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Intraventricular hemorrhage (IVH)4 is one of the most threatening neurological 
complications associated with preterm birth which can lead to long-term sequela 
such as cerebral palsy. Early recognition of IVH risk may prevent its occurrence 
and/or reduce its severity. Using multivariate logistic regression analysis, risk factors 
significantly associated with IVH were identified and integrated into risk scales. A special 
aspect of this study was the inclusion of mathematically calculated cerebral blood 
flow (CBF) as an independent predictive variable in the risk score. Statistical analysis 
was based on clinical data from 254 preterm infants with gestational age between 
23 and 30  weeks of pregnancy. Several risk scores were developed for different 
clinical situations. Their efficacy was tested using ROC analysis, and validation of the 
best scores was performed on an independent cohort of 63 preterm infants with 
equivalent gestational age. The inclusion of routinely measured clinical parameters 
significantly improved IVH prediction compared to models that included only obstetric 
parameters and medical diagnoses. In addition, risk assessment with numerically 
calculated CBF demonstrated higher predictive power than risk assessments based 
on standard clinical parameters alone. The best performance in the validation 
cohort (with AUC  =  0.85 and TPR  =  0.94 for severe IVH, AUC  =  0.79 and TPR  =  0.75 
for all IVH grades and FPR  =  0.48 for cases without IVH) was demonstrated by the 
risk score based on the MAP, pH, CRP, CBF and leukocytes count.
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1 Introduction

Advances in obstetric and neonatal care in recent decades have resulted in a significant 
reduction in perinatal mortality. However, the incidence of intraventricular hemorrhage (IVH) 
in preterm infants with gestational age (GA) less than 32 weeks of pregnancy or body weight 
at birth (BW) less than 1,500 g remains still very high. It reaches 40% (1) for preterm infants 
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and increases for lower gestational age, reaching 52% for very preterm 
infants born before 28 weeks gestation (WG) (2). IVH is one of the 
most threatening complications of preterm birth, which may lead to 
death or long term severe neurological disorders, such as motor, 
sensor and/or cognitive disabilities. It is caused by rupture of the 
fragile vascular vessels within the germinal matrix, a highly 
vascularised layer located above the caudate nucleus and composed of 
glial and neuronal progenitor cells (3). The prediction of IVH and 
development of prevention strategies are among the most important 
tasks of modern neonatal care.

The underlying cause of cerebral hemorrhage in preterm infants 
is multifactorial. Risk factors can be divided into several groups. The 
first group includes pregnancy pathologies that are usually known 
before delivery. The second group consists of birth characteristics, 
including Apgar score, which are known already in the first minutes 
of life. The most recognized risk factors associated with IVH are low 
gestational age, low birth weight and low Apgar scores (2, 3). The 
third group contains medical diseases, among which the perinatal 
infection and early sepsis are the most dangerous (1, 2). This 
parameters can be included in risk models as soon as diseases have 
been diagnosed. The fourth group consists of medical parameters 
that are determined through routine laboratory tests, blood gas 
analysis and regular observations. These measurements are usually 
performed several times a day as part of the standard monitoring of 
preterm infants. Due to the regularity of the investigations, these 
parameters provide valuable information about the patient’s 
current status.

Another risk factor associated with the low gestational age is 
immaturity of the cerebral vascular system. The presence of germinal 
matrix before 32 WG plays a crucial role in the development of IVH 
(3). The weakness of the cytoskeletal structure exposes the delicate 
vasculature of the germinal matrix to an increased risk of rupture. 
Another anatomical feature of germinal matrix vessels is that 
capillaries are larger in diameter and the muscular layer of the vessels 
is poorly developed or absent. Thus, these anatomic features make the 
vessels susceptible to rupture and increase the risk of cerebral 
hemorrhage in early childhood. In addition, autoregulation of 
immature cerebral vessels is underdeveloped (4), resulting in an 
inadequate response to cerebral blood flow (CBF) fluctuations. Thus, 
critical CBF values are additional risk factors for IVH (3, 4), and 
taking them into account could potentially improve prognostic models.

Since gestational age, birth weight and Apgar score are often not 
sufficient to determine the health condition of preterm neonates, 
several multidimensional scales have been developed to assess risks 
for mortality or survival (5). The most popular scores, such as CRIB 
(clinical risk index for babies), CRIB-II (6, 7), SNAP (score for 
neonatal acute physiology), SNAP-II (8, 9), SNAPPE (score for 
neonatal acute physiology with perinatal extension) (10), PREM 
(prematurity risk evaluation measure) (11), were initially validated as 
predictors of mortality and morbidity, however they also have been 
shown to predict severe IVH more accurately than BW or GA alone 
(12). While low GA and BW alone are definitely important predictors 
for IVH, several other score systems for predicting early risk for severe 
hemorrhage based on various medical parameters have been 
developed (1, 13, 14).

All of the above mentioned methods have primarily included 
prenatal and perinatal variables, neonatal diseases and clinical 
parameters available within the first hours of life, arguing that the vast 

majority of IVH occurs within the first 48 h. Although numerous 
perinatal, obstetric and neonatal risk factors associated with IVH may 
be  identified early after birth (15), recent studies have revealed a 
significant association between IVH and some routinely recorded 
clinical parameters such as systolic and diastolic arterial blood and 
respiratory data (16–18). Additionally, it was demonstrated that 
fluctuating CBF had a significant association with IVH (19, 20). 
Furthermore, CBF was an important variable in machine learning 
models for differentiation between preterm infants with and without 
IVH (18).

Despite existing non-invasive methods to measure CBF, such as 
xenon-133 (21), near-infrared spectroscopy (NIRS) (22), diffusion 
correlation spectroscopy (DCS) (23) and others, CBF is not yet a 
routinely measured parameter in monitoring preterm infants in the 
neonatal intensive care unit (NICU). The mathematical model for 
calculating CBF from standard clinical records of mean arterial 
pressure (MAP), partial pressure of carbon dioxide (pCO2), partial 
pressure of oxygen (pO2), and hematocrit (Ht) were in good 
agreement with experimental measurements (19, 24) and can 
therefore be  used to analyze IVH risk factors instead of 
measured values.

The main aim of this study was to develop predictive models for 
different clinical situations to identify preterm infants at increased risk 
of IVH using standard pre/postnatal and birth parameters, medical 
diagnoses and routinely measured parameters. We also investigated a 
possibility to enhance a prognostic accuracy of the IVH risk scores by 
including numerically calculated CBF as independent 
predictive variable.

2 Materials and methods

2.1 Study population and data collection

The present work is a retrospective study based on clinical data of 
two cohorts of preterm infants with gestational age 23–30 WG born 
in four German hospitals with the highest level of care according to 
the German regulations. The study was approved by the ethic 
committee of School of Medicine Klinikum rechts der Isar, Technical 
University of Munich (Ref. 364/15), and Ethic Committee of 
University Hospital Essen, University Duisburg-Essen (Ref. 
16-7284-BO).

The derivation cohort used for construction of IVH risk scores 
included 254 preterm infants born between 2006 and 2016. The 
prediction accuracy of the developed risk scores was validated on 
more recent population of 63 preterm infants (validation cohort) born 
between 2017 and 2019.

In all four settings, occurrence of IVH was diagnosed by cranial 
ultrasound performed routinely on day 1, 3, 7, 14 of life and more 
frequently (up to daily) in case of suspected hemorrhage. The severity 
of IVH was divided into four grades according to Papile classification 
(25). In the study, groups of patients with and without IVH diagnosis 
are referred to as the affected and control groups.

In both cohorts, the following clinical data were collected:

 I. Pregnancy pathologies: (1) EPH-gestosis/pre-eclampsia, (2) 
preterm premature rupture of membranes (PPROM), (3) 
chorioamnionitis/intra-amniotic infection syndrome, (4) 

https://doi.org/10.3389/fneur.2024.1465440
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Sidorenko et al. 10.3389/fneur.2024.1465440

Frontiers in Neurology 03 frontiersin.org

intrauterine growth restriction (IUGR), (5) in vitro fertilization 
(IVF), (6) feto-fetal transfusion syndrome (FFTS).

 II. Birth parameters: (1) delivery mode (spontaneous or by 
cesarean section), (2) sex, (3) birth weight, (4) gestational age, 
(5) singleton/multiple births, (6) Apgar at 1 min, (7) Apgar at 
5 min, (8) Apgar at 10 min.

 III. Medical diagnoses: (1) respiratory distress syndrome (RDS), 
(2) sepsis, (3) pulmonary hemorrhage, (4) erythrocyte 
transfusion, (5) acidosis (metabolic and/or respiratory), (6) 
focal/spontaneous intestinal perforation (FIP/SIP), (7) 
thrombocytopenia, (8) necrotizing enterocolitis (NEC), (9) 
cholestasis, (10) cardiopulmonary adaptation disorder.

 IV. Routinely measured parameters (this group of parameters 
consists of measurements provided by routine laboratory tests, 
blood gas analyses and regular observations, which are usually 
carried out several times a day as part of the standard 
monitoring of premature babies): (1) pH, (2) pCO2, (3) pO2, (4) 
MAP, (5) Ht, (6) leukocyte count, (7) thrombocyte count, (8) 
C-reactive protein (CRP).

 V. Additionally, within the framework of this study, the CBF and 
CBF-CBFmean are calculated for each set of measurements of 
MAP, pCO2, pO2 and Ht and treated as independent parameters 
in the statistical analyses.

The six pregnancy pathologies and eight birth parameters were 
recorded shortly after birth, further 10 infant diagnoses were recorded 
during postnatal care. In addition, eight routinely measured clinical 
parameters were systematically recorded during 7 days before and 
3 days after IVH diagnose, or 10 days after birth for preterm infants 
without IVH diagnosis.

2.2 Calculation of the cerebral blood flow

In the present study we  calculate CBF from the 6 medical 
parameters, namely WG, BW, MAP, pCO2, pO2 and Ht using the 
hierarchical cerebral vascular model that was initially proposed for 
adult brain (26) and then adjusted to the peculiarities of the immature 
brain (19, 27). In the model, the cerebral vascular system is represented 
by 19 serially connected levels, each containing parallel connected 
vessels of a certain size. At each level, the number of vessels and their 
length and diameter are scaled according to the patient’s gestational 
age and the brain weight estimated from the birth weight (28). At the 
capillary level, an additional area is added as a parallel circuit with the 
number of vessels corresponding to the relative volume of the 
germinal matrix at a given gestational age (29). Furthermore, the effect 
of Ht on blood viscosity is included in the calculation of vascular 
resistance (30, 31) and autoregulation activity of the brain vessels 
(vasoconstriction and vasodilation) is accounted by increasing and 
decreasing of vessel’s diameter according to the measured values of 
MAP, pCO2 and pO2 (19, 24, 27).

The calculated CBF value was included in the statistical analyses 
as an independent parameter. In addition, the mean value of CBF for 
the group of infants without IVH was calculated for each WG. The 
obtained CBFmean value was used as a reference value of the optimal 
CBF at each WG and the CBF-CBFmean value was included as a further 
predictive variable in the statistical analyses.

2.3 Statistical methods

To build a risk score, multivariable stepwise logistic regression 
analysis was applied (1, 13). In our study, IVH diagnosis plays a role 
of response variable y, which has a binary type. The predictive 
variables (predictors) xj are medical characteristics, which have either 
continuous or binary type. The selection of potential variables for 
scoring system started with the analysis of parameters related to 
IVH. To detect IVH risk factors, a univariate analysis was performed 
using two-sided Wilcoxon’s rank-sum test for continuous and Fisher’s 
exact test for categorical parameters (32). A 5% significance level, 
which corresponds to p-value = 0.05, was taken as the threshold value 
for including each parameter as a candidate variable in the multivariate 
prediction model.

The parameters found to be associated with IVH were then ranked 
in respect to the response variable according to the p-values of 
chi-square test with null hypothesis that predictor and response 
variable are independent. The p-value <0.05 means that the predictor 
and response variable are significantly associated with each other. 
Predictors with larger values −log(p) were ranked higher and the 
value −log(0.05) = 3 was taken as the threshold for including them 
into the score model.

Incorporation of independent predictors into risk scores was 
performed using a generalized linear regression with logit link 
function as follows:
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In order to prevent overfitting, we  implemented stepwise 
predictors selection. We started with a single variable model (N = 1) 
using the highest ranked predictor and added lower ranking predictors 
after running the chi-squared test with the null hypothesis that 
deviance of old and new regression models are equal. A p-value <0.05 
rejects the null hypothesis and means that new predictor significantly 
improves the fitting model and should be included in the score. Only 
predictors with statistically significant coefficients bj were included in 
the model, and only models that were statistically significantly 
different from the constant model were used further for construction 
of risk scores.

The coefficients bj obtained by the linear regression analyses were 
then integrated in a risk score as follows:
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Here xj (t) is the value of the predictor j averaged over all 
measurements up to time t. For early IVH prediction, as long as the 
measured clinical parameters are not available, only the parameters of 
groups I–III were considered in the regression model. For the 
prediction of IVH on the second day, the clinical parameters were 
averaged over the first day of life (measurements of preterms with IVH 
on the first day are then excluded), and for the later prediction of IVH, 
parameters were averaged over all days before IVH.
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To evaluate the effectiveness of the risk scores constructed, the 
receiver operating characteristic (ROC) method for classification 
between the control and affected groups was applied (33, 34). For each 
patient from control and affected groups score value was calculated, 
then true positive rate (TPR) and false positive rate (FPR) (Table 1) 
were computed for different threshold values. The ROC curves were 
constructed by plotting TPR against FPR, and the area under the ROC 
curve (AUC) was estimated (35). The later provides a quantitative 
measure of predictive power of the score: perfect predictor has AUC = 1, 
which corresponds to TPR = 1 and FPR = 0, and predictor with 
AUC = 0.5 is equivalent to random choice. The threshold for optimal 
performance was chosen at the point on the ROC curve with the 
smallest distance to the upper left corner of the unit square (36) and 
used further for the normalization of the regression coefficient b0, so 
that the threshold for IVH risk was equal to 0 for all risk scores. The 
validation of the resulting IVH risk scores was performed by calculating 
the TPR and FPR using independent data from the validation cohort.

Statistical analyses was carried out using standard library of 
MATLAB2024a. Observations with missing values were not used in 
analyses, medical parameters that were measured less often than 
others were extended until the next regular measurement. For 
calculation of CBF, missing parameter values were replaced with the 
latest measured value.

3 Results

3.1 Identification of risk parameters of IVH

Basic clinical characteristics of the derivation and validation 
cohorts are presented in Table  2. Here, continuous variables are 
expressed as mean and standard deviation, while binary variables are 
presented as the number of cases and percentages.

To create a risk score, the data from the derivation cohort of 254 
patients (136 with and 118 without diagnosis of IVH) was used. 
During data collection, the affected and control groups were matched 
according to gestational age and birth weight. Thus, these parameters 
had statistically equal (p-value >0.05) mean values (Table  3) and, 
therefore, were not used in this study as predictor variables for 
risk assessment.

The statistical comparison of pregnancy pathologies, birth 
parameters and infant diagnoses in the affected and control groups of 
the derivation cohort is presented in Table  4. The table is sorted 
according to the p-value: the most significant parameters, i.e., those 
with the smallest p-value, are at the top. Seven parameters 
(EPH-gestosis/pre-eclampsia, PPROM, cardiopulmonary adaptation 
disorder, IUGR, IVF, RDS and FFTS) demonstrated inverse 
relationship with the development of IVH, i.e., the percentage of 
preterm infants with these diagnoses in the affected group was lower 
than in the control group. This can be explained by the effects of the 
medical treatment provided, which is out of scope of this study. 
Therefore, these parameters were not considered as predictor variables 
in the following risk assessment. Another seven parameters (sepsis, 
delivery mode, erythrocyte transfusion, chorioamnionitis, 
thrombocytopenia, NEC and multiple birth) had no significant 
association with IVH (i.e., p-value >0.5). Significant association with 
IVH (i.e., p-value <0.5) was revealed for the following 8 parameters: 
Apgar at 1 min, Apgar at 5 min, Apgar at 10 min, FIP/SIP, cholestasis, 
acidosis, male sex and pulmonary hemorrhage. The parameters found 
to be associated with IVH were further used as predictive variables in 
the logistic regression analyses.

3.2 Construction of IVH risk scores

We started the construction of risk scores with the ranking of the 
predictive variables (Figure 1), which were then included stepwise in 
the multivariable regression analyses according to their significance. 
For different clinical situations, several scores were designed (Table 5). 
The performance of the resulting scores was evaluated using the ROC 
analysis. We determined the optimal threshold from the ROC curve 
for patients with all grades of IVH and then calculated the TPR and 
FPR for patients with all (I–IV) and severe (III–IV) grades of IVH (the 
example of ROC curve with optimal threshold and corresponding 
scatter plot is shown in Figure 2).

For the initial prediction of IVH risk, we constructed the score S1 
based only on pregnancy pathologies, birth parameters and infant 
diagnoses, which are usually known before measured parameters are 
available (Figure 1 left). Although eight parameters were significantly 
associated with IVH, two of them, namely Apgar at 1 min and Apgar 
at 5 min, were absent in the score due to their high correlation with 
Apgar at 10 min (Pearson correlation 0.61 and 0.77, respectively). The 
score S1 demonstrated only moderate performance (AUC = 0.74) and 
included several statistically insignificant coefficients, suggesting that 
this group of medical parameters was insufficient for effective 
IVH prediction.

The improvement of IVH prediction can be achieved by including 
routinely measured parameters in the regression model. In the first 
day of life, the availability of measurements is usually limited. To 
determine risk scores for first and second days of life, we averaged 
routinely measured parameters over the first day (patients with IVH 
on the first day are excluded from consideration at this stage). Thus, 
only pH and leukocyte count demonstrated significant association 
with IVH (Figure 1 middle). Two other parameters, CBF-CBFmin and 
pCO2, were close to the limit of significance. It is important to note, 
that mathematically calculated parameter CBF-CBFmin had stronger 
association with IVH than each of the parameters used for its 
calculation (Figure  1 middle). The integration of the significant 

TABLE 1 Variables of ROC analyses.

Variable Definition

P The total number of patients with IVH

N The total number of patients without IVH

TP
True positive (the number of correctly detected patients with 

IVH)

TN
True negative (the number of correctly detected patients 

without IVH)

FP
False positive (the number of patients without IVH detected 

as with IVH)

FN
False negative (the number of patients with IVH detected as 

without IVH)

TPR = TP/P True positive rate

FPR = FP/N False positive rate
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measured parameters averaged over the first day of life (Figure  1 
middle) in the regression procedure resulted in the risk models with 
4 and 3 parameters (score S2 and S3 in Table 5), which both had only 
significant regression coefficients and much better performance in 
ROC analyses than S1 (Table 5).

To construct a risk score for prediction of IVH when the values of 
all measured parameters are already available, we averaged them for 
all days before IVH and added averaged values to the regression 
analysis according to their significance (Figure 1 right). In this case, 
the calculated CBF was ranked fourth among statistically significant 
parameters and had a stronger association with IVH than pCO2, pO2, 
and Ht, which are used for its calculation. Inclusion of the measured 
parameters averaged over all days before IVH improved the resulting 
risk scores (scores S4 and S5 in Table 5). Further improvement in risk 
score was achieved by adding the calculated CBF to the regression 
model (scores S6 and S7 in Table 5). The performance of the risk score 

S7 is illustrated on the Figure  2 (left: ROC curve with optimal 
threshold value; middle: scatter plot of score values of 
individual patient).

In order to demonstrate the advantage of including the calculated 
CBF in the risk model, we constructed a risk score without CBF but 
with all clinical parameters used in the mathematical model to 
calculate CBF. The performance of the resulting risk score 
(S = pH + Leukocytes + pO2 + pCO2 + MAD + Ht, not in Table 5) with 
AUC = 0.88 appeared to be worse than AUC = 0.94 of the risk score S7 
which includes CBF. This result indicates that the mathematical model 
for CBF calculation provides complementary information that 
improves the prediction of IVH risk.

3.3 Validation of the constructed IVH risk 
scores

Clinical characteristics of the validation cohort of 63 preterm 
infants are presented in Table 2. For each patient in the validation 
cohort, score values with coefficients presented in Table 5 were 
calculated (Figure 2 right) and used to determine FPR for control 
group and TPR for all and severe grades of IVH (Table 6). The best 
performance was achieved by the scores, which included routinely 
measured parameters and calculated CBF (scores S5, S6 and S7). 
For this scores, correct identification of patients with IVH (TPR) 

TABLE 2 Clinical characteristics of the study cohorts.

Clinical characteristic Derivation cohort
n  =  254 (100%)

Validation cohort
n  =  63 (100%)

Min Max Mean  ±  Stdev Min Max Mean  ±  Stdev

Gestational age [WG + days] 23 30 + 6 26.45 ± 2.11 23 + 1 30 + 6 26.39 ± 2.17

Birth weight [g] 335 1580 864.06 ± 279.1 490 1590 905.16 ± 279.65

Male sex 122 (48%) 39 (61.90%)

Multiple birth 95 (37.4%) 25 (39.68%)

Vaginal delivery 22 (8.66%) 7 (11.11%)

IVH 136 (53.54%) 37 (58.73%)

EPH-gestosis/pre-eclampsia 25 (9.84%) 2 (3.17%)

PPROM 73 (28.74%) 32 (50.79%)

Chorioamnionitis 117 (46.06%) 43 (68.25%)

IUGR 14 (5.51%) 0

IVF 32 (12.59%) 8 (12.69%)

FFTS 8 (3.15%) 1 (1.59%)

RDS 84 (33.07%) 14 (22.22%)

Sepsis 120 (47.24%) 20 (31.75%)

Pulmonary hemorrhage 21 (8.27%) 8 (12.69%)

Erythrocyte transfusion 164 (64.57%) 39 (61.90%)

Acidosis (metabolic and/or respiratory) 38 (14.96%) 10 (15.87%)

FIP/SIP 23 (9.06%) 3 (4.76%)

Thrombocytopenia 21 (8.27%) 4 (6.35%)

NEC 20 (7.87%) 10 (15.87%)

Cholestasis 12 (4.72%) 0

Cardiopulmonary adaptation disorder 19 (7.48%) 18 (28.57%)

TABLE 3 Comparison of gestational age and birth weight of affected and 
control groups.

Parameter With IVH
n  =  136

No IVH
n  =  118

p-value

Gestational age 26.25 ± 2.05 26.68 ± 2.17 0.12

Birth weight 875.66 ± 300.5 850.68 ± 252.81 0.70
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FIGURE 1

Ranking of the predictive variables according to their p-values of chi-square test: (left) medical parameters from Table 4 significantly associated with 
IVH; (middle) routinely measured parameters averaged over the first day of life; (right) routinely measured parameters averaged over all days before IVH 
in the affected groups and over 10  days of life in the control group. The red line corresponds to the significance threshold −log(p)  =  3, which 
corresponds to the p-value  =  0.05.

in the validation cohort remained at the same level as in the 
derivation cohort. False identification of healthy patients to be at 
risk of IVH (FPR) in validation cohort was higher than in the 
derivation cohort. However, increase of FPR was smaller for risk 
scores with fewer parameters, which were derived only from 
measured parameters (scores S5 and S7  in Table  6). The 
overestimation demonstrated by the scores with medical diagnoses 
can be explained by the fact that all medical diagnoses are in fact 
already characterized by the measured parameters. The moderate 
FPR value reflected the fact that the control group did not consist 
of absolute healthy individuals. All patients without IVH who had 
high score values (Figure  2 right), had also elevated CRP level 
(greater than 10 mg/L) indicating an inflammation. In this case, 
although they did not have IVH, they could not be regarded as 
healthy patients either.

4 Discussion

IVH is one of the most dangerous pathologies of preterm birth 
leading to serious lifelong disabilities. The origin and progression of 
IVH has a multifactorial background. The present study focused on 
statistical analysis of various medical factors associated with IVH 
which then were used for construction of a scoring system for 
prediction of IVH risk. Using a stepwise multivariable logistic 
regression analysis, several risk scores were constructed for different 
clinical situations. A particular novelty of the present research was the 
inclusion of mathematically calculated CBF as an independent 
predictor variable in the construction of IVH risk scores.

The IVH risk score based only on prenatal and birth parameters, 
Apgar values and medical diagnoses (S1) has demonstrated only 
moderate performance, indicating that they are insufficient for 
effective IVH prediction. A considerable improvement in the 
prediction of IVH was achieved by including the measured 
parameters into the logistic regression model. As a result, risk 

TABLE 4 Pregnancy pathologies, birth parameters and infant diagnoses 
in the derivation cohort.

Parameter With IVH
n  =  136 
(100%)

No IVH
n  =  118 
(100%)

p-
value

Apgar at 1 min 5.19 ± 2.25 6.21 ± 2.02 <0.001

Apgar at 5 min 6.80 ± 1.82 7.52 ± 1.41 <0.001

Apgar at 10 min 7.73 ± 1.37 8.37 ± 0.97 <0.001

FIP/SIP 20 (14.7%) 3 (2.54%) <0.001

Cholestasis 11 (8.09%) 1 (0.85%) 0.01

Acidosis 27 (19.85%) 11 (9.32%) 0.02

Sex (male) 74 (54.4%) 48 (40.68%) 0.03

Pulmonary hemorrhage 16 (11.76%) 5 (4.24%) 0.04

EPH-gestosis/pre-eclampsia 7 (5.18%) 18 (15.25%) 0.01

Sepsis 70 (51.47%) 50 (42.37%) 0.17

PPROM 34 (25.00%) 39 (33.05%) 0.17

Delivery mode (spontaneous 

birth)
15 (11.02%) 7 (5.93%) 0.18

Erythrocyte transfusion 93 (68.38%) 71 (60.17%) 0.19

Chorioamnionitis 67 (49.26%) 50 (42.37%) 0.31

Cardiopulmonary adaptation 

disorder
8 (5.88%) 11 (9.32%) 0.34

IUGR 6 (4.41%) 8 (6.78%) 0.43

IVF 15 (11.03%) 17 (14.41%) 0.45

Thrombocytopenia 13 (9.56%) 8 (6.78) 0.49

RDS 42 (30.88%) 42 (35.59%) 0.50

NEC 12 (8.82%) 8 (6.78%) 0.64

Multiple birth 52 (38.24%) 43 (36.44%) 0.79

FFTS 4 (2.94%) 4 (3.39) 1

Key information in the table is highlighted in bold.
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scores constructed using parameters averaged over the first day of 
life (S2 and S3) and over all days before IVH (S4–S7) demonstrated 
TPR = 0.9 for severe IVH both in the derivation and 
validation cohorts.

The best performance in the validation cohort with AUC = 0.85 
and TPR = 0.94 for severe IVH, AUC = 0.79 and TPR = 0.75 for all IVH 
grades, and FPR = 0.48 for cases without IVH was demonstrated by 
the risk score S7 which included CBF. The advantages of CBF as an 

TABLE 5 Performance of the constructed IVH risk scores on the derivation cohort.

Score
b0 … 6

p_value0 … 6

AUC TPR FPR

IVH grades IVH grades

I–IV III–IV I–IV III–IV

S1 = Apgar at 10 min + FIP/SIP + cholestasis + acidosis + male 

sex + pulmonary hemorrhage

b0 … 6 = [1.8967; −0.3255; 1.8685; 2.0971; 0.7245; 0.7077; 1.0828]

p-value0 … 6 = [0.0570; 0.0111; 0.0047; 0.0523; 0.0755; 0.0109; 0.0492]

0.74 0.78 0.55 0.64 0.17

S2 = Apgar at 10 min + pH + FIP/SIP + Leukocytes

b0 … 4 = [102.4143; −0.3403; −13.5181; 2.0952; −0.0993]

p-value0 … 4 = [<0.0001; 0.0360; <0.0001; 0.0234; <0.0001]

0.81 0.88 0.75 0.87 0.25

S3 = Apgar at 10 min + pH + Leukocytes

b0 … 3 = [101.9569; −0.3345; −13.4425; −0.0970]

p-value0 … 3 = [<0.0001; 0.0385; <0.0001; 0.0001]

0.79 0.86 0.78 0.90 0.29

S4 = MAP + pH + CRP + FIP/SIP + male sex + Leukocytes

b0 … 6 = [108.5723; −0.1105; 14.3532; 0.4666; 2.2413; 0.7966; −0.0704]

p-value0 … 6 = [0.0013; 0.0020; 0.0021; 0.0091; 0.0107; 0.0365; 0.0055]

0.84 0.94 0.77 0.91 0.19

S5 = MAP + pH + CRP + Leukocytes

b0 … 4 = [117.5718; −0.0969; −15.5920; 0.5566; −0.06549]

p-value0 … 4 = [0.0004; 0.0042; 0.0007; 0.0018; 0.0034]

0.82 0.93 0.72 0.88 0.21

S6 = MAP + pH + CRP + CBF + FIP/SIP + Leukocytes

b0 … 6 = [85.6357; −0.1753; −10.9974; 0.4205; 0.1264; 2.0791; −0.0677]

p-value0 … 6 = [0.0172; 0.0004; 0.0270; 0.0346; 0.0161; 0.0195; 0.0042]

0.85 0.94 0.79 0.91 0.23

S7 = MAP + pH + CRP + CBF + Leukocytes

b0 … 5 = [85.9253; −0.1780; −11.0513; 0.4525; 0.1268; −0.0581]

p-value0 … 5 = [0.0152; 0.0003, 0.0243; 0.0225; 0.0150; 0.0070]

0.84 0.94 0.77 0.91 0.22

FIGURE 2

Performance of the IVH risk score S7 (see Tables 5, 6): ROC curve (left) and scatter plot (middle) for the derivation cohort; scatter plot for the validation 
cohort (right).
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independent predictive variable were confirmed by several statistical 
methods. Thus, the calculated CBF was ranked fourth among 
statistically significant parameters and had a stronger association with 
IVH than pCO2, pO2 and Ht, which were used for its calculation. 
Furthermore, the superiority of the risk score with CBF as an 
independent parameter was also demonstrated by comparison with a 
risk score constructed without CBF but taking into account all clinical 
parameters used in the mathematical model to calculate CBF. The 
better performance of risk assessment using CBF was evidenced by a 
higher AUC value compared with the AUC for risk assessment 
without CBF (0.94 vs. 0.86), which proves that the mathematical 
model for calculating CBF provides additional information that 
improves IVH risk prediction.

The moderate FPR value reflects the fact that the control group 
did not consist of completely healthy patients. For example, all 
patients without IVH but with high scores had elevated CRP levels 
indicating inflammation. Thus, constructed risk scores may reveal 
additional morbidity risks for the preterm infant. Since the main 
purpose of the constructed scores is to identify patients at risk, the 
obtained FPR values are acceptable for this situation. The absence of 
medical diagnoses in the best score can be explained by the argument 
that all medical diagnoses are in fact characterized by the 
measured parameters.

The focus of the present work was on the role of routinely 
measured clinical parameters and calculated CBF in the development 
of a risk scores for IVH prediction. The importance of measured 
parameters in the early detection of IVH risk in low birth weight 
newborns (<1,500 g) was also demonstrated in Huvanandana et al. (16) 
by scoring models derived using time series analyses of blood pressure 
and respiratory data. In our study, the developed IVH risk scales 
demonstrated in both the derivation and validation cohorts the high 
performance, which is comparable to data published in the literature. 
In Chien et al. (12), the standard SNAP II mortality risk score (9) 
combined with GA and Apgar at 5 min demonstrated an AUC = 0.8 for 
IVH prediction in a cohort of 4,226 infants with GA < 32 weeks. 
Heuchan et  al. (37) developed a novel prognostic model for IVH 
prediction based on five predictive variables (GA, antenatal 
corticosteroids, transfer after birth, Apgar at 1 min < 4, male gender) 
that demonstrated AUC = 0.76 for severe IVH and AUC = 0.67 for any 
grade of IVH on a cohort of 5,712 infants with gestation of 
24–30 weeks. In Vogtmann et al. (1), in cohort of 1,782 neonates with 
GA < 32 completed weeks of gestation or BW < 1,500 g, severe IVH 

could be predicted with an accuracy of 87.7% on the basis of five 
variables (GA, pathological Doppler result, Apgar at 1 min < 6, 
perinatal infection, and delivery mode). A scoring system including 
only three factors (low GA, low Apgar at 5 min, and presence of 
bleeding diathesis within the 7 days of life) developed by Coskun et al. 
(14) could predicted IVH in preterm infants with GA between 24 and 
34 weeks with AUC = 0.85 for a derivation cohort with 144 preterm 
infants and AUC = 0.81 for a validation cohort with 89 preterm infants.

In the present study, several risk scores based on routinely 
measured parameters and calculated CBF were developed. They have 
demonstrated better performance compared to risk models based only 
on once-measured parameters (like Apgar) and medical diagnoses. In 
addition, the developed IVH risk scores provide dynamic information 
about the patient’s condition, which can vary from hour to hour. This 
indicates the need for further investigation of possible prognostic 
variables among clinical parameters. Also, medical treatment may 
be considered in the further development of the risk models.

At present, many researchers are investigating neonatal cerebral 
hemodynamics using modern techniques such as transcranial 
Doppler (TCD) ultrasound and NIRS monitoring to predict 
periventricular-intraventricular hemorrhage in preterm infants (38, 
39). Although a strong association between IVH and low superior 
vena cava flow (SVCF) and high Anterior cerebral artery resistive 
index (ACA-RI) has been revealed (38) the absolute values of global 
CBF cannot be  recalculated from measurements because it is 
difficult to determine the diameter of intracranial vessels (38, 40). In 
this case, the mathematical calculation of CBF provides an 
opportunity to obtain additional information that may improve the 
prediction of IVH in preterm infants. The developed mathematical 
model for CBF calculation was previously validated against NIRS, 
Doppler and Xenon-133 clearance measurements and demonstrated 
good agreement with published experimental results (19). 
Furthermore, the current study showed that the inclusion of 
calculated CBF in IVH risk models resulted in improved 
performance of prognostic scores. Therefore, in the future, when 
CBF measurement becomes a routine procedure in neonatal 
healthcare, the developed risk scores can be  used with the 
measured data.

Nowadays, numerous data and parameters are collected and 
centrally managed on admission to the NICU. This already allows for 
automated computerized data analysis (41). Existing health 
monitoring methods can be further advanced with new strategies, 
such as the mathematical model for calculating CBF and the IVH 
risk scores presented in this paper. The good performance of the 
developed scores allows their use in clinical practice as a 
complementary tool to other clinical scores and measurement 
methods to identify preterm infants at high risk of severe IVH, 
which may lead to a more effective therapeutic approach for 
these children.
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TABLE 6 Performance of the constructed IVH risk scores on the 
validation cohort.

Score AUC TPR FPR

IVH grades IVH grades

I–IV III–IV I–IV III–IV

S1 0.64 0.69 0.51 0.61 0.42

S2 0.57 0.67 0.77 0.86 0.72

S3 0.58 0.67 0.80 0.86 0.64

S4 0.79 0.85 0.72 0.88 0.64

S5 0.79 0.85 0.72 0.94 0.48

S6 0.79 0.85 0.75 0.88 0.52

S7 0.79 0.85 0.75 0.94 0.48

Key information in the table is highlighted in bold.
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