron spike trains

as observations transmitted to a Bayesian observer in the brain,

without assuming linear dynamics or Gaussian uncertainties. In

the Bayesian framework, observations are random samples from

probability distributions parameterized by variables of interest

to the observer. It follows that the first task in constructing or

analyzing a Bayesian observer is to determine the probability

distribution of the data parameterized by the relevant variables.

Existing models show robustly that the relevant state variables

for modeling information transmission by semicircular canal

afferent neurons are angular velocity and angular acceleration

around the canal axis (3). Therefore, we propose to model

semicircular canal afferent neuron spike trains as sequences of

intervals, each of which is a random sample from a probability

distribution whose shape depends on the kinematic state of the

head. This turns the conventional approach on its head, making

quantification of stochasticity the primary goal of modeling, rather

than merely an accounting procedure that quantifies the difference

between models and data and explains it by calling it noise.

In this paper we identify probabilistic models of spontaneous

firing using spike train data recorded from semicircular

canal afferent neurons in chinchillas. At first sight, models of

spontaneous activity, which describe how the neurons behave

when the head is not moving, would seem to have limited value

for understanding neural mechanisms of sensory-motor control

when the head is moving. However, holding the head steady is an

ecologically important behavior for many animals, for example

while attending to auditory and visual cues that may betray a

nearby predator or prey. Optimal control of this behavior requires

inferring the kinematic state of the head from measurements

when the true state is near the goal state, i.e., when the head is

nearly stationary. Intuitively, a model that describes the behavior

of a stochastic dynamical system in a particular state should

be continuously modifiable to describe the system’s behavior in

nearby states. In that case a model of spontaneous activity may be

extended to provide a model of driven activity in a small region

of head kinematic state space relevant to explaining ecologically

important behavior.

The potential for a model of spontaneous activity to generalize

to model driven activity is presaged by the ability of CV∗, a simple

summary statistic of variability in spontaneous activity, to predict

the dynamical behavior of semicircular canal afferent neurons

during head movement. After presenting our probabilistic model

of spontaneous firing we will expand on this point and discuss how
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our model may be used to analyze neural mechanisms underlying

statistically optimal control and coordination of head and eye

movements. This provides a simple accessible model system for

empirically grounded, realistic analysis of how brains use sense data

to perceive relevant world and body states, and how brains make

decisions and control actions based on data-driven internal beliefs

about relevant states and parameters.

2 Materials and methods

2.1 Spike train data acquisition

All procedures involving animals were approved by the UCLA

Chancellor’s Animal Research Committee and conformed to

guidelines mandated in the NIH Guide for the Care and Use of

Laboratory Animals (National Institutes of Health Publication,

revised 2011), and the Guidelines for the Use of Animals in

Neuroscience Research (Society for Neuroscience).

2.1.1 Animal preparation
Adult male chinchillas (n = 27; body mass 450–650 grams)

were used in these experiments. They were first anesthetized

with isoflurane, after which an intravenous cannula was secured

within a jugular vein through which maintenance doses of

sodium pentobarbital (0.05 cc, 50 mg/cc) were administered.

A tracheotomy was performed into which a catheter delivering

100% O2 was loosely placed. Heart and respiratory rates, as well

as O2 saturation levels, were monitored throughout the surgical

preparation and recording session. Core body temperature was

maintained between 38◦-38.5◦C with a custom servo-controlled

heater and rectal thermocouple probe. Animals remained

physiologically stable throughout the long electrophysiologic

recording sessions, which at times lasted longer than 12 h.

Upon achieving a surgical plane of anesthesia animals were

fit into a custom head holder fixed to a turntable. Surgical

procedures were similar to those utilized in previous investigations

of vestibular afferent electrophysiology (24). The right middle ear

was exposed by removing the bony cap of the tympanic bulla.

The bony ampullae of the superior and horizontal semicircular

canals were identified, which provided landmarks to the internal

vestibular meatus channeling the superior vestibular nerve between

the labyrinth and brainstem. The superior vestibular nerve was

exposed at this site, approximately 1–2mm from the landmark

ampullae, using fine diamond dental drill bits. Final exposure of

the nerve was achieved by gently teasing the epineurium from the

nerve with electrolytically sharpened pins.

2.1.2 Single a�erent electrophysiology
Spontaneous discharge epochs from 330 semicircular afferents

within the superior vestibular nerve were recorded with high-

impedance microelectrodes (40–60 MΩ) driven by a piezoelectric

microdrive. Spontaneous discharge was detected as the electrode

approached an afferent, and generally improved with subtle

adjustments in electrode position achieved by small manipulations

of the microdrive (e.g., small forward and reverse displacements,

in addition to gentle tapping of the drive). Upon achieving

stable recording, manual turntable displacements were used to

identify the epithelium from which the afferent projected. Afferents

innervating the horizontal and superior cristae increased their

discharge to rotations resulting in utriculofugal and utriculopetal

endolymph flow, respectively, and would decrease in discharge in

response to turntable rotations in the opposite direction. Afferents

projecting to the utricle were generally unresponsive to rotations,

or increased their discharge during application of rotations in both

directions (centripetal displacements of the otolithic membrane

concomitant with rotation in either direction). These afferents were

excluded from the present dataset.

2.2 Data analysis

2.2.1 Data acquisition, summary statistics and
exploratory analysis

Single-unit spike times were acquired in 20-second records

with 300µs resolution, and imported into MATLAB as arrays

of interspike interval (ISI) lengths in seconds. Plots of spike

time data and ISIs were visually inspected to identify trends,

discontinuities and outliers indicating possible miss-triggering

during data acquisition. We tested for serial correlation in interval

length using a Wald-Wolfowitz runs test (MATLAB function

runstest). Records with detectable artifacts or non-stationarity were

removed, leaving 306 of an initial 330 records for further analysis

and modeling.

Mean (x), standard deviation (s), coefficient of variation (CV =
s/x) and Pearson’s moment of skewness (γ = E[(x− µ)3]/σ 3)

were computed for the intervals in each spike train, usingMATLAB

functions mean, std, and skewness. Standard deviations of interval

length for the most regular units in our sample are comparable

to the resolution of spike time data acquisition (300µs). Because

of this, estimates of CV and skewness for very regular units may

be less reliable than estimates for irregular units. CV is a scale-

invariant measure of variability. It is near zero for highly regular

spike trains, near 1 for completely random or Poisson-like activity

and becomes larger than 1 for clumped or bursting activity. By

convention, neurons whose CV falls in the lowest 1/3 of a sample

of vestibular afferents are deemed “regular,” neurons whose CV

falls in the largest 1/3 are deemed “irregular,” while neurons with

intermediate CV are deemed “intermediate” (4, 10). As Goldberg

(12) reiterated, this convention is a rhetorical convenience with no

empirical basis.

2.2.2 Candidate models
The selected records are observations from a stationary renewal

process that can be modeled as samples from a constant-parameter

probability distribution of interval lengths. This is a complete

model because the event times themselves, up to an arbitrary start

time, can be recovered from the sequence of intervals between

them. Since interval lengths must be positive and can have arbitrary

length any candidate model must be probability density functions

f (t; α) defined on t > 0 with parameters α.
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Previous studies have shown a consistent pattern of ISI

distributions in vestibular afferent spike trains. ISI distributions

of the most regular afferents have narrow distributions which are

nearly symmetrical and approximately Gaussian, with standard

deviations much smaller than mean interval length (σ ≪ µ). A

Gaussian with σ ≪µ > 0 has essentially no probability mass below

zero and can be treated as a density on t > 0. ISI distributions of

more irregular neurons tend to be more right-skewed with larger

CVs, while interval distributions of the most irregular neurons

resemble exponential distributions, with standard deviation

similar to mean interval length (CV = 1). Suitable candidate

models therefore are positive-valued, continuously-parameterized

probability densities whose shape transforms continuously between

limiting cases resembling Gaussian and Exponential distributions.

Candidate models are presented in three groups, to provide

transparency about how we selected these candidates and were

ultimately led by analysis of the data in three successive stages,

to obtain a model that accurately reproduces the shape of the

data distribution and quantifies the information that it contains.

The first group (1.1–1.5) is the initial set of candidates chosen

because they represent models of simple physical processes that

are at least somewhat analogous to the canonical “noisy integrate-

and-fire” model of a stochastic neuron and/or have been applied

previously to model spiking statistics of neurons, including

vestibular semicircular canal afferent neurons. The second group

(2.1–2.3) contains modified forms of candidates from the first

group, which appeared promising after the first round of fitting.

These models have an additional parameter which, as explained

below, we expected would provide a better fit. To construct the

third group of candidates (3.1–3.3) we modified the same group of

“promising” candidates by incorporating the additional parameter

in a different way, for reasons that will be explained.

Candidate 1.1:Weibull

fWB (t; λ, κ) =

{

κ
λ

(

t
λ

)κ−1
e−( t

λ
)
k

t ≥ 0

0 t < 0

is the distribution of intervals between events when event rate is

proportional to a power of the waiting time since the last event.

This is a birth-death model with “aging.” When κ = 1 (constant

event rate) the Weibull reduces to an Exponential distribution.

Candidate 1.2: Log-normal

fLN (t; µ, σ) =
1

tσ
√
2π

e

(

− (ln t−µ)2

2σ2

)

is the distribution of outcomes of a growth process involving

multiplicative interactions among many small random effects.

Multiplicative interactions are additive on a log scale, so the log of

the outcome has a Gaussian or normal distribution because of the

Central Limit Theorem.

Candidate 1.3: Erlang

fERL (t; κ ,µ) =
tκ−1e

−t
µ

µκ (κ − 1)!

where the shape parameter, κ , is a positive integer and the scale

parameter,µ, is a positive real number, is the distribution of waiting

times for κ events in a Poisson process when the average waiting

time is µ (such that the average waiting time in the underlying

Poisson process is µ
κ
). When κ = 1 the Erlang reduces to an

Exponential distribution, the waiting time distribution for events in

a Poisson process. This has been a popular model of neuronal firing

variability, including for vestibular afferent neurons, because of its

flexible shape which resembles empirical interval distributions, and

because it has a simple mechanistic interpretation as the waiting

time for the accumulation of quantal events occurring at random

times to reach a threshold (25, 26).

Candidate 1.4: Birnbaum-Saunders or Cumulative Damage

fBBS (t; β , γ ) =

√

t
β
+

√

β
t

2γt
√
2π

e






−

(

√

t
β
−

√

β
t

)2

2γ 2







is the distribution of waiting time for the accumulation of events

with a Gaussian distribution of amplitudes occurring at random

times to reach a threshold. It is also known as the Cumulative

Damage distribution because of its application to modeling time-

to-failure of a system subjected to impacts with randommagnitudes

occurring at random times. It is a physically plausible model of

time to threshold for a neuron receiving EPSPs with Gaussian

amplitudes, which fits spike train data from real neurons and

biophysically realistic computational neural models (27).

Candidate 1.5: Inverse Gaussian or Wald

fWLD (t; µ, λ) =
√

λ

2π t3
e

(

− λ(t−µ)2

2µ2 t

)

is the distribution of waiting times for Gaussian noise with mean

1/µwith and variance 1/λ to integrate to a threshold at 1. It models

the first passage time (time to reach a barrier or integrate to a

threshold) of a drift-diffusion process, i.e., Brownian motion in

constant flow (28, 29).

The second candidate group was constructed by modifying

candidates selected from Group 1 by adding a time offset or delay

term to each model. The reason for adding this term is explained in

the results section, following analysis of the fitted Group 1 models.

Candidate 2.1: Offset Erlang

fOEL (t; κ ,µ, τ) = τ +
tκ−1e

−t
µ

µκ (κ − 1)!

Candidate 2.2: Offset Wald

fOWL (t; µ, λ, τ) = τ +
√

λ

2π t3
e

(

− λ(t−µ)2

2µ2t

)

Candidate 2.3: Offset Birnbaum-Saunders

fOBS (t; β , γ , τ) = τ +

√

t
β
+

√

β
t

2γt
√
2π

e






−

(

√

t
β
−

√

β
t

)2

2γ 2






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The third candidate group was constructed by replacing the

constant offset parameter τ in the Group 2 models with an

Exponentially distributed random time offset having mean τ . In

each case this creates a new random variable as the sum of two

random variables, whose distribution is the convolution of the

distributions of the components. We changed the time offset from

a fixed value to a random value for reasons explained in the results

section following analysis of the fitted Group 2 models.

Candidate 3.1: Exerlang

fEXE (x; κ ,µ, τ) =
1

τ
(

1− µ
τ

)κ e
− x

τ

gammainc

(

x

(

1

µ
−

1

τ

)

, κ

)

This expression for the convolution of an Exponential

distribution and an Erlang distribution was obtained using

Mathematica (Wolfram Research, Illinois, USA). Gammainc is

the MATLAB incomplete gamma function, a MATLAB built-

in special function. The incomplete gamma function is defined

slightly differently in MATLAB and Mathematica, so the result

derived byMathematica requires adjustment to obtain the formula

given above.

Candidate 3.2: Exwald

fEXW (x; µ, λ, τ) =











e

(

λ
µ
− t

τ

)

(

(erfc(b−c))
d+d(erfc(b+c))

)

(2τ)
if a ≥ 0

e

(

λ
µ − t

τ

)

e−(b
2+at)Re

(

w
(√

−at+ib
))

τ
otherwise.

Where a = λ

(2µ2)
− 1

τ
, b =

√

λ
(2t) and c =

√
at. erfc

is the complementary error function, w is the Fadeeva scaled

complex complementary error function (30), i =
√
−1 and

Re(z) is the real part of the complex number z. This expression

was modified from formulae given by Schwarz (31), by setting the

barrier distance/threshold level parameter in the Wald component

of Schwarz’s derivation to 1 and scaling the other parameters

accordingly. We found that this expression can be numerically

unstable when λ ≪ µ (diffusion negligible compared to drift)

or τ ≪ µ (Exponential component negligible compared to Wald

component). In the former case we reduced the Wald drift-

diffusion component to a pure drift, approximating the Exwald

using an Exponential distribution with fixed time offset, µ. In the

latter case we removed the Exponential component, approximating

the Exwald using only theWald component. None of our data were

fitted by models with parameters in regions of parameter space

where these approximations were applied, but it was necessary to

include these approximations to prevent numerical instability in

the numerical search procedure used for fitting the models, which

explores a wider parameter space before converging.

Candidate 3.3: Exgaussian

fEXG (x; µ, σ , τ) =
1

2τ
e

(

2(µ−x)+σ2

τ

)

erfc(µ − x+
σ 2

τ
)

This expression for the convolution of a Gaussian distribution

with mean µ and variance σ 2 and an Exponential distribution

with mean interval parameter τ was derived analytically using

Mathematica (Wolfram Research, Illinois, USA). In this expression,

erfc(x) = 2√
π

∫ ∞
x e−t2dt, is the complementary error function, a

MATLAB built-in Special Function.

2.2.3 Fitting and model selection criteria
Given an observed probability distribution p(t), and a model

q (t), the Kullback-Liebler divergence from q(t) to p (t), also known

as entropy of p(t) relative to q (t), is

DKL

(

p
∥

∥q
)

=
∫

p (t) log2
p (t)

q (t)
dt. (1)

DKL measures information lost in bits when q (t) is used

to approximate the empirical distribution, p (t). Given a set of

candidate models, minimum DKL identifies the candidate that

minimizes the expected information in future observations, given

what has been observed (3, 32, 33). This criterion, which avoids the

problem of over-fitting (i.e., models with too many free parameters

that fit better but make worse predictions) provided the theoretical

foundation used by Akaike (34) to derive his famous information

criterion (AIC) for model selection (n.b. the cited paper is a reprint

of Akaike’s original 1973 conference paper). AIC is asymptotically

equivalent to DKL, i.e., is expected to give the same answer as DKL

on average in the long run. AIC is usually used instead of DKL

because DKL requires the true data distribution to be known. We

apply DKL under the bootstrap assumption that our data sets are

large enough represent the true shapes of the distributions that they

are drawn from, which is justified by inspection of ISI histograms

(35, 36).

Given N observations t1, t2, · · · , tN , the empirical distribution

can be represented as a normalized frequency histogram, with

probability pk = nk
N in the k th bin, where nk is the number of

observations in the k th bin. Assuming that q (t) ≈ qk is constant

in the kth bin, the expression for DKL reduces to a sum,

DKL

(

p
∥

∥q
)

=
∫

p (t) log2
p (t)

q (t)
dt =

∑

pk log2
pk

qk
(2)

If each bin is very narrow and contains at most one observation

then q (t) = qk and the normalized histogram reduces to a particle

model, with probability p (tk) = 1
N at the observed points tk and

zero elsewhere. In that case the expression for DKL reduces to

DKL

(

p
∥

∥q
)

=
∫

δ (t − tk)

N
log2

(

δ (t − tk)

N q (t)

)

dt

= −
1

N

∑

log2
(

q (tk) /N
)

. (3)

Thus

DKL

(

p
∥

∥q
)

= −
1

N

∑

log2
(

q (tk)
)

+ log2 (N) , (4)

is negative log-likelihood with a logarithmic penalty on sample size.

Since the sample size is fixed in each record, fitting a

model by minimum DKL is equivalent to fitting a model by
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maximum likelihood for any given neuron. However, across

neurons KLD scales the log-likelihood by the entropy of the

empirical distribution, giving a measure of model performance

which is independent of differences in variability of spike time data

from different neurons. For example, regular neurons have narrow

ISI distributions with high probability densities and generate more

spikes during the 20-second recording period because they fire

faster. As a result, the likelihood for any given model is generally

larger for more regular neurons, and using maximum likelihood

would bias selection in favor of candidates that are better at

fitting regular neurons. DKL avoids this problem. Having said that,

we found that using maximum likelihood as a model-selection

criterion leads to qualitatively similar results as usingDKL, and does

not affect our conclusions.

2.2.4 Model fitting
Models were fitted using the MATLAB function fminseachbnd

1.4.0 which implements the Nelder-Mead simplex algorithm (37)

with constraints or bounds on allowable parameter values. The

constraints were applied to prevent the algorithm from stepping

outside the region of parameter space in which a model is

defined (e.g., negative mean interval length), which would produce

meaningless results and/or numerical instability.

2.2.5 Analysis of fitted models
Candidate models have at most 3 parameters meaning that

fitted parameters for each neuron can be visualized as a point in

3D, and parameters fitted to all records form a cloud in 3D space.

The cloud of points fitted to our data is roughly ellipsoidal in log-

log axes. We computed the major axes of this ellipsoid using the

pca function in the MATLAB Statistics Toolbox. We computed

the convex hull of parameter estimates in 2D projections (the

smallest polygon enclosing all points) using the MATLAB built-in

function convhull. We used the first principal component axis to

generate curves in parameter space showing the predicted value of a

parameter given some other parameter. For example, to show how a

model parameter α relates to the summary statistic CV= s
x , we find

parameters on the first principal component axis corresponding to

a model with this CV. Simple closed expressions can be found in all

cases, i.e., it is not necessary to use numerical optimization/search

procedures to compute these curves.

3 Results

3.1 Summary statistics

Figure 1A is a scatterplot of conventional ISI summary

statistics, mean and coefficient of variation. It shows the

heterogeneity of spontaneous discharge characteristics, and the

tendency for neurons with shorter mean intervals (higher firing

rates) to have more regular firing patterns. The average mean

interval is 16.9ms (± 13.0ms) and the average CV is 0.17 (±
0.22). This plot closely resembles scatterplots of mean ISI vs. CV

in previous reports of vestibular afferent neuron spiking activity

[c.f. Baird et al. (24), Figure 1; Goldberg (12); Honrubia et al. (38),

Figure 6B; Hullar et al. (39), Figure 1]. The scatterplot shows the

wide variation in mean interval length and CV with no indication

of distinct groups within the population.

ISI histograms for three selected afferents are overlaid on

the scatterplot. They closely resemble ISI distributions previously

reported in vestibular afferents in various species (3). The inset

shows these three distributions plotted on common axes. This

illustrates that while mean and CV reveal substantial diversity

in spontaneous behavior of these neurons, these descriptive

statistics fail to characterize the shapes of ISI distributions and

the large, systematic shape changes across the population. Regular

afferents, with faster mean firing rates tend to have narrow,

approximately Gaussian ISI distributions, while irregular, slower-

firing afferents tend to have positively skewed ISI distributions. The

most irregular afferents, with CVs near 1, have ISI distributions that

resemble right-shifted or left-censored Exponential distributions.

Exponential interval distributions are characteristic of Poisson

processes, for which the average time between events is fixed

but event times are random (40, 41). Poisson distributions have

the unique property that removing intervals shorter than some

specified duration (left-censoring) is equivalent to right-shifting the

distribution by that duration.

3.2 Fitted models

Group 1 candidate models (Weibull, Log-normal, Erlang

or Integer Gamma, Inverse Gaussian or Wald, and Birnbaum-

Saunders or Cumulative Damage Distribution; see Methods) are

continuous probability distributions defined on positive intervals.

For brevity, we refer to the Birnbaum-Saunders/Cumulative

Damage Distribution as the Damage distribution. These candidates

were selected because they possess the requisite property of having

Gaussian-like shapes for some parameter values and highly skewed

Exponential-like shapes for other parameter values. Weibull and

Lognormal candidates were quickly eliminated because they fit

poorly and there are obvious qualitative discrepancies between the

shapes of the empirical distributions and these candidate models.

The remaining candidates, Erlang, Wald, and Damage

distributions, all seem capable of generating the shapes of the

empirical interval distributions. In addition, they are all waiting

time distributions for random counting or integrating processes to

reach a threshold and can be interpreted in terms of simple models

of physical mechanisms that underlie neuronal spiking. All have

previously been proposed as models of neuronal spiking variability

(See Methods). Each of these distributions has two free parameters.

The relative goodness of fit for these three models is shown

in the left column of Figure 1B (native). The vertical axis in

this figure (1DKL) is the mean difference between Kullback-

Leibler Divergence from model to data for each model relative

to the Kullback-Leibler Divergence of the best-fitting model (See

Methods). Error bars represent the standard error of mean 1DKL.

By this criterion the Damage distribution is the best candidate,

followed by the Wald and the Erlang.

Inspection of plots of best-fitting models overlaid on the

empirical interval distributions showed that in many cases a

fitted model deviated systematically from the data, but manual
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FIGURE 1

(A)Mean interspike interval (ISI) vs. coe�cient of variation (CV) of spontaneous discharge for 306 horizontal semicircular canal a�erent neurons (filled

circles). Representative ISI histograms are shown for regular (blue), intermediate (teal), and irregular (magenta) a�erents with arrows indicating the

location of the selected neuron on the scatterplot. Aspect ratios of the histograms are di�erent (note scale bars). (B) Kullback-Liebler (K-L)

divergence of fitted candidate models subtracted from the Kullback-Liebler divergence of the best fitted candidate (Exwald). Candidates are grouped

into random walk models (native), fixed o�set random walk models (fixed-o�set) and stochastic random walk models (stochastic). Each point (black

diamond) is the mean K-L divergence for a given model over all spike trains. The error bars represent standard errors of these means.

adjustment of parameters indicated that the model should be

capable of fitting the shape of the empirical distributionmuchmore

accurately than it did. We hypothesized that this may be because

the parameters of these models do not affect shape and location

independently. Changing the value of a parameter generally causes

a change in the shape of the distribution and to shift the distribution

along the time axis. Because the Kullback-Liebler criterion harshly

penalizes models that assign negligible probability to observed
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values, minimum DKL favors models that place probability mass in

locations where there is data over models whose shapes match the

shapes of the data distributions.

We reasoned that adding a time delay parameter would allow

Group 1 models to match the shapes of the data distributions and

shift their locations to align with the data. The second panel in

Figure 1B (fixed offset) shows that this additional offset parameter

improves DKL for each model, and visual inspection of plots

confirmed that all three offset models can accurately match the

shapes of the empirical distributions in the correct locations. The

performance improvement due to the additional free parameter is

similar for each model, so that their ranking remains the same. The

offset Damage model is the best, followed by the offset Wald and

offset Erlang.

Although introducing a time offset parameter confirmed that

there is (at least) a degree of freedommissing in each of the group 1

(native) statistical models, a pure time offset in a model of neuronal

spiking is implausible. This is not only because if interpreted

realistically this term would represent a biophysical mechanism

capable of producing precisely timed fixed intervals, with different

durations in different neurons, but also because some of the fitted

time offset parameters in the group 2 models are negative. Negative

time offsets would require a clock that starts at a fixed time before a

random future event, which would violate causality.

The simplest realistic way to extend the group 1 models in

a way that adds a degree of freedom in location is to include a

Poisson process in series. A Poisson process has only one parameter,

the mean interval length, and has maximum entropy given the

constraint that intervals must have positive real durations with a

finite mean (66). It follows that the modification can be justified by

Jaynes’ Principle of Maximum Entropy (32) because it incorporates

what was learned from fitting the Group 1 (native) candidate

models with no additional assumptions or constraints.

Intervals between events in a Poisson process have an

Exponential distribution. The third panel of Figure 1B (stochastic)

shows that adding an Exponentially distributed random delay term

to each of the Erlang, Damage andWald models improves the fit of

all these models. As might be expected, since the time-offset models

fit quite precisely and the Poisson series element must introduce

a shape change in addition to a time offset, the Poisson element

doesn’t improve the fit of the Erlang or Damage models as much

as a pure time offset does. Surprisingly, however, it improves the

fit of the Wald model by even more than a pure time offset does.

Adding an additional degree of freedom in this way not only allows

the model to position itself over the data but also allows it to better

match the shape of the data distribution.

An Exponential distribution in series with a Wald distribution

is called an Exwald distribution (31, 42). Analogously, we refer to

the Exponentially-extended Erlang and Damage distributions the

Exerlang and Exdamage distributions respectively.

Figure 2 shows Exwald models fitted to ISI histograms

for a regular, an intermediate and an irregular unit. These

are the same example units shown in Figure 1A. Components

of the intermediate model, for which the decomposition is

easiest to see, are labeled. All neurons, not just these three

examples, have a refractory period in the order of 10ms

during which the probability of spiking is essentially zero.

The refractory period appears to be determined by the Wald

component, while the extent of the tail, corresponding to

spiking irregularity, appears to be determined by the Exponential

or Poisson component. Shape and location parameters of the

Wald components are similar for all three neurons, while the

parameter of the Poisson component is larger for more irregular

neurons.

Figure 2 shows Exwald models fitted to spontaneous discharge

ISI histograms for the three units displayed in Figure 1A. Inset plots

show the Exponential and Wald components of each fitted model.

Wald components tend to be similar for all neurons, Gaussian-like

with means around 13ms and small positive skewness. Differences

in shapes of model distributions are mostly a result of changes in

the Poisson mean interval parameter. This suggests that it may be

possible to replace the Wald component of the Exwald model with

a Gaussian distribution to obtain simpler models that fit as well as

the Exwald. We tested this possibility by adding an Exponential

distribution in series with a Gaussian distribution (Exnormal) to

the “stochastic” candidate set. The Exnormal model does not fit the

data as well as the Exwald model does, although the difference is

small (Figure 1B).

In summary, Figure 1B shows that the Exwald distribution is

the best model among candidates that we tested. Figure 2 shows

that Exwald distributions can accurately match the shapes and

locations of disparate ISI distributions of semicircular canal afferent

neuron spontaneous discharge, using only three free parameters.

3.3 Analysis of the Exwald model

The Exwald is the distribution of intervals generated by an

Inverse Gaussian process in series with a Poisson process. Each

interval in an Exwald distribution is the sum of an interval

drawn from the Wald component and an interval drawn from

the Exponential component. The Exwald has three parameters: µ

and λ, which are the mean interval and shape parameters of the

Wald distribution, and τ , which is the parameter of the Exponential

interval distribution of the Poisson process. The parameters are

all positive quantities with dimensions of time, reported here

in milliseconds.

Figure 3 shows the result of principal component analysis

(PCA) of Exwald model parameters. The fitted parameters form a

flattened, elongated ellipsoidal cloud of points when plotted on log-

log axes in 3D. PCA was used to find the major axes of an ellipsoid

fitted to this cloud. The four panels show the parameter cloud and

the principal component axes projected into the three coordinate

planes of the parameter space.

Figures 3B, C show that the first principal component axis of

the parameter distribution is almost parallel to the τ − λ plane,

with values of µ clustered around the mean value of 12.7ms. In

contrast, τ varies over roughly 4 orders of magnitude while λ varies

over roughly 2 orders of magnitude. Figure 3D shows that most of

the variation among parameters, and correspondingly most of the

differences between interval distributions, can be explained by only

two parameters, τ and λ. The first principal component has a slope

near −0.5 in the τ − λ plane. A slope of −0.5 on log-log axes

indicates an inverse square relationship between these parameters

λ ∝ 1√
τ
.
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FIGURE 2

(A–C) Fitted Exwald models (magenta) overlaid on empirical ISI histograms (cyan) for the three representative neurons shown in Figure 1A. In each

case the inset plots show the decomposition of the Exwald model into its Exponential (or Poisson; purple) and Wald (or Inverse Gaussian; green)

components. As in Figure 1A the axes have di�erent scales for each represented a�erent.

3.3.1 Relationship between Exwald model
parameters and conventional summary statistics

Figure 4 shows how the parameters of fitted Exwald models

are related to the conventional summary statistics historically used

to describe the statistical diversity of vestibular afferent firing

patterns, mean ISI and CV. The curve in Figure 4A shows the

Exwald model-predicted CV for parameters on the first principal

component axis corresponding to a model with the specified mean

ISI. It is a projection of PC1 from log (τ ) − log(λ) parameter

space into mean ISI–CV parameter space. It shows that the

Exwald model predicts the known relationship between mean ISI

and CV (12, 24). Similarly, the curves in Figures 4B, C show

that the Exwald parameter τ is a good predictor of CV and

mean ISI.

Figure 4 shows that τ characterizes not only the change inmean

and variability of ISI distributions over the population, but also the

systematic change in shape of the distributions. For small values of

τ , (τ ≪ ISI ≈ 12.7ms), interval length is largely determined by the

Wald component, while for large values of τ , (τ ≫ ISI ≈ 12.7ms),

interval length is largely determined by the Poisson component.

Thus τ characterizes the continuous diversity of statistical behavior

in vestibular afferent neurons from rapidly firing, regular neurons

whose interval distributions resemble narrow Gaussians to slowly

firing, irregular neurons whose interval distributions resemble

right-shifted or (equivalently) left-censored Exponentials. This

parameter characterizes afferent diversity in a more natural and

informative way than the conventional summary statistics CV or

CV∗ (c.f. Figure 3).
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FIGURE 3

Principal component analysis of Exwald model parameters. (A) The 3D cloud of fitted parameter values (purple) projected into each of the coordinate

planes on log-log axes. The aspect ratio is the same on all axes, such that each grid unit represents a tenfold change in magnitude for any of the

parameters. (B–D) Projection planes showing relationships between each pair of parameters (B: τ vs. µ, C: l vs. µ, and D: τ vs. l). Magenta lines

represent the first principal component axis projected onto the 2D parameter planes in each case. The cyan line in D represents the second principal

component for that distribution. These plots show that almost all variation in parameter space (and thus in ISI shape space) is explained by τ and l.

These parameters both vary over several orders of magnitude. In contrast, µ is similar in all models, close to the average value of 12.7 ms.

3.3.2 Distribution of Exwald model shapes in
model parameter space

Figure 5 is a map showing how shapes of ISI distributions

vary systematically in parameter space. Parameter values fitted to

data are plotted as blue disks. The first two principal component

axes are shown. The dashed line is the convex hull, the smallest

polygon enclosing the fitted parameter points. Shapes of Exwald

model interval distributions are drawn on a grid aligned with the

principal component axes. For each distribution, t = 0 is plotted at

the grid point. The time (horizontal) scales are all the same but the

vertical (probability density) axes are scaled so that all distributions

have the same peak height. In reality the distributions for the most

regular neurons (upper left of the map) are so much taller than the

distributions for the most irregular neurons (lower right) that it is

infeasible to render the shapes on the same plot without scaling.

The inset (lower left) shows the true shapes of five distributions

spaced along the first principal component axis.

Figure 5 indicates that the first principal component

measures ISI variability, which is strongly predicted by τ

(c.f. Figure 4B). The second principal component measures

variability of the refractory period, which is strongly predicted

by λ, as evidenced by the increasingly steep onset of spiking

probability after a refractory period in the direction of the second

principal component.

The principal components analysis shows that 91.7% of

parameter variance is explained by the first principal component,

7.6% by the second and 0.7% by the third. This indicates that almost

all variation in spontaneous discharge behavior of semicircular

canal afferent neurons can be explained by a single parameter

of the model, corresponding to a single degree of freedom in

the underlying mechanisms. Among the Exwald parameters, the

Poisson mean interval, τ , is most closely correlated with this degree

of freedom. The high proportion of between-neuron variability

explained by variation in τ , combined with the fact that CV can

be predicted by τ alone (Figures 4B, C), explains why spontaneous

firing regularity, quantified by CV or CV∗, is a useful rhetorical

convention for summarizing the behavior of semicircular canal

afferent neurons within the diverse population.
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FIGURE 4

Relationship between the Poisson parameter τ of the Exwald model and conventional summary statistics of spontaneous activity, mean ISI and CV.

(A) Scatterplot of mean ISI vs. CV (c.f. Figure 1A). The magenta curve drawn over the scattered data points shows CV computed from the Exwald

model whose parameters are given by the first principal component of fitted parameter values for a specified mean ISI. (B) Scatterplot of τ vs. CV.

The magenta curve shows CV computed from the Exwald model on the first principal component axis for specified τ . (C) Scatterplot of τ vs. mean

ISI. Magenta curve shows the mean ISI computed from the Exwald model on the first principal component axis for a given τ .

4 Discussion

4.1 Spontaneous spike trains of
semicircular canal a�erent neurons are
refractory-censored Poisson processes

We have shown that diverse spontaneous discharge

characteristics of semicircular canal afferent neurons can

be accurately quantified by modeling interspike intervals as

independent samples from an Exwald distribution. A sample

from an Exwald distribution is the sum of two components, a

sample from an Exponential distribution and a sample from an

Inverse Gaussian distribution. The Exponential is the interval

distribution of a Poisson process and the Inverse Gaussian is the

distribution of first passage times of a drift-diffusion process. These

components can be in any order, but because of a counter-intuitive

statistical property of Poisson processes, an Exwald process can be

interpreted as a Poisson process with stochastic refractory periods

determined by an Inverse Gaussian process. The counter-intuitive

property is that the waiting time distribution for the next event in a

Poisson process is independent of the time since the previous event

(40). If events are blocked for an arbitrary time after an event, then

the interval to the next event will be the sum of the blocking time

plus a sample from the Poisson process. If the blocking time is a

sample from an Inverse Gaussian distribution then the interval

will be a sample from an Exwald distribution. A statistician would

call this an Inverse Gaussian left-censored Poisson process, while a

neuroscientist might refer to it as a Poisson process with stochastic

refractory periods determined by an Inverse Gaussian process.

Distributions of refractory periods in fittedmodels are generally

narrow and nearly symmetric with means near µ = 12.7ms

(Figure 2). In contrast, the parameters of the Poisson component

vary over nearly four orders of magnitude, from microseconds

to seconds. Consequently, differences in shapes of fitted Exwald

models are largely due to differences in the Poisson components.

This is surprising because we constructed the Exwald candidate

model by adding an Exponential component to the Inverse

Gaussian model, after initial fits indicated a need to add a

degree of freedom to the location, not the shape, of the Inverse

Gaussian model.
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FIGURE 5

Map of ISI distributions in Exwald parameter space. Scatterplot of fitted parameters in the τ-λ plane (black filled circles), with principal component

axes (PC1, PC2) projected onto the plane. The dashed blue line is the convex hull of fitted parameter points. Overlaid Exwald models illustrate how

the shape of ISI distributions vary across this region of parameter space. These plots have been scaled so that they have the same height. Inset (lower

left) shows the unscaled proportions for five models whose parameters lie on the first principal component axis. These models correspond to the five

yellow markers drawn on that axis.

4.2 A simple ideal physical model can
mimic spontaneous activity

Simple physical mechanisms can generate samples from

Poisson processes and Wald processes, which can be combined

to form a simple mechanism that can generate samples from an

Exwald process. A Poisson process can be implemented using a

threshold trigger mechanism in noise (43). A Wald process can

be implemented by integrating Gaussian noise until the integral

reaches a threshold, at which time an event is generated and

the integral is reset to its initial level (44). This is familiar to

neuroscientists as an integrate-and-fire process. It follows that

event sequences whose inter-event intervals are samples from an

Exwald process can be generated by a threshold trigger mechanism

in noise that is blocked by an integrate-and-fire mechanism after

each event.

4.3 The ideal physical model is a stochastic
dynamical model

As noted in the introduction, continuity suggests that a

model of spontaneous activity, the response at a point in head

kinematic state space, should be interpretable as a model of

dynamical responses in at least a small region near that point.

The ideal physical model can be used to demonstrate how the

Exwald model could be extended to form a stochastic dynamical

model of semicircular canal afferent neuron behavior during

head movement.

Suppose that each component of the physical model receives

the same noise input, and the mean input level is determined by

head angular acceleration around the canal axis. For any fixedmean

input level (constant angular acceleration) this model will produce

an event sequence with an Exwald interval distribution. Each

interval has two components, a Poisson component whose mean

rate depends on the mean of the input (head angular acceleration)

and an Inverse Gaussian component whose mean rate depends

on the integral of the mean of the input (head angular velocity).

Poisson processes have highly variable interval lengths (CV = 1)

while Inverse Gaussian processes, in the region of parameter space

occupied by our fitted models (Figure 5), have much more regular

interval lengths (CV= µ/λ).

This simple model predicts the pattern of changes in variability

(CV) of semicircular canal afferent neuron discharge during

constant angular acceleration (3, 12). It also predicts that irregular

neurons (with larger values of τ , which determines the relative

contribution of the Poisson component to interval length) tend to

fire in phase with head angular acceleration while regular neurons

(whose spontaneous interval lengths are dominated by the Inverse
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Gaussian component) tend to fire in phase with head angular

velocity. It remains to be determined whether this model canmimic

the stochastic dynamical responses of semicircular canal afferent

neuron discharge during arbitrary naturalistic head motion.

4.4 There is a unimodal distribution of
model parameters across the population

Our data and analysis confirm that “regular” and “irregular”

represent two ends of a unimodal distribution of statistical and

dynamical characteristics of semicircular canal afferent neurons

(3, 12). The Exwald model can explain the co-variation of statistical

and dynamical parameters in terms of the relative contribution

of regular velocity-sensitive and irregular acceleration-sensitive

components that contribute to the response of each afferent. There

are not two types of neurons in this population, just a single

type with two components. There is no sign of bimodality in the

distribution of parameters fitted to our data.

4.5 Semicircular canal a�erents provide a
fast, e�cient communication channel from
molecular mechanoreceptors to the brain

Mechanoreceptor channels in hair cells in the sensory

epithelium of a semicircular canal open when the gating force

exceeds a threshold. The gating force depends on the rotational

component of the inertial force due to head acceleration around

the canal axis plus random fluctuations due to thermal noise

(i.e., random molecular motion) in the coupling and transduction

mechanisms. Gating energies are so small that thermal noise causes

the channels to open and close randomly thousands of times per

second even when the head is not moving. These mechanically

gated channels are thereby threshold trigger mechanisms whose

inputs are noisy observations of head angular acceleration. They

gather information about head angular acceleration with sub-

thermal noise sensitivity, and with bandwidth exceeding 10

KHz (45–50).

The high energy cost of high average firing rates constrains

the bandwidth of information transmission by spiking neurons.

The cost becomes prohibitive if average intervals become smaller

than a few milliseconds. Spiking neurons generally have refractory

periods that enforce longer average interspike intervals (51–53).

The Exwaldmodel indicates that semicircular canal afferent neuron

spike trains are Poisson processes with mean rates exceeding tens

of thousands of events per second (mean interval τ <0.1ms),

censored by random refractory periods a few milliseconds in

duration. Because of random refractory censoring, a semicircular

canal afferent neuron spike train is a random subsample from

an underlying Poisson process whose rate is specified by the

Exponential parameter, τ , of the Exwald model.

A Poisson process with a mean rate in the order of 10KHz

(mean interval 0.1ms) censored with a mean refractory period in

the order of 10ms will be randomly decimated by a factor of about

100. Statistically independent subsampling in different neurons

allows a population containing hundreds of neurons to transmit all

of the information contained in a Poisson process whose mean rate

greatly exceeds 100Hz, without paying the punitive energy costs

entailed by individual neurons firing at such high rates (54–56).

Thus it would be possible for the approximately 1,000 semicircular

canal afferent neurons that project from each canal (57, 58) to

quickly and efficiently transmit all of the information captured by

mechanoreceptor gate-opening events in hair cells to the brain.

4.6 Head kinematic state can be inferred
from Exwald-distributed observations

The Bayesian posterior distribution of the parameters of a

stochastic process can be inferred from a sequence of observations

by applying Bayes rule to update a prior estimate of the distribution

when each observation is made (59). This is called Bayesian

filtering. The Bayesian update rule requires a likelihood function,

which specifies the probability distribution of observations as a

function of the unknown parameters, and a dynamical model of

the observed system.

Our data and analysis suggest that interspike intervals of

semicircular canal afferent neuron spike trains can be modeled

as observations of head kinematic state, by re-parameterizing the

Exwald model in terms of the state variables. The ideal physical

model described in Sections 4.2 and 4.3 shows explicitly how this

may be done. The model defines a likelihood function for the

state variables given each observation. This is because over a small

interval the trajectory of any dynamical system can be predicted by

taking the tangent to its trajectory at the current state estimate and

using a Gaussian with increasing variance to model the growth of

uncertainty about the true state as the prediction interval increases.

The linear-Gaussian prediction rule is a model of a physical drift-

diffusion process (and vice versa), in which the tangent direction

and speed corresponds to mean particle velocity (the drift vector)

and the increasing variance corresponds to diffusion away from the

mean particle position. This principle underlies the Kalman filter

and modern Bayesian filtering methods for non-linear dynamical

state estimation (60).

We speculate that Bayesian particle filters (59, 61) may provide

realistic models of neural computation for Bayesian inference in

the brain. A particle filter represents a probability distribution

by a random sample of points (particles) drawn from it. These

algorithms can be applied to model neural computation by

interpreting neural networks in the brain as maps of relevant

parameter spaces in which neurons correspond to points in the

space and spikes represent particles created at and moving between

these points (62–65).

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Frontiers inNeurology 13 frontiersin.org

https://doi.org/10.3389/fneur.2024.1465211
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Paulin et al. 10.3389/fneur.2024.1465211

Ethics statement

The animal study was approved by Chancellor’s

Animal Research Committee, UCLA. The study was

conducted in accordance with the local legislation and

institutional requirements.

Author contributions

MP: Conceptualization, Formal analysis, Investigation,

Methodology, Supervision, Validation, Writing – original draft,

Writing – review & editing. KP: Data curation, Formal analysis,

Writing – review & editing. LH: Conceptualization, Data curation,

Formal analysis, Funding acquisition, Investigation, Methodology,

Resources, Validation, Writing – reviews & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by the NIH/NIDCD (R01DC019459). The funder

had no role in directing or the conduct of this research.

Acknowledgments

The authors gratefully acknowledge the support of the NIH

toward the conduct of this research (R01DC019459 to LH).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Steinhausen W. Concerning the observations of the cupula on the
membranaceous ampullae of the vestiblular labyrinth in living pike. Pflugers
Arch Gesamte Physiol Menschen Tiere. (1933) 232:500–12. doi: 10.1007/BF017
54806

2. Straka H, Paulin MG, Hoffman LF. Translations of steinhausen’s publications
provide insight into their contributions to peripheral vestibular neuroscience. Front
Neurol. (2021) 12:676723. doi: 10.3389/fneur.2021.676723

3. Paulin MG, Hoffman LF. Models of vestibular semicircular canal afferent neuron
firing activity. J Neurophysiol. (2019) 122:2548–67. doi: 10.1152/jn.00087.2019

4. Fernandez C, Goldberg JM. Physiology of peripheral neurons innervating
semicircular canals of squirrel monkey 2. Response to sinusoidal stimulation
and dynamics of peripheral vestibular system. J Neurophysiol. (1971)
34:661. doi: 10.1152/jn.1971.34.4.661

5. Landolt JP, Correia MJ. Neurodynamic response analysis of anterior
semicircular canal afferents in the pigeon. J Neurophysiol. (1980)
43:1746–70. doi: 10.1152/jn.1980.43.6.1746

6. O’Leary DP, Honrubia V. Analysis of afferent responses from isolated semicircular
canal of guitarfish using rotational acceleration white-noise inputs. 0.2. Estimation of
linear-system parameters and gain and phase spectra. J Neurophysiol. (1976) 39645–
659.

7. Precht W, Llinas R, Clarke M. Physiological responses of frog vestibular fibers to
horizontal angular rotation. Exper. Brain Res. (1971) 13:378. doi: 10.1007/BF00234338

8. Schneider LW, Anderson DJ. Transfer characteristics of 1st and second
order lateral canal vestibular neurons in gerbil. Brain Res. (1976) 112:61–
76. doi: 10.1016/0006-8993(76)90334-6

9. Tomko DL, Peterka RJ, Schor RH, O’Leary DP. Response dynamics of horizontal
canal afferents in barbiturate-anesthetized cats. J Neurophysiol. (1981) 45:376–
96. doi: 10.1152/jn.1981.45.3.376

10. Goldberg JM, Fernandez C. Physiology of peripheral neurons innervating
semicircular canals of squirrel monkey 3. Variations among units in their discharge
properties. J Neurophysiol. (1971) 34:676. doi: 10.1152/jn.1971.34.4.676

11. Hoffman LF, Paulin MG. Peripheral innervation patterns and discharge
properties of vestibular afferents in amniotes and anamniotes. In: Fritzsch
B. editor The Senses: A Comprehensive Reference. New York: Elsevier
(2020). doi: 10.1016/B978-0-12-805408-6.00020-8

12. Goldberg JM. Afferent diversity and the organization of central
vestibular pathways. Exper Brain Res. (2000) 130:277–97. doi: 10.1007/s0022100
50033

13. Borah J, Young LR, Curry RE. Optimal estimator model for human spatial
orientation. IEEE Trans Syst Man Cybern. (1979) 545:800–805.

14. Selva P, Oman CM. Relationships between Observer and Kalman Filter models
for human dynamic spatial orientation. J Vestib Res Equilibr Orient. (2012) 22:69–
80. doi: 10.3233/VES-2012-0451

15. Paulin MG. The role of the cerebellum in motor control and perception. Brain
Behav Evolut. (1993) 41:39–50. doi: 10.1159/000113822

16. Kalman RE. Theory of regulators of linear plants. In: Kalman RE, Falb PL,
ArbibMA. editors Topics in mathematical system theory. London:McGraw-Hill (1969).
p. 25–66.

17. Keeler JD. A dynamic system view of cerebellar function. Phys D-Nonlinear Phen.
(1990) 42:396–410. doi: 10.1016/0167-2789(90)90091-3

18. Berger JO. Statistical decision theory and Bayesian Analysis (2nd ed.). New York:
Springer-Verlag. (1985). doi: 10.1007/978-1-4757-4286-2

19. Deventer R, Denzler J, Niemann H. Bayesian control of dynamic systems. In:
Abraham A, Jain L, van der Zwaag BJ. editors Innovations in Intelligent Systems. Cham:
Springer (2004). p. 21–50. doi: 10.1007/978-3-540-39615-4_2

20. Chater N, Oaksford M, Hahn U, Heit E. Bayesian models of cognition. Cogn Sci.
(2010) 1:811–23. doi: 10.1002/wcs.79

21. Zednik C, Jakel F. Bayesian reverse-engineering considered as a research
strategy for cognitive science. Synthese. (2016) 193:3951–85. doi: 10.1007/s11229-016-1
180-3

22. Kalman RE. A new approach to linear filtering and prediction problems. Trans
ASME J Basic Eng. (1960) 82:35–45. doi: 10.1115/1.3662552

23. Madhani A, Lewis RF, Karmali F. How peripheral vestibular
damage affects velocity storage: a causative explanation. JARO. (2022)
23:551–66. doi: 10.1007/s10162-022-00853-3

24. Baird RA, Desmadryl G, Fernandez C, Goldberg JM. The vestibular nerve
of the chinchilla 2. Relation between afferent response properties and peripheral
innervation patterns in the semicircular canals. J Neurophysiol. (1988) 60:182–
203. doi: 10.1152/jn.1988.60.1.182

25. Lansky P, Sacerdote L, Zucca C. The Gamma renewal process as an output of
the diffusion leaky integrate-and-fire neuronal model. Biol Cybern. (2016) 110:193–
200. doi: 10.1007/s00422-016-0690-x

26. Shimokawa T, Koyama S, Shinomoto S. A characterization of the time-rescaled
gamma process as a model for spike trains. J Comput Neurosci. (2010) 29:183–
191. doi: 10.1007/s10827-009-0194-y

Frontiers inNeurology 14 frontiersin.org

https://doi.org/10.3389/fneur.2024.1465211
https://doi.org/10.1007/BF01754806
https://doi.org/10.3389/fneur.2021.676723
https://doi.org/10.1152/jn.00087.2019
https://doi.org/10.1152/jn.1971.34.4.661
https://doi.org/10.1152/jn.1980.43.6.1746
https://doi.org/10.1007/BF00234338
https://doi.org/10.1016/0006-8993(76)90334-6
https://doi.org/10.1152/jn.1981.45.3.376
https://doi.org/10.1152/jn.1971.34.4.676
https://doi.org/10.1016/B978-0-12-805408-6.00020-8
https://doi.org/10.1007/s002210050033
https://doi.org/10.3233/VES-2012-0451
https://doi.org/10.1159/000113822
https://doi.org/10.1016/0167-2789(90)90091-3
https://doi.org/10.1007/978-1-4757-4286-2
https://doi.org/10.1007/978-3-540-39615-4_2
https://doi.org/10.1002/wcs.79
https://doi.org/10.1007/s11229-016-1180-3
https://doi.org/10.1115/1.3662552
https://doi.org/10.1007/s10162-022-00853-3
https://doi.org/10.1152/jn.1988.60.1.182
https://doi.org/10.1007/s00422-016-0690-x
https://doi.org/10.1007/s10827-009-0194-y
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Paulin et al. 10.3389/fneur.2024.1465211

27. Leiva V, Tejo M, Guiraud P, Schmachtenberg O, Orio P, Marmolejo-Ramos F.
Modeling neural activity with cumulative damage distributions. Biol Cybern. (2015)
109:421–433. doi: 10.1007/s00422-015-0651-9

28. Chhikara RS, Folks L. The Inverse Gaussian Distribution: Theory, Methodology,
and Applications. New York: CRC Press (1989).

29. Folks JL, Chhikara RS. Inverse Gaussian distribution and its
statistical application—review. J R Stat Soc Series B-Methodol. (1978)
40:263–89. doi: 10.1111/j.2517-6161.1978.tb01039.x

30. Abramowitz M, Stegun IA. Handbook of mathematical functions with formulas,
graphs, and mathematical tables. U.S. Govt. Print. Off. (1964).

31. Schwarz W. On the convolution of inverse Gaussian and exponential
random variables. Commun Stat Theory Methods. (2002) 31:2113–
21. doi: 10.1081/STA-120017215

32. Jaynes ET, Bretthorst GL. Probability Theory: The Logic of Science. Cambridge:
Cambridge University Press (2003). doi: 10.1017/CBO9780511790423

33. Kullback S, Leibler RA. On information and sufficiency. Ann Mathem Stat.
(1951) 22:79–86. doi: 10.1214/aoms/1177729694

34. Akaike H. Information theory and an extension of the maximum likelihood
principle. In: Parzen E, Tanabe K, Kitagawa G. editors Selected Papers of Hirotugu
Akaike. Cham: Springer (1998). p. 199–213. doi: 10.1007/978-1-4612-1694-0_15

35. Efron B. Bootstrap methods: another look at the jackknife. Ann Stat. (1979)
7:1–26. doi: 10.1214/aos/1176344552

36. Viele K. Nonparametric estimation of kullback-leibler information illustrated by
evaluating goodness of fit. Bayesian Anal. (2007) 2:239–80. doi: 10.1214/07-BA210

37. Nelder JA, Mead R. A simplex method for function minimization. Comput J.
(1965) 7:308–13. doi: 10.1093/comjnl/7.4.308

38. Honrubia V, Hoffman LF, Sitko S, Schwartz IR. Anatomic and
physiological correlates in bullfrog vestibular nerve. J Neurophysiol. (1989)
61:688–701. doi: 10.1152/jn.1989.61.4.688

39. Hullar TE, Della Santina CC, Hirvonen T, Lasker DM, Carey JP, Minor LB.
Responses of irregularly discharging chinchilla semicircular canal vestibular-nerve
afferents during high-frequency head rotations. J Neurophysiol. (2005) 93:2777–
86. doi: 10.1152/jn.01002.2004

40. Haight FA. Handbook of the Poisson Distribution. New York: Wiley. (1967).

41. Landolt JP, Correia MJ. Neuromathematical concepts of point process theory.
IEEE Trans Biomed Eng. (1978) 25:1–12. doi: 10.1109/TBME.1978.326370

42. Schwarz W. The ex-Wald distribution as a descriptive model of response times.
Behav Res Methods Instr Comput. (2001) 33:457–69. doi: 10.3758/BF03195403

43. Basano L, Ottonello P. Thermal noise as a source of poisson distributions. Am J
Phys. (1975) 43:452–3. doi: 10.1119/1.9825

44. Wald A. On cumulative sums of random variables. Ann Mathem Stat. (1944)
15:283–296. doi: 10.1214/aoms/1177731235

45. Bialek WS. Biophysics: Searching for Principles. Princeton: Princeton University
Press. (2012).

46. Denk W, Webb WW. Thermal noise-limited transduction observed in
mechanosensory receptors of the inner ear. Phys Rev Lett. (1989) 63:207–
10. doi: 10.1103/PhysRevLett.63.207

47. Devries H. Minimum perceptible energy and brownian motion in sensory
processes. Nature. (1948) 161:63–63. doi: 10.1038/161063b0

48. Hudspeth AJ, Choe Y, Mehta AD, Martin P. Putting ion channels to work:
Mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Nat
Acad Sci. (2000) 97:11765–72. doi: 10.1073/pnas.97.22.11765

49. Markin VS, Hudspeth AJ. Gating-spring models of mechanoelectrical
transduction by hair-cells of the internal ear. Annu Rev Biophys Biomol Struct.
(1995) 24:59–83. doi: 10.1146/annurev.bb.24.060195.000423

50. Torre V, Ashmore JF, Lamb TD, Menini A. Transduction and
adaptation in sensory receptor cells. J Neurosci. (1995) 15:7757–
68. doi: 10.1523/JNEUROSCI.15-12-07757.1995

51. Niven JE. Neuronal energy consumption: biophysics, efficiency and evolution.
Curr Opin Neurobiol. (2016) 41:129–35. doi: 10.1016/j.conb.2016.09.004

52. Sengupta B, Stemmler MB, Friston KJ. Information and efficiency
in the nervous system—a synthesis. PLoS Comput Biol. (2013)
9:e1003157. doi: 10.1371/journal.pcbi.1003157

53. Sterling P, Laughlin S. Principles of Neural Design. London: MIT Press
(2015). doi: 10.7551/mitpress/9780262028707.001.0001

54. Balasubramanian V. Heterogeneity and efficiency in the Brain. Proc IEEE. (2015)
103:1346–58. doi: 10.1109/JPROC.2015.2447016

55. Niven JE, Laughlin SB. Energy limitation as a selective pressure on the evolution
of sensory systems. J Exper Biol. (2008) 211:1792–804. doi: 10.1242/jeb.017574

56. Yu LC, Yu YG. Energy-efficient neural information processing
in individual neurons and neuronal networks. J Neurosci Res. (2017)
95:2253–66. doi: 10.1002/jnr.24131

57. Hoffman LF, Honrubia V. Fiber diameter distributions in the chinchilla’s
ampullary nerves. Hear Res. (2002) 172:37–52. doi: 10.1016/S0378-5955(02)00390-8

58. Honrubia V, Hoffman LF, Newman A, Naito E, Naito Y, Beykirch K. Sensoritopic
and topologic organization of the vestibular nerve. In: The mammalian cochlear nuclei:
Organization and function. (1993). p. 437–49. doi: 10.1007/978-1-4615-2932-3_35

59. Doucet A, De Freitas N, Gordon N. Sequential Monte Carlo Methods in Practice.
Cham: Springer. (2001). doi: 10.1007/978-1-4757-3437-9

60. Kutschireiter A, Surace SC, Pfister JP. The Hitchhiker’s guide to nonlinear
filtering. J Math Psychol. (2020) 94. doi: 10.1016/j.jmp.2019.102307

61. Arulampalam MS, Maskell S, Gordon N, Clapp T. A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Proc. (2002)
50:174–88. doi: 10.1109/78.978374

62. Guang H, Ji L. Bayesian state estimation in sensorimotor systems
with particle filtering. IEEE Trans Neural Syst Rehabilit Eng. (2020)
28:1528–38. doi: 10.1109/TNSRE.2020.2996963

63. Paulin MG. Evolutionary origins and principles of distributed neural
computation for state estima tion and movement control in vertebrates. Complexity.
(2005) 10:56–65. doi: 10.1002/cplx.20070

64. Paulin MG, Hoffman LF. Bayesian inference by spiking neurons: a model of
optimal state estimation in the vestibulo-cerebellum. In: The 2011 International Joint
Conference on Neural Networks. San Jose, CA (2011).

65. PaulinMG, Hoffman LF. Bayesian head state prediction: computing the dynamic
prior with spiking neurons. In: 2011 Seventh International Conference on Natural
Computation. IEEE (2011). p. 445–9. doi: 10.1109/ICNC.2011.6022088

66. Dowson D, Wragg A. (1973). Maximum-entropy distributions having
prescribed first and second moments. IEEE Trans. Inform. Theor. 19:689-93.
doi: 10.1109/TIT.1973.1055060

Frontiers inNeurology 15 frontiersin.org

https://doi.org/10.3389/fneur.2024.1465211
https://doi.org/10.1007/s00422-015-0651-9
https://doi.org/10.1111/j.2517-6161.1978.tb01039.x
https://doi.org/10.1081/STA-120017215
https://doi.org/10.1017/CBO9780511790423
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1007/978-1-4612-1694-0_15
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/07-BA210
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1152/jn.1989.61.4.688
https://doi.org/10.1152/jn.01002.2004
https://doi.org/10.1109/TBME.1978.326370
https://doi.org/10.3758/BF03195403
https://doi.org/10.1119/1.9825
https://doi.org/10.1214/aoms/1177731235
https://doi.org/10.1103/PhysRevLett.63.207
https://doi.org/10.1038/161063b0
https://doi.org/10.1073/pnas.97.22.11765
https://doi.org/10.1146/annurev.bb.24.060195.000423
https://doi.org/10.1523/JNEUROSCI.15-12-07757.1995
https://doi.org/10.1016/j.conb.2016.09.004
https://doi.org/10.1371/journal.pcbi.1003157
https://doi.org/10.7551/mitpress/9780262028707.001.0001
https://doi.org/10.1109/JPROC.2015.2447016
https://doi.org/10.1242/jeb.017574
https://doi.org/10.1002/jnr.24131
https://doi.org/10.1016/S0378-5955(02)00390-8
https://doi.org/10.1007/978-1-4615-2932-3_35
https://doi.org/10.1007/978-1-4757-3437-9
https://doi.org/10.1016/j.jmp.2019.102307
https://doi.org/10.1109/78.978374
https://doi.org/10.1109/TNSRE.2020.2996963
https://doi.org/10.1002/cplx.20070
https://doi.org/10.1109/ICNC.2011.6022088
https://doi.org/10.1109/TIT.1973.1055060
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

	Toward the Bayesian brain: a generative model of information transmission by vestibular sensory neurons
	1 Introduction
	2 Materials and methods
	2.1 Spike train data acquisition
	2.1.1 Animal preparation
	2.1.2 Single afferent electrophysiology

	2.2 Data analysis
	2.2.1 Data acquisition, summary statistics and exploratory analysis
	2.2.2 Candidate models
	2.2.3 Fitting and model selection criteria
	2.2.4 Model fitting
	2.2.5 Analysis of fitted models


	3 Results
	3.1 Summary statistics
	3.2 Fitted models
	3.3 Analysis of the Exwald model
	3.3.1 Relationship between Exwald model parameters and conventional summary statistics
	3.3.2 Distribution of Exwald model shapes in model parameter space


	4 Discussion
	4.1 Spontaneous spike trains of semicircular canal afferent neurons are refractory-censored Poisson processes
	4.2 A simple ideal physical model can mimic spontaneous activity
	4.3 The ideal physical model is a stochastic dynamical model
	4.4 There is a unimodal distribution of model parameters across the population
	4.5 Semicircular canal afferents provide a fast, efficient communication channel from molecular mechanoreceptors to the brain
	4.6 Head kinematic state can be inferred from Exwald-distributed observations

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


