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Background: Gait disorder is a prominent motor symptom in Parkinson’s disease 
(PD), objective and quantitative assessment of gait is essential for diagnosing 
and treating PD, particularly in its early stage.

Methods: This study utilized a non-contact gait assessment system to investigate 
gait characteristics between individuals with PD and healthy controls, with a 
focus on early-stage PD. Additionally, we trained two machine learning models 
to differentiate early-stage PD patients from controls and to predict MDS-
UPDRS III score.

Results: Early-stage PD patients demonstrated reduced stride length, decreased 
gait speed, slower stride and swing speeds, extended turning time, and reduced 
cadence compared to controls. Our model, after an integrated analysis of gait 
parameters, accurately identified early-stage PD patients. Moreover, the model 
indicated that gait parameters could predict the MDS-UPDRS III score using a 
machine learning regression approach.

Conclusion: The non-contact gait assessment system facilitates the objective and 
quantitative evaluation of gait disorder in PD patients, effectively distinguishing 
those in the early stage from healthy individuals. The system holds significant 
potential for the early detection of PD. It also harnesses gait parameters for a 
reasoned prediction of the MDS-UPDRS III score, thereby quantifying disease 
severity. Overall, gait assessment is a valuable method for the early identification 
and ongoing monitoring of PD.
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1 Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases, affecting 
approximately 1% of the population over 60 years of age (1). The typical motor symptoms of 
PD include resting tremor, bradykinesia, rigidity, postural and gait disorders. Among these, 
gait disorder is one of the principal symptoms in PD patients. Patients exhibit characteristic 
gait patterns such as reduced turning agility, short and slow steps, festinating, and freezing of 
gait (2, 3). Given the strong correlation between gait disorders and diminished quality of life, 
precise gait assessment is vital (4, 5). However, it is challenging for neurologists to assess gait 
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in the early stage of PD (6). Early gait disorders are very subtle, and 
some patients even exhibit motor symptoms without conscious gait 
complaints (7); Additionally, the presence of short and slow steps is a 
common trait in the aging population (8, 9), complicating the 
differentiation of PD-induced gait changes from age-related 
alterations. Consequently, precise identification and surveillance of 
gait anomalies are essential for the effective treatment and prognosis 
of PD, particularly in its early stage.

Currently, the clinical assessments of gait in PD patients rely on 
traditional scales, such as the Section III of the modified movement 
disorder society version of the unified Parkinson’s disease rating scale 
(MDS-UPDRS III), the Timed-Up and Go test, and the Freezing of 
Gait Questionnaire, and so on (10). However, these scales depend on 
the subjective assessments of clinical physicians and have the 
limitations of being semi-quantitative, time-consuming, and 
potentially leading to inconsistent and imprecise results. In recent 
years, along with the rapid advancement of science and technology, a 
variety of objective and quantitative gait assessment techniques have 
gradually matured, propelling PD gait research into a new stage (11), 
such as multi-camera motion capture systems, wearable sensors, and 
pressure-sensitive insoles. However, the existing methods also have 
various shortcomings. For instance, multi-camera motion capture 
systems offer the highest capture accuracy and are considered as the 
golden standard in clinical gait analysis (11), yet they are costly and 
demand a large space, making them difficult to popularize currently. 
Wearable sensors, while portable, still face several challenges, such as 
discomfort during wear, data synchronization, and noise 
contamination. In summary, although new technologies show great 
potential in gait assessment in PD, they still need further improvement 
and optimization in terms of popularization and clinical application 
(12). In order to provide more refined and convenient gait monitoring 
methods for PD patients, future research should focus on enhancing 
the universality of the technology, reducing costs, improving user 
experience, and maintaining the accuracy and reliability of the data in 
the same time.

Based on the current challenges faced by PD gait assessments, 
we have utilized a non-contact gait assessment system (ReadyGo, 
Beijing CAS-Ruiyi Information Technology Co., Ltd.) (13), in order 
to overcome the limitations of traditional evaluation methods. With 
its non-invasive characteristic, real-time data collection capability, 
cost-effectiveness, and unique ability to capture rich 3D skeletal 
information, ReadyGo has quickly became an ideal choice for gait 
assessment in both clinical and scientific research. Through implicit 
monitoring, this technology not only reduced the discomfort of 
patients but also captured the most authentic gait data in a natural 
state, providing a solid foundation for precision medicine and 
personalized treatment.

Despite the increasing number of objective and quantitative 
assessments of gait disorder in PD patients in recent years, there is a 
relative lack of research focusing on the gait characteristics in the early 
stage of the disease. Our study aimed to deep explore the gait disorder 
characteristics of PD patients, especially those in the early stage, and 
to explore whether gait assessment can effectively identify differences 
between early-stage PD patients and healthy elderly individuals.

By conducting a detailed comparative analysis of gait parameters 
between early-stage PD patients and healthy controls (HC), we hoped 
to reveal the unique gait patterns of early-stage PD patients. This 
would not only help improve the accuracy and timeliness of early 

diagnosis but also provide key information for predicting PD 
progression and optimizing intervention strategies. Our research was 
expected to bring advancements to the early diagnosis and 
management of PD, especially in the aspects of identification and 
monitoring of gait disorder, opening up new methods for improving 
the quality of life for patients.

2 Materials and methods

2.1 Participants

In this study, 63 patients with primary PD were encompassed, 
with 27 being male and 36 being female. The inclusion criteria were 
as follows: (1) Meeting the 2015 Movement Disorder Society (MDS) 
diagnostic criteria for primary PD (14); (2) Hoehn and Yahr (H&Y) 
stages between stage 1 and 3; (3) The Mini-Mental State Examination 
(MMSE) score of 24 or above. Additionally, 65 gender- and 
age-matched healthy participants were selected as the healthy control 
group, including 35 males and 30 females. The ages of participants 
ranged from 46 to 85 years old, and all of them were able to complete 
the tests without any assistance from others. Exclusion criteria 
included: (1) Atypical Parkinsonism; (2) Severe systemic diseases 
(such as musculoskeletal, cardiovascular, cerebrovascular and 
respiratory) and other neurological diseases; (3) Uncorrected visual 
impairments, or diseases that could alter gait patterns. This study was 
approved by the Ethics Committee of Central Hospital of Dalian 
University of Technology (Reference No. YN2022-039-57). Each 
participant signed the informed consent before participating in this 
study. The study was performed according to the guidelines of the 
declaration of Helsinki.

2.2 Clinical assessment

Demographic information was collected, including age, gender, 
height (cm), weight (kg), and disease duration. All patients were 
assessed by two experienced neurologists in movement disorders. The 
severity of the disease were evaluated using the H&Y staging scale (15) 
which score ranged from 0 (no symptoms) to 5 (wheelchair bound or 
bedridden unless aided) and the MDS-UPDRS III (16) which 
consisted of 33 items with a score ranged from 0 (no symptoms) to 
132 (severe motor symptoms). Cognitive was evaluated using the 
MMSE which score ranged from 0 to 30, with higher score indicating 
better cognitive function (17).

2.3 Gait assessment

Gait parameters were assessed using ReadyGo. Unlike the 
traditional multi-camera system, ReadyGo system innovatively 
utilizes a set of integrated cameras, including one RGB (red/green/
blue) camera and a single depth camera, to capture and analyze three-
dimensional (3D) motion data. The main advantage of this system lies 
in its unique skeletal tracking technology, which uses deep learning 
algorithms for precise positioning of skeletal points without requiring 
participants to wear any additional sensors, greatly enhancing the 
experience of the participants and the convenience of data collection 
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(Figure 1). By meticulously analyzing the gait of PD patients, the 
system can automatically extract and quantify up to 19 key gait 
parameters, covering many aspects of the gait cycle, including gait 
speed, cadence, stride length, swing and stance phases, and so on, 
providing numerous details for a comprehensive understanding of gait 
disorder in PD patients. The accuracy and sensitivity of the ReadyGo 
system have been validated in previous studies (13), showing high 
reliability in capturing key gait parameters such as stride length and 
gait speed.

2.4 Procedure

 1 Scale assessment: MDS-UPDRS III and H&Y staging scale were 
performed by two experienced neurologists in movement 
disorders, and then gait assessment was carried out. PD patients 
underwent all of the above, and healthy controls only underwent 
gait assessment but without clinical scale assessments.

 2 Gait assessment: the gait assessment device was placed in the 
equipment placement area which was 1.5 meters away from the 
endline. Participants stood at the starting line which was 4.5 
meters directly in front of the device. During the test, 
participants were asked to walk at their self-selected 
comfortable pace without using any assistant device, start from 
the starting line, walk to the end line, turn around, and return 
to the starting line, repeat this process three times before 
ending the recording (Figure  2). Each participant should 
undergo a practice trial before the test to ensure that they 
understood the instructions clearly.

The gait data was achieved through a non-contact method, 19 gait 
parameters were extracted based on the images of gait and depth 

information, including stride length (left, right), step height (left, 
right), step width, gait speed, stride speed (left, right), swing speed 
(left, right), turning time, cadence (left, right), swing phase (left, 
right), stance phase (left, right), double support phase (left, right). The 
specific definitions were shown in Table  1 and the gait cycle was 
shown in Figure 3.

2.5 Modeling

In this study, we defined patients in the H&Y 1 and 2 as early-
stage PD and constructed a classification model using gait parameters 
of early-stage PD and healthy controls. The classification model was 
constructed to distinguish early-stage PD from healthy controls using 
gait parameters. Ten gait parameters with a statistical significance level 
of p < 0.001 were selected as input features. The dataset was split into 
a training set (70%) and a test set (30%) to evaluate the model’s 
performance. We  utilized the LightGBM algorithm to build the 
classifier. The model was trained and validated using the training set, 
and its predictive performance was evaluated on the test set.

The Receiver Operating Characteristic (ROC) curve was 
performed as an important tool to evaluate the performance of the 
model, exploring whether gait parameters can identify early-stage PD 
from healthy controls. The ROC curve showed the relationship 
between the true positive rate (sensitivity) and the false positive rate 
(1-specificity), visually presented the classification capability of the 
model at different thresholds. In this study, we  paid particular 
attention to the Area Under the Curve (AUC) of the ROC, the closer 
the value is to 1, indicated the better classification performance of the 
model, i.e., the stronger ability of gait parameters to identify early-
stage PD.

By comprehensively analyzing the ROC curve and AUC value of 
the model, we hoped to validate the feasibility of gait parameters as 
early diagnostic biomarkers for PD, to provide a new perspective and 
basis for the early detection, intervention, and management of 
PD. This research would also lay a theoretical foundation for the 
subsequent development of more precise and personalized early 
screening tools for PD, promoting continuous advancement in 
clinical practice.

In the process of deepening our research, we adopted a more 
refined analytical strategy, using the Random Forest algorithm to train 
a machine learning regression model, which used all the 19 gait 
parameters as input features and MDS-UPDRS III score as output 
labels. This methodological shift aimed to explore how gait parameters 
quantitatively correlate with the severity of PD. By training a Random 
Forest regression model, we could predict the MDS-UPDRS III score 
of PD patients. To evaluate the performance of the model, we utilized 
the Leave-One-Out Cross Validation (LOOCV) method. In LOOCV, 
each instance of the dataset is used once as a test set while the 
remaining instances form the training set. This iterative process 
ensures that every data point is used for both training and validation, 
providing a robust assessment of the model’s generalization capability 
and predictive accuracy.

We could comprehensively evaluate the performance of the 
regression model by using these metrics: R-squared (R2), Mean 
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE). R2 
measured how well the model fitted the data, ranging from 0 to 1, the 
closer the value was to 1, indicated a better fit of the model. MAE 

FIGURE 1

Human skeletal point tracking and motion recognition (the yellow 
markers indicate the key skeletal points tracked by the ReadyGo 
system).
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quantified the average absolute difference between the predicted value 
and true value, the smaller value suggested higher predictive accuracy 
of the model. MAPE was the average absolute percentage error 
expressed as a percentage, which was better for assessing the relative 
error between predicted value and true value, which was often used to 
understand the prediction accuracy of a model over different ranges.

2.6 Statistical analysis

The statistical analysis in this study was analyzed using SPSS 26.0 
(IBM Corp., Armonk, NY). Continuous variables with normal 
distribution were presented as mean ± standard deviation (x  ± s), the 
comparisons between two groups were made using the Independent 
Samples t-Test, the comparisons among multiple groups with 
homogeneous variances were made using one-way ANOVA followed 
by Bonferroni post-hoc test, the comparisons among multiple groups 
with non-homogeneous variances were made using the Welch test 
followed by Games-Howell (A) post-hoc test. Continuous variables 
with non-normal distribution were presented as median and 
interquartile distances [M (P25, P75)], and comparisons between two 
groups were made using the Mann–Whitney U test, while comparisons 

among multiple groups were made using the Kruskal-Wallis test 
followed by post-hoc test. Categorical variables were described by 
frequency, and group comparisons were made using the Pearson 
Chi-square test. The statistically significant difference was considered 
p < 0.05  in two-tailed tests. In this study, scikit-learn data analysis 
library of Python 3.8 was used to train and verify the classification and 
regression models. Meanwhile, drawing libraries such as matplotlib 
and seaborn were used to visually display the distribution 
characteristics of data and prediction effects of the models.

3 Results

3.1 Demographic and clinical 
characteristics

The demographic data between PD patients and the healthy 
controls were comparable (the first four lines in Table 2), there were 
no significant statistical differences in gender, age, height, and weight 
between the two groups (p > 0.05).

The disease duration of PD patients ranged from 1 to 10 years, the 
MMSE score ranged from 24 to 30 points, the median MDS-UPDRS 

FIGURE 2

The procedure of gait assessment. (A) The schematic diagram of gait assessment (Line A is the starting line which is the departure point for the gait 
assessment; Line B is the end line which is the turning point for the gait assessment; C represents the area where the gait assessment device is placed). 
(B) The photograph of the actual procedure of gait assessment.
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III score was 25.5 points, and H&Y stages ranged from 1 to 3, 
including 13 individuals in stage of H&Y 1, 38 individuals in stage of 
H&Y 2, and 12 individuals in stage of H&Y 3.

3.2 Comparison of gait parameters 
between PD patients and healthy controls

There were statistically significant differences in gait parameters 
between PD patients and healthy controls except for step width and 
right step height. The PD patients exhibited shorter stride length, 
slower gait speed, slower stride speed, slower swing speed, longer 
turning time, slower cadence, longer percentage of stance phase, 
shorter percentage of swing phase, and longer percentage of double 
support phase (Table 3). These results confirmed the “short and slow” 
gait characteristics of PD patients.

3.3 Comparison of gait parameters among 
H&Y 1, H&Y 2, and H&Y 3

PD patients were divided into three groups according to the 
H&Y stages: H&Y 1, H&Y 2, and H&Y 3. We found that there were 
statistically significant differences in stride length, step height, gait 
speed, stride speed, swing speed, and percentage of double support 
phase among the three groups. Post-hoc test showed that these 
differences occurred between H&Y 1 and H&Y 3, and between 
H&Y 2 and H&Y 3, but there was no statistically significant 
difference when comparing H&Y 1 with H&Y 2. That was to say, 
compared with H&Y 1 and H&Y 2, H&Y 3 exhibited shorter stride 
length, lower step height, slower gait speed, slower stride speed, 
slower swing speed, and a longer percentage of time with both feet 
on the ground (Table 4; Figure 4).

3.4 Comparison of gait parameters 
between early-stage PD and healthy 
controls

From Table  4, we  could find that there was no statistically 
significant difference in gait parameters between H&Y 1 and H&Y 
2. Therefore, we  defined H&Y 1 and H&Y 2 as early stage and 
compared them with the healthy controls. We found that early-stage 
PD patients had shorter stride length (left, right), slower gait speed, 
slower stride speed (left, right), slower swing speed (left, right), 
slower cadence (left, right), and longer turning time. This indicated 
that the gait parameters such as stride length, gait speed, stride 
speed, swing speed, turning time, and cadence were the first to 
be affected in the early stage of PD.

3.5 ROC analysis

From Table 5, we selected 10 gait parameters with a statistical 
significance level of p < 0.001 when comparing early-stage PD with 
healthy controls, including stride length (left, right), gait speed, 
stride speed (left, right), swing speed (left, right), turning time, and 
cadence (left, right). We performed ROC analysis on the combined 
gait parameters mentioned above, and evaluated the ability of gait 

TABLE 1 Specific definitions of gait parameters in this study.

Gait parameter Definition

Stride length-L/R (m) The distance between two landings of the left/

right foot.

Step height-L/R (m) The highest distance from the ground during the 

swing of the left/right foot.

Step width (m) The average of the width of the left and right feet 

in each image frame.

Gait speed (m/s) Average speed during straight travel (not 

including the turning time).

Stride speed-L/R (m/s) Average speed during a left/right stride.

Swing speed-L/R (m/s) Average speed during a left/right swing.

Turning time (s) The time from turning start to turning end.

Cadence-L/R (steps/min) Frequency of left/right footstep.

Swing phase-L/R (%) Percentage of left/right swing phase time in the 

left/right stride time.

Stance phase-L/R (%) Percentage of left/right stance phase time in the 

left/right stride time.

Double support-L/R (%) Percentage of double support phase time in the 

left/right stride time.

L, left; R, right.

FIGURE 3

Gait cycle.
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parameters to distinguish early-stage PD from healthy controls. The 
accuracy was 91.43%, the sensitivity was 93.33%, the specificity was 
90.0%, and the area under the curve (AUC) was 0.99, indicating that 
the gait parameters could correctly distinguish 91.43% early-stage 
PD from healthy controls. We  further analyzed the feature 
contribution of the included 10 gait parameters, feature contribution 
was evaluated using the SHAP (SHapley Additive exPlanations) 
method, which quantifies each parameter’s contribution to the 
model’s predictions. The contribution degree was in the following 
order: cadence (right), gait speed, turning time, cadence (left), 
swing speed (right), stride length (left), stride speed (left), stride 
length (right), swing speed (left), and stride speed (right). Cadence, 
gait speed, and turning time had the greatest influence of the gait 
parameters for distinguishing between early-stage PD and the 
healthy controls, while stride length, stride speed, and swing speed 
had a secondary influence (Figure 5).

3.6 Predicting MDS-UPDRS III score

To explore whether gait parameters could predict MDS-UPDRS 
III score, we trained a machine learning regression model using all 
the 19 gait parameters as input features and MDS-UPDRS III score 
as the output label. The scatter plot indicated that the model had a 
strong explanatory power for MDS-UPDRS III score (R2 = 0.897), 
with MAE of 4.015 and MAPE of 0.198 (Figure 6). The scatter plot 
showed the relationship between the predicted value and the true 
value of the regression model. It could be visually seen from the 
figure that the model performance for predicting MDS-UPDRS III 
score was good.

4 Discussion

Our study used a non-contact gait assessment system to assess and 
quantify gait parameters in patients with PD. Our findings confirmed 
that there were significant differences in gait parameters between PD 
patients and healthy controls. PD patients had slower gait speed and 
shorter stride length, which was consistent with the existing research. 
Gait is a very important motor function in daily life, gait disorder is 
closely associated with the quality of life (18). Therefore, early 
recognition and monitoring of gait is crucial for the diagnosis, 
treatment, and prognosis of PD patients. It is challenging to identify 
gait abnormalities in the early stage of PD, even to detect gait 
abnormalities without the complaint of gait disorder. Previous studies 
defined the early stage as H&Y stage below 2.5 (19, 20).

We divided PD patients into three groups according to H&Y 
stages and found that compared with H&Y 1–2, H&Y 3 had shorter 
stride length, lower step height, slower gait speed, slower stride speed, 
slower swing speed, and a longer percentage of time with both feet on 
the ground. But there was no statistically significant difference 
between H&Y 1 and H&Y 2. To explore gait abnormalities in the early 
stage of PD, we  defined H&Y 1 and H&Y 2 as early stage, and 
compared them with healthy controls. We found that early-stage PD 
had shorter stride length, slower gait speed, slower stride speed, slower 

TABLE 2 Demographic and clinical characteristics.

Variable PD (n  =  63) HC (n  =  65) p value

Gender (male/female) 27/36 35/30 0.214

Age (years) 66.90 ± 8.43 67.40 ± 7.17 0.721

Height (cm) 165.10 ± 7.98 165.46 ± 7.96 0.795

Weight (kg) 67.83 ± 12.38 66.92 ± 11.37 0.665

Disease duration (years) 1–10 NA NA

MMSE (score) 24–30 NA NA

H&Y stage NA NA

  1 13

  2 38

  3 12

MDS-UPDRS III 

(score)–overall

25.50 (17.00, 39.00) NA NA

MDS-UPDRS III 

(score)–H&Y 1

13.15 ± 4.30 NA NA

MDS-UPDRS III 

(score)–H&Y 2

25.50 (21.00, 35.25) NA NA

MDS-UPDRS III 

(score)–H&Y 3

48.83 ± 11.89 NA NA

PD, Parkinson’s disease; HC, healthy controls; MMSE, Mini-Mental State Examination; H&Y, 
Hoehn and Yahr; MDS-UPDRS III, section III of the modified movement disorder society 
version of the unified Parkinson’s disease rating scale; NA, not applicable.

TABLE 3 Comparison of gait parameters between PD patients and 
healthy controls.

Gait parameter PD (n  =  63) HC (n  =  65) p value

Stride length-L (m) 0.89 ± 0.23 1.10 ± 0.15 < 0.001

Stride length-R (m) 0.89 ± 0.24 1.09 ± 0.15 < 0.001

Step height-L (m) 0.10 ± 0.03 0.12 ± 0.02 0.004

Step height-R (m) 0.10 ± 0.03 0.10 (0.09, 0.12) 0.127

Step width (m) 0.14 (0.12, 0.15) 0.13 ± 0.02 0.091

Gait speed (m/s) 0.72 ± 0.23 1.10 (1.01, 1.21) < 0.001

Stride speed-L (m/s) 0.80 ± 0.24 1.20 ± 0.21 < 0.001

Stride speed-R (m/s) 0.80 ± 0.24 1.20 ± 0.22 < 0.001

Swing speed-L (m/s) 1.93 ± 0.45 2.74 ± 0.36 < 0.001

Swing speed-R (m/s) 1.94 ± 0.47 2.75 ± 0.41 < 0.001

Turning time (s) 1.60 (1.21, 2.06) 1.03 (0.89, 1.31) < 0.001

Cadence-L (steps/min)
112.49 (100.00, 

119.99)

128.57 (120.00, 

138.46)

< 0.001

Cadence-R (steps/min) 105.88 (100.00, 

112.50)

128.57 (120.00, 

141.76)

< 0.001

Swing phase-L (%) 31.17 ± 3.17 32.39 ± 2.69 0.021

Swing phase-R (%)
31.09 ± 3.50 33.33 (31.43, 

34.62)

< 0.001

Stance phase-L (%) 68.82 ± 3.17 67.61 ± 2.69 0.022

Stance phase-R (%) 68.90 ± 3.50 66.67 (65.39, 

68.57)

< 0.001

Double support-L (%) 38.14 ± 6.34 34.62 (33.33, 

36.85)

< 0.001

Double support-R (%)
37.43 ± 6.21 34.62 (33.33, 

36.85)

0.004

L, left; R, right. p values in bold indicate statistical significance (p < 0.05).
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TABLE 4 Comparison of gait parameters among H&Y 1, H&Y 2, and H&Y 3.

Gait Parameter H&Y stage p value

H&Y 1 (n  =  13) H&Y 2 (n  =  38) H&Y 3 (n  =  12) Overall 1 vs 2 1 vs 3 2 vs 3

Stride length-L (m) 1.03 ± 0.13 0.91 ± 0.22 0.66 ± 0.22 <0.001 0.060 <0.001 0.007

Stride length-R (m) 1.02 ± 0.17 0.91 ± 0.22 0.66 ± 0.23 <0.001 0.383 < 0.001 0.001

Step height-L (m) 0.11 ± 0.02 0.11 ± 0.03 0.07 ± 0.02 <0.001 1.000 0.001 0.001

Step height-R (m) 0.11 ± 0.03 0.11 ± 0.03 0.08 ± 0.02 0.025 1.000 0.068 0.029

Step width (m) 0.13 ± 0.02 0.13 ± 0.02 0.14 (0.13, 0.15) 0.706 - - -

Gait speed (m/s) 0.82 ± 0.16 0.75 ± 0.21 0.54 ± 0.24 0.003 0.855 0.004 0.011

Stride speed-L (m/s) 0.92 ± 0.19 0.82 ± 0.22 0.60 ± 0.23 0.002 0.420 0.002 0.012

Stride speed-R (m/s) 0.90 ± 0.22 0.83 ± 0.22 0.61 ± 0.24 0.004 0.984 0.005 0.011

Swing speed-L (m/s) 2.07 ± 0.32 1.99 ± 0.44 1.56 ± 0.44 0.006 1.000 0.012 0.009

Swing speed-R (m/s) 2.15 ± 0.42 1.97 ± 0.47 1.61 ± 0.40 0.011 0.686 0.011 0.049

Turning time (s) 1.36 ± 0.39 1.68 (1.26, 2.17) 1.95 ± 1.00 0.105 - - -

Cadence-L (steps/min) 107.28 ± 12.05 110.50 ± 13.05 114.74 ± 20.39 0.441 - - -

Cadence-R (steps/min) 106.83 ± 12.48 105.88 (99.34, 

112.50)

107.87 ± 16.93 0.948 - - -

Swing phase-L (%) 32.31 ± 4.29 31.29 ± 2.57 29.55 ± 3.12 0.156 - - -

Swing phase-R (%) 33.19 ± 3.93 31.34 (29.91, 33.85) 28.51 ± 3.49 0.005 0.866 0.006 0.021

Stance phase-L (%) 67.68 ± 4.29 68.70 ± 2.57 70.45 ± 3.12 0.156 - - -

Stance phase-R (%) 66.80 ± 3.93 68.66 (66.14, 70.09) 71.49 ± 3.49 0.005 0.866 0.006 0.021

Double support-L (%) 34.96 ± 8.35 36.78 (34.24, 40.81) 43.10 ± 6.09 0.012 1.000 0.018 0.027

Double support-R (%) 34.91 ± 8.39 36.14 (33.33, 39.97) 41.79 ± 5.76 0.014 1.000 0.018 0.037

L, left; R, right. p values in bold indicate statistical significance (p < 0.05).

FIGURE 4

Comparison of gait parameters among H&Y 1, H&Y 2 and H&Y 3. The filled circles represent the median, lower and upper lines represent the 25th and 
75th percentile, respectively. *represents p  <  0.05, **represents p  <  0.01, ***represents p  <  0.001.
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swing speed, slower turning time, and slower cadence. This indicated 
that in the early stage of PD, stride length, gait speed, stride speed, 
swing speed, turning time, and cadence were the first to be affected, 
suggested that they could be used to detect gait abnormalities in the 
early stage. In the progressive stage of the disease, step height, gait 
speed, stride speed, and swing speed decrease further, and the 
percentage of time with both feet on the ground was prolonged, 
indicated that these parameters could be  used to monitor the 
progression of the disease.

We innovatively proposed an auxiliary diagnostic method 
based on fine-grained gait feature analysis, aimed to identify signs 
of PD in the early stage, we  paid a particular attention to the 

potential value of gait parameters in the early diagnosis of PD. By 
using the machine learning model, we  conducted an in-depth 
exploration of the selected ten gait parameters, including stride 
length (left, right), gait speed, stride speed (left, right), swing 
speed (left, right), turning time, and cadence (left, right). The 
results showed that these gait parameters could effectively 
distinguish early-stage PD from healthy controls. The model 
showed an encouraging classification performance, with an 
accuracy of up to 91%, the sensitivity of 93%, and the specificity 
also maintained at a high level of 90%. This strongly proved the 
practicality and reliability of the constructed model in the 
auxiliary diagnosis of early-stage PD.

TABLE 5 Comparison of gait parameters between early-stage PD and healthy controls.

Gait Parameter Early-stage PD (n  =  51) HC (n  =  65) p value

Stride length-L (m) 0.94 ± 0.20 1.10 ± 0.15 < 0.001

Stride length-R (m) 0.94 ± 0.21 1.09 ± 0.15 < 0.001

Step height-L (m) 0.11 ± 0.03 0.12 ± 0.02 0.175

Step height-R (m) 0.11 ± 0.03 0.10 (0.09, 0.12) 0.781

Step width (m) 0.13 ± 0.02 0.13 ± 0.02 0.156

Gait speed (m/s) 0.76 ± 0.20 1.10 (1.01, 1.21) < 0.001

Stride speed-L (m/s) 0.84 ± 0.22 1.20 ± 0.21 < 0.001

Stride speed-R (m/s) 0.85 ± 0.22 1.20 ± 0.22 < 0.001

Swing speed-L (m/s) 2.01 ± 0.41 2.74 ± 0.36 < 0.001

Swing speed-R (m/s) 2.02 ± 0.46 2.75 ± 0.41 < 0.001

Turning time (s) 1.56 (1.23, 2.05) 1.03 (0.89, 1.31) < 0.001

Cadence-L (steps/min) 109.68 ± 12.77 128.57 (120.00, 138.46) < 0.001

Cadence-R (steps/min) 105.88 (100.00, 112.50) 128.57 (120.00, 141.76) < 0.001

Swing phase-L (%) 31.55 ± 3.08 32.39 ± 2.69 0.123

Swing phase-R (%) 31.42 (30.00, 33.97) 33.33 (31.43, 34.62) 0.001

Stance phase-L (%) 68.44 ± 3.08 67.61 ± 2.69 0.127

Stance phase-R (%) 68.57 (66.02, 70.00) 66.67 (65.39, 68.57) 0.003

Double support-L (%) 36.97 ± 5.86 34.62 (33.33, 36.85) 0.008

Double support-R (%) 36.41 ± 5.90 34.62 (33.33, 36.85) 0.086

L, left; R, right. p values in bold indicate statistical significance (p < 0.05).

FIGURE 5

(A) Shows the ROC curve of the selected gait parameters in early-stage PD. (B) Shows the feature contribution of the selected gait parameters.
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To more comprehensively evaluate the potential of gait parameters 
in quantifying disease severity, we further explored their association with 
MDS-UPDRS III score. We constructed a predictive model using all the 
19 gait parameters as input features and MDS-UPDRS III score as output 
label. The model showed excellent explanatory power and predictive 
accuracy: a high R2 value indicated that the model could effectively 
explain most of the score variations; a low MAE value indicated good 
consistency between the predicted value and true value of the model; and 
a low MAPE value highlighted the high precision of the model in 
predicting MDS-UPDRS III score. In summary, our research not only 
confirmed the importance of gait parameters in the early diagnosis of PD 
but also demonstrated their great potential in quantifying disease 
progression. This provided a new perspective and tool for the future 
clinical management and personalized treatment of PD.

While our study has revealed the potential of gait parameters in the 
auxiliary diagnosis of early-stage PD, there were still some limitations 
that should be  acknowledged. The primary challenge lied in the 
limitation of sample size, that was, the relatively small number of 
participants. A small sample size might affect the power of statistical 
analysis and potentially constrain the generalizability and stability of the 
results. Additionally, the current study focused only on spatiotemporal 
parameters, such as stride length and gait speed, without involving 
more detailed kinematic parameters like joint angles. In light of these 
limitations, we plan to expand the sample size in future research and 
include more gait parameters, such as kinematic parameters, in order 
to build a more comprehensive and accurate diagnostic model.

5 Conclusion

In summary, the non-contact gait assessment system we used was 
capable of objectively and quantitatively evaluating gait disorder in PD 
patients, providing clinicians with a valuable tool for predicting 
MDS-UPDRS III score. Our machine learning models could 
accurately distinguish early-stage PD from healthy controls by 
integrating analysis of gait parameters such as stride length, gait speed, 
stride and swing speed, turning time, and cadence, and the model 
could also make reasonable prediction of MDS-UPDRS III score. This 
achievement reinforced the role of gait analysis in the early diagnosis 

of PD and paved the way for the development of early intervention 
and personalized treatment strategies for PD.
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FIGURE 6

The scatter plot of the relationship between the predicted value and 
true value of the regression model (the horizontal axis of the scatter 
plot represents the true value of the MDS-UPDRS III score and the 
vertical axis represents the predicted value of the MDS-UPDRS III 
score).
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