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Background: Advances in video image analysis and artificial intelligence provide 
opportunities to transform how patients are evaluated. In this study, we assessed 
the ability to quantify Zoom video recordings of a standardized neurological 
examination— the Myasthenia Gravis Core Examination (MG-CE)—designed for 
telemedicine evaluations.

Methods: We used Zoom (Zoom Video Communications) videos of patients 
with myasthenia gravis (MG) who underwent the MG-CE. Computer vision, 
in combination with artificial intelligence methods, was used to develop 
algorithms to analyze the videos, with a focus on eye and body motions. To 
assess the examinations involving vocalization, signal processing methods, such 
as natural language processing (NLP), were developed. A series of algorithms 
were developed to automatically compute the metrics of the MG-CE.

Results: A total of 51 patients with MG were assessed, with videos recorded twice 
on separate days, while 15 control subjects were evaluated once. We successfully 
quantified the positions of the lids, eyes, and arms and developed respiratory 
metrics based on breath counts. The cheek puff exercise was found to have 
limited value for quantification. Technical limitations included variations in 
illumination, bandwidth, and the fact that the recording was conducted from 
the examiner’s side rather than the patient’s side.

Conclusion: Several aspects of the MG-CE can be  quantified to produce 
continuous measurements using standard Zoom video recordings. Further 
development of the technology will enable trained non-physician healthcare 
providers to conduct precise examinations of patients with MG outside of 
conventional clinical settings, including for the purpose of clinical trials.
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1 Introduction

Telemedicine and multi-modal patient monitoring technologies 
are aimed at revolutionizing conventional clinical care and enhancing 
the efficiency of clinical trials (1–3). These advancements hold 
particular promise for patients facing barriers to accessing healthcare, 
such as those with disabilities, limited economic resources, and a lack 
of caregiver support. Furthermore, these obstacles may prevent 
patients from participating in clinical research studies, which require 
frequent monitoring visits. Individuals with rare diseases may face 
more pronounced challenges due to the scarcity of care centers and 
clinical trials specifically for these conditions (4). Enhancing the 
inclusivity and efficiency of clinical trial processes is critically 
important to advance therapeutic development (5).

Inter-rater variability in clinical trial outcome measures is well 
recognized. This variation can result from ambiguity in the metrics 
used, as well as from the differences in how evaluators perform or 
assess a specific outcome measure (6–8). Video-based examinations 
using accessible technology offer opportunities for synchronous or 
post-hoc quantitative analyses. Improved outcome measures and 
clinical care approaches are particularly needed for myasthenia gravis 
(MG), given its rarity, propensity for fluctuation, and the benefit from 
extensive disease-specific monitoring by subspecialists (7–9).

A standardized examination for MG, specifically tailored for 
telemedicine use, was developed at the start of the COVID-19 
pandemic (10). This assessment, known as the MG-Core Examination 
(MG-CE), is based on the traditional neuromuscular examination 
performed in clinics and insights gained from outcome measures used 
in clinical trials for MG. We took advantage of a bank of recorded 
video sessions to create algorithms aimed at quantifying various 
aspects of the MG-CE (11, 12). In this study, we aimed to apply and 
refine our algorithms using a large cohort of MG patients and a diverse 
control sample. Our approach consistently identified key examination 
metrics, and we recognized aspects of the MG-CE that are not reliable. 
Our methods have the potential to enhance the way the MG-CE is 
conducted and to provide quantitative assessments that were 
previously unattainable.

2 Methods

2.1 Participants and video recording

Participants were recruited to undergo standardized examinations 
via telemedicine to assess the performance of the MG-CE 
(NCT05917184) (10). These video recordings were not created 
specifically for this study’s purpose and accurately reflect a standard 
telemedicine visit. We accessed the recordings of participants who had 
undergone the examinations twice within 7 days, except for one 
patient who had a gap of 39 days between the videos. Each participant 
was evaluated by the same neurologist who holds board certification 
in neuromuscular medicine. Control participants were selected based 
on having no self-reported physical limitations and a score of zero on 
the MG Activities of Daily Living (13). The MG-CE was performed 
once by a board-certified neurologist. A total of 51 patients with MG 
and 15 controls participated in the study (Supplementary material).

All participants provided written consent. The patient study was 
approved by the central institutional review board of MGNet at Duke 

University and the George Washington University institutional review 
board. All patients exhibited clinical characteristics of MG, which 
were confirmed by elevated serum autoantibody levels or 
electrophysiological findings. The control study was approved by the 
George Washington University institutional review board.

The present dataset allowed us to further train our algorithms (11, 
12) using a broad spectrum of computer vision and signal analysis 
tools in combination with artificial intelligence (AI) methods. 
We systematically used an AI transcription tool, AssemblyAI (San 
Francisco, CA), and standard natural language processing (NLP) 
techniques to time stamp the patient reports, such as descriptions of 
double vision and counting exercises. Details of the methods used for 
each examination and their technical limitations are presented in the 
Supplementary material.

3 Results

3.1 Quality review

We found great variability in the pixel count of the patient images 
and lighting conditions across recordings. The number of frames per 
second was 25, with the exception of 5 videos that were recorded at 30 
frames per second. To maintain the quality of data acquisition, a video 
was removed from the analysis if any of the following conditions were 
met: (1) the individual was positioned too close to the camera to 
capture a clear view of the region of interest, (2) inadequate 
illumination or lack of contrast resulted in insufficient pixel count, or 
(3) the audio volume was too low to allow effective speech evaluation. 
Supplementary Table S2 lists the number of videos excluded from the 
analysis for each metric, while the Supplementary material provides 
the reasons for their elimination.

3.2 Ptosis evaluation

A sample of 540 images from the video dataset of the controls was 
manually evaluated so that the obtained anatomical landmarks were 
within 2 pixels. We were able to compute the distance from the upper 
lid to the bottom of the iris and the distance from the upper lid to the 
lower lid. Figure 1 shows the results of 11 out of 14 controls. The 
recordings for the ptosis assessment had pixel resolutions ranging 
from 7 to 28. We  found that one-third of the videos had poor 
resolution. The four-fold difference between the lowest and highest 
resolution of the videos was largely due to the variations in the 
distance between the participant and the camera. The aspect ratio of 
the eye width versus height varied from 33 to 55 percent, which 
contributed to variability in the video acquisition. The noise in the 
numerical output was at most 4% after filtering (11). No control 
exhibited greater than 4%variation, except for those older than 
70 years. Therefore, our use of the 70-year-old boundary needs to 
be evaluated.

A total of 34 patient videos were analyzed (Figure  1A). 
We identified two patterns of lid fatigue. One pattern was a smooth, 
linear drop in the upper lid, approximated by the negative slope 
obtained through linear square fitting. The second pattern exhibited a 
more chaotic behavior, where the patient appeared to struggle to 
maintain upgaze (Figures 1B,C). Of the 34 patients, 11 exhibited lid 
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fatigue. As we had established a 4% variation for the controls, we did 
not expect false-positive results for patients above that threshold. A 
total of three patients progressively tilted their heads backward to 
compensate for ptosis, which compromised measurement precision. 
This was detected by the change in the vertical dimension from the 
chin to the top of the head. We  were able to quantitatively and 
continuously monitor lid fatigue.

3.3 Ocular alignment

Figure  2 shows the results of the barycentric coordinate 
determination of the visible iris boundary for 13 controls. The two 
instances of failure were related to participants turning their heads or 
poor lighting conditions. We  observed that eye opening was 
marginally smaller for the controls during this test compared to the 

ptosis assessment. Ocular alignment could be determined within 5%. 
Therefore, a 5% error was the threshold above which ocular 
misalignment could be estimated.

For the patients, the average vertical opening of the lids during the 
eccentric gaze in the diplopia test was smaller compared to the 
controls. We obtained a ratio of 0.63, with a standard deviation of 0.17. 
Consequently, the number of pixels available to assess the iris position 
was lower than that during the ptosis evaluation. Ocular misalignment 
was computed only along the horizontal axis (12) In two patients, our 
algorithm failed because the misalignment was primarily in the 
vertical direction. A few patients demonstrated a stable alignment of 
their eyes based on the barycentric coordinate we computed but still 
reported experiencing double vision. However, others had double 
vision without any noticeable misalignment. In fact, the resolution of 
the videos usually does not allow the human examiner to assess ocular 
misalignment. The NLP algorithm allows precise identification of the 

FIGURE 1

(A) Distribution of the percentage of change from the maximum separation of the upper and lower eyelids during the examination. The controls are 
represented using two adjacent black bars, one for each eye. Similarly, the patient results are shown in blue or red bars. The most severe ptosis cases 
from the two evaluations are presented here. Red columns represent the participants who were significantly different from the controls (one standard 
deviation from the mean). Green circles represent the individuals older than 70 years. Yellow horizontal lines represent the mean metric output for the 
control, with the mean minus one standard deviation serving as the threshold to mark the presence of ptosis. (B,C) Two examples of the variation in 
the distance between the upper lid and lower lid (black curve) and the distance from the bottom of the iris to the lower lid (red curve), measured in 
pixels, over the course of the exercise. The horizontal axis represents the time elapsed during the exercise, in seconds. Figure (B) shows a progressive, 
linear, and continuous eyelid fatigue well fitted by a linear square (green curve), while (C) shows the measurements of a participant struggling to keep 
the eyes open. It is important to note that the number of pixels representing the eye opening differs between these two participants, which reflects the 
dataset, where the distance between the participant and the camera was not standardized. The participant in (B) was assessed to have moderate ptosis, 
while the participant in (C) was graded from no ptosis to mild and moderate ptosis.
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timestamp for reported double vision. We observed (Figure 2) that 
approximately half of the patients experienced a drift in ocular 
alignment during the test.

3.4 Arm extension

Figure 3 and Supplementary Figure S1 illustrate the elapsed time 
during which the participant could maintain shoulder abduction to 
approximately 90 degrees with the elbows fully extended. Our 
algorithm measured the angle formed by the arm and torso, as well as 
the vertical variation. Our assessment required that the patient remain 
seated during the exercise and that the camera image show both arms; 
however, an examiner can evaluate the exercise with only a partial 
view of the arms. The algorithm computed the total time the 
participant maintained shoulder abduction up to a 2-min duration, as 
well as the slope of the decay of the angle formed by each arm and the 
vertical arm position during the elapsed time.

Despite the variation in the initial arm positions among the 
participants, the algorithm successfully analyzed all the controls, 
except for one participant who had an obstructed view of the arms. 
The average downward drift during the test was −0.05 radians for 
those younger than 70 years of age and −0.15 radians for those older 
than 70. Therefore, subtracting the standard deviation to detect fatigue 
provides a threshold of −0.12. In other words, any slope less negative 

than this would indicate fatigue for patients younger than 70 years and 
−0.24 for those older than 70.

Of 44 patients, 10 were unable to maintain their arms extended 
for 2 min, while an additional 9 individuals experienced significant 
drift (Figure 3 and Supplement Figure S2). The decay of the angle was, 
in the first approximation, linear. In other words, the drift of the arms 
from the horizontal was a continuous (linear) process that starts at 
time zero. We manually assessed that both metrics were computed 
correctly with great accuracy, provided that the torso, head, and both 
arms were within the frame of the video. In comparison to the formal 
MG-CE scoring, arm drift was not assessed, and only the ability to 
hold for 2 min was measured. Quantifying drift through examiner 
review of the video is difficult and may be impossible. However, the 
digital algorithm can identify abnormalities.

3.5 Sit-to-stand exercise

We evaluated the elapsed time in the ascending phase for the 
participants who could stand with arms crossed (Figure  4). All 
controls were able to stand with their arms crossed or uncrossed. 
We discarded five control videos and nearly half of the patient videos 
because either the head or the hips were not visible. An additional 
three participants had only a partial view of the head upon standing. 
The automatic identification of the sit-to-stand time was hindered by 

FIGURE 2

Ocular alignment was assessed by the difference in the barycentric coordinate (0 = no misalignment). The progressive misalignment between both 
eyes used the least squares approximation of the barycentric coordinate change during the exercise. The controls are represented using a black bar. 
The patient results are shown using blue bars if there is no significant misalignment developed during the examination and red bars if misalignment 
was present. The green circle represents the participants older than 70 years. Yellow horizontal lines represent the mean metric output for the control, 
with the mean plus one standard deviation serving as the threshold to mark the presence of eye misalignment.
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the time lag of the algorithm and the limited number of frames per 
second in the video, resulting in poor accuracy (Figure  4). 
We manually assessed all entries and found an error of less than20% 
for 7 controls and 10 patients in the videos with a complete view of the 
body during the test. This error was 40% for the entire dataset, 
including 10 controls and 28 patients, for the videos with a partial 
view of the head in the standing position. We were easily able to 
automatically detect when a patient could not stand.

3.6 Count-to-50 exercise

Using NLP, the identification of the soundtrack time windows 
corresponding to the exercise was successful with high accuracy. 
Dysarthria was not observed in the controls by the neurologist 
examiner. We  first computed the time length of the count-to-50 
exercise for each patient and compared the elapsed times of the two 
evaluations. We observed a relatively good consistency in the times for 
the same patient across two different visits, but there was significant 
variability among the patients in the frequency of counting, with the 
elapsed times ranging from 0.5 to 1.5 s.

We were able to compute the dynamic motions of the lips and 
mouth. The acceleration of the vertical component of mouth motions 
could indicate muscle weakness in the lips and, to some extent, in the 
cheek and jaw muscles (14). Mouth motions in the controls over 
70 years of age were generally slower. Of the 49 patients, 4 were rated 
as having dysarthria by the physicians, while 5 were rated as having 
possible dysarthria, based on one of two evaluators identifying the 
point at which dysarthria appeared (publication in preparation). A low 
acceleration value was noted for all these patients (Figure 5). However, 
weakness in the vocal folds, pharyngeal muscles, tongue, and soft 
palate muscles can also cause dysarthria. This could be best assessed 
through sound analysis (15–17).

3.7 Single-breath-count

The NLP was able to determine the total time for test performance 
and the number the participant counted to. All controls under 70 years 
of age, except one with a large body habitus, had no difficulty counting 
to 30. We computed the elapsed time for counting in one breath, as 
opposed to the time taken to count to the last number 
(Supplementary Figure S1). The participants were not asked to count 
at a specific rate, as per the MG-CE instructions, and maintaining a 
particular pace was difficult. We  observed that age impacted the 
participants’ performance. However, this measure was likely an 
underestimation because the young controls may have counted for a 
longer period.

The total time counted varied between visits for individual 
participants (Supplementary Figure S2). The instructions stated that 
participants should count as high as possible in one breath, but no 
attempt at standardization was recommended. Therefore, it was 
difficult to use this exercise to assess respiratory function. The 
variation in patient responses between the visits could have been 
caused by MG, prior activities, or the time elapsed since the last dose 
of pyridostigmine. We were unable to correlate speech features from 
the count-to-50 exercise with those from the single-breath-count 
exercise, as we did in our previous study (11). This discrepancy is 
likely related to the greater variation across study sites.

3.8 Cheek puff and tongue protrusion

Both evaluations proved to be the most difficult to segment using 
computer vision. We were able to assess whether the participants were 
able to form a tight “O” seal with the lips when asked to fill their 
cheeks with air. We  computed the pattern/amount of cheek 
deformation in both the cheek puff and tongue-to-cheek maneuvers, 

FIGURE 3

(A) Maximum arm extension time. All controls reached the 120-s limit. Nine MG patients (marked with a red bar) were unable to do so. The green circle 
represents the patients older than 70 years. (B) Linear drift of the arm extension, in radians, for the participants who could extend their arms for 120 s. 
The black bar represents the control group, and the blue bar represents MG patients who were similar to the controls. The red bar represents the MG 
patients with significantly greater drift. We show the maximum drift for both arms at both visits for MG patients. The green circle represents the 
participants older than 70 years. Yellow horizontal lines represent the mean metric output for the control group, with the mean minus one standard 
deviation serving as the threshold to mark the presence of shoulder muscular weakness.
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FIGURE 4

Ascending time for the sit-to-stand exercise. The control results are represented in black, while the results of the MG patients are represented in blue, 
with red bars indicating significantly worse performance than controls. The green circle represents the patients older than 70 years. Yellow horizontal 
lines represent the mean metric output for the control group, with the mean plus one standard deviation serving as the threshold to mark the presence 
of leg muscular weakness.

FIGURE 5

Average variation of the acceleration (normalized distance/s square) of the vertical movement of the upper lip during the count-to-50 exercise. Black 
bars represent the controls, blue bars represent the MG patients, and red bars indicate significantly worse performance than the controls. The green 
circle represents the participants older than 70 years. Yellow horizontal lines represent the mean metric output for the control group, with the mean 
minus one standard deviation serving as the threshold to mark the presence of lip/facial muscular weakness.
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as described previously (11). However, the variations in anatomy 
prevented us from establishing baseline values to compare the control 
and MG groups.

4 Discussion

In this study, we demonstrated that asynchronous quantitative 
analyses of the MG-CE are feasible. For the majority of the exam 
components, our algorithm distinguished significant differences 
between the MG and control groups. In contrast to concerns regarding 
the inferiority of telemedicine examinations compared to in-person 
assessments (1, 18), we  found that significant potential exists for 
quantifying the neuromuscular examination through objective 
analytical methods.

Despite the inherent technological limitations of telemedicine and 
the videos not being originally recorded or optimized for our analyses, 
a significant majority could still be  utilized to derive continuous 
measures of fatigue in MG patients. The Zoom video usability was 
directly proportional to the pixel resolution, uniformity of recording, 
and optimization of the patient’s lighting and environment. Telehealth 
offers a unique opportunity to leverage digital technology and AI (3, 
19, 20) as all communication is in digital form and can be archived, 
revisited, and analyzed using improving algorithms. The manual work 
involved in this process was non-trivial and required human review 
of 50 h of videos. This is typical of rigorously developed AI 
applications, which require significant human input initially to ensure 
accurate algorithm development (21). Digital processing 
supplemented by AI can make the process more automatic, efficient, 
and consistent as we continue to optimize the technology.

Our AI algorithms allowed for the quantification of the ocular 
examination and offered the opportunity to perform objective 
evaluations, either via telemedicine or in person, by trained clinic staff 
for routine clinical care or by research coordinators in the context of 
clinical trials. Our analytics allowed for an estimate of the marginal 
reflex (the distance from the light reflection on the pupil to the upper 
lid) from the pre-recorded videos, provided that the lighting 
conditions and pixel resolution were sufficient to see the pupil clearly 
in relation to the upper lid position. Consistent with clinical practice, 
we did not always detect ocular misalignment, an objective measure, 
when the patients reported double vision. Specialized eye movement 
recordings or ophthalmological evaluations, which are not commonly 
performed by neurologists, are required to definitively assess ocular 
misalignment. Patients may also exhibit central adaptation to ignore 
the false image or may have vision impairment in one eye, which 
limits binocular diplopia. Our algorithm did not assess vertical 
misalignment, which could have resulted in double vision. MG 
patients exhibited a linear drift or chaotic instability of the horizontal 
eye position, most likely indicative of neuromuscular transmission 
failure (22). The majority of the patients demonstrated fatigable ptosis 
while maintaining a lateral eye position. This made the automatic 
detection of the anatomical landmarks for measuring ocular alignment 
more challenging in MG patients.

We were able to quantify the extended arm position by the 
elapsed time of the abduction and downward drift. Drift 
represents a continuous linear process that can be challenging for 
an examiner to track, whereas the instability in the arm position 
can persist until patients suddenly drop their arms. These 

observations may reflect specific aspects of neuromuscular 
transmission fatigue (23). The drift suggests a gradual reduction 
in the number of active muscle fibers capable of generating 
sufficient force, while the abrupt drop indicates the simultaneous 
loss of numerous fibers responsible for maintaining the arm 
position. Both physicians and patients recognize these distinct 
phenomena. Central or musculoskeletal factors may influence 
these results (24, 25).

Standing up from a seated position is a complicated movement. 
Weakness, sensory deficits, pain, and multiple other factors, including 
compensatory adjustments, may influence the movement. The 
variations in the test performance, most notably due to the patient’s 
environment and the examiner’s viewing position, further complicated 
our assessment. This exercise holds the greatest potential for 
optimization to achieve a clinically useful score, especially given the 
importance of rising from a seated position as an indicator of overall 
function (26).

We successfully utilized the count-to-50 and single-breath-count 
exercises to develop measures that could not be  assessed by an 
examiner simply by viewing the videos. No reliable quantification of 
the deformation of the cheek could be established for the cheek puff 
task. The anatomical variation among the participants further 
contributed to our inability to derive a reliable assessment. The cheek 
puff and tongue-in-cheek exercises were not suitable for developing 
an assessment method. We  question the utility of these tasks in 
telehealth evaluation since the examiner cannot touch the cheek to 
evaluate muscle strength.

Despite the limitations of the count-to-50 and single-breath-count 
exercises, we were able to derive assessments that were amenable to 
quantification, albeit in a manner different from the exam’s original 
intent. The lip and jaw movements could be  evaluated with high 
accuracy and consistency across the two videos. Abnormalities were 
identified in the patients who were assessed to have dysarthria by the 
physician examiners. The single-breath-count exercise is often 
considered to be a good bedside test for assessing respiratory function; 
however, formal evaluations indicate only mild to moderate 
correlation with respiratory parameters in patients with less severe 
weakness (27, 28). We found significant variation in the counting 
speed among the participants, and we also found that the elapsed time 
was a more consistent metric.

The process of digitalization and its utilization of AI introduces 
new dimensions beyond the scope of human perception. Further 
investigations will define the added value of the increased accuracy 
offered by digital metrics compared to traditional observations, as well 
as the utility of incorporating these new metrics into clinical trials and 
practice. The digital algorithm outputs require an additional step to 
convert numerical data into a meaningful score. This process is similar 
to converting a laboratory test result into a disease progression score, 
for example, using a CD4 count to assess HIV infection (29). Our 
hypothesis is that digital processing inherently reduces ambiguity and 
hidden assumptions in protocol tasks, which may potentially enhance 
the quality of scoring and provide new metrics to model nervous 
system function (30). Furthermore, we envision our digital framework 
for conducting the MG-CE examination as an opportunity to (i) 
enhance physician training before clinical studies, (ii) fully leverage a 
dataset accumulated during a clinical trial with minimal human effort 
for subsequent analysis, and (iii) facilitate an agile approach to clinical 
trials that enables real-time examination of data to identify and 
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address potential gaps and errors in data acquisition as early 
as possible.
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