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Objective: To evaluate the clinical utility of improved machine learning models

in predicting poor prognosis following endovascular intervention for intracranial

aneurysms and to develop a corresponding visualization system.

Methods: A total of 303 patients with intracranial aneurysms treated with

endovascular intervention at four hospitals (FuShun County Zigong City People’s

Hospital, Nanchong Central Hospital, The Third People’s Hospital of Yibin, The

Sixth People’s Hospital of Yibin) from January 2022 to September 2023 were

selected. These patients were divided into a good prognosis group (n = 207)

and a poor prognosis group (n = 96). An improved machine learning model

was employed to analyze patient clinical data, aiding in the construction of

a prediction model for poor prognosis in intracranial aneurysm endovascular

intervention. This model simultaneously performed feature selection and weight

determination. Logistic multivariate analysis was used to validate the selected

features. Additionally, a visualization system was developed to automatically

calculate the risk level of poor prognosis.

Results: In the training set, the improved machine learning model achieved a

maximum F1 score of 0.8633 and an area under the curve (AUC) of 0.9118.

In the test set, the maximum F1 score was 0.7500, and the AUC was 0.8684.

The model identified 10 key variables: age, hypertension, preoperative aneurysm

rupture, Hunt-Hess grading, Fisher score, ASA grading, number of aneurysms,

intraoperative use of etomidate, intubation upon leaving the operating room,

and surgical time. These variables were consistent with the results of logistic

multivariate analysis.

Conclusions: The application of improved machine learning models for the

analysis of patient clinical data can e�ectively predict the risk of poor prognosis

following endovascular intervention for intracranial aneurysms at an early stage.

This approach can assist in formulating intervention plans and ultimately improve

patient outcomes.
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1 Introduction

Intracranial aneurysms are protrusions resulting from

congenital defects in the cerebral artery walls or increased

intraluminal pressure, and they are a primary cause of

subarachnoid hemorrhage. Clinically, these aneurysms often

present with symptoms such as vomiting, severe headache, and

visual field disturbances. Without timely intervention, ruptured

aneurysms can lead to intracranial hemorrhage, posing significant

threats to patient survival. The associated mortality and disability

rates are notably high, leading to poor prognoses (1, 2).

Endovascular intervention is the primary treatment for

intracranial aneurysms, offering advantages in reducing trauma for

patients with ruptured aneurysms and promoting postoperative

recovery. However, the factors influencing prognosis following this

treatment remain unclear (3, 4). Traditional logistic regression

models rely heavily on selected independent factors to predict

patient outcomes, but they often miss critical clinical information,

significantly reducing data utilization and overall predictive

performance (5).

In recent years, machine learning, a branch of artificial

intelligence, has shown great promise in the medical field. It can

develop predictive models by analyzing clinical data and extracting

case characteristics for accurate diagnosis and prognosis. Machine

learning also allows for iterative improvements during validation,

offering high efficiency and rapid results (6). Numerous studies

have explored the use of machine learning models to predict

outcomes following endovascular intervention for intracranial

aneurysms. For instance, several studies have employed models

such as support vector machines, random forests, and neural

networks to enhance prediction accuracy and clinical decision-

making (7–9).

Despite these advancements, there is still a lack of

comprehensive research that integrates various machine learning

techniques to improve the prediction of poor prognosis specifically

for intracranial aneurysm endovascular intervention. Furthermore,

existing studies often do not provide user-friendly visualization

systems that can aid clinicians in interpreting the results and

making informed decisions.

This study aims to bridge these gaps by evaluating the clinical

value of using an improvedmachine learningmodel to predict poor

prognosis in intracranial aneurysm endovascular intervention.

Additionally, we aim to develop a visualization system to enhance

the interpretability and usability of the predictive model for clinical

practitioners. By doing so, we hope to provide a more robust and

practical tool for improving patient outcomes.

2 Patients and methods

2.1 Patients

This study included 303 patients with intracranial aneurysms

who underwent endovascular interventions at four hospitals

(FuShun County Zigong City People’s Hospital, Nanchong Central

Hospital, The Third People’s Hospital of Yibin, The Sixth People’s

Hospital of Yibin) from January 2022 to September 2023. The

patients were divided into two groups based on their prognosis:

the good prognosis group (n = 207) and the poor prognosis

group (n = 96). Prognosis was evaluated at a 6-month follow-up

using the Glasgow Outcome Scale (GOS) score (10), with scores

of 4–5 indicating a good prognosis and scores of 1–3 indicating

a poor prognosis. This retrospective study was approved by the

Ethics Committee of Fushun County People’s Hospital (Approval

Number: 2023-077), and patient informed consent was waived. All

patient data were anonymized and analyzed.

2.1.1 Inclusion and exclusion criteria
Inclusion criteria: (1) head CT, MRI, cerebral angiography,

and other examinations clearly for intracranial aneurysm; (2)

endovascular interventional therapy; (3) complete clinical data.

Exclusion criteria: (1) pseudoaneurysm, non-aneurysmal

subarachnoid hemorrhage; (2) other cerebrovascular diseases; (3)

intolerance of surgical treatment.

2.2 Methods

2.2.1 Information collection
Clinical data were collected for each patient, including age,

gender, history of hypertension, preoperative aneurysm rupture

status, Hunt-Hess classification, Fisher score, ASA classification,

number of aneurysms, intraoperative use of etomidate, intubation

status upon leaving the operating room, operation time, body

weight, platelet count, platelet distribution, prothrombin time,

partial activated prothrombin time, thrombin time, fibrinogen.

Prior to model construction, all data were standardized using the

Z-score to eliminate the influence of dimensional differences.

2.2.2 Construction of improved model
The Automatic Feature Filtering and Weight Determination

Integrated (AFFWDI) model is an innovative framework designed

to enhance the prediction accuracy and generalization ability of

machine learning models. The core of the AFFWDI model utilizes

swarm intelligence algorithms, inspired by natural behaviors such

as bird flocking and ant foraging, to solve optimization problems.

The methodology of the AFFWDI model can be divided into two

main steps.

2.2.2.1 Feature screening process

(1) Initialization: Randomly generate a population of solutions,

each representing a subset of possible features. (2) Adaptation

Assessment: Assign a fitness value to each feature subset, usually

based on its performance in a predictive model. In this study,

the fitness is measured by the accuracy of cross-validation.

(3) Search for Updates: Update each solution, i.e., a subset

of features, according to the rules of the swarm intelligence

algorithm. (4) Termination Conditions: Repeat the iterations until

the termination conditions are met, such as reaching the maximum

number of iterations or when the fitness value no longer shows

significant improvement.
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FIGURE 1

Comparison of optimization-seeking capability before and after PDO improvement. The three-dimensional surface plots in the figure show the

two-dimensional search space of each benchmark function; the convergence curves show the convergence trend of the first solution in the first

dimension of each benchmark function, and the trends of PDO and IPDO are compared. The red convergence curve in the figure corresponds to the

original PDO algorithm, and the blue convergence curve corresponds to the improved IPDO algorithm.

TABLE 1 Training of each base learner based on simultaneous optimization.

Base learning model (BLM) PRE SEN SPE ACC F1 ROC-AUC PR-AUC

LR 0.7222 0.3377 0.9398 0.7490 0.4602 0.7301 0.5776

SVM 0.8542 0.5325 0.9578 0.8230 0.6560 0.8340 0.8034

BPNN 0.8409 0.4805 0.9578 0.8066 0.6116 0.8097 0.7722

XGBoost 0.9677 0.7792 0.9880 0.9218 0.8633 0.9118 0.8960

LR, Logistic Regression; SVM, Support Vector Machine; BPNN, Back Propagation Neural Network; XGBoost, eXtreme Gradient Boosting.

2.2.2.2 Weight determination process

(1) Weight initialization: After determining the optimal

subset of features, initial weights are assigned to these features.

(2) Weight Optimization: The same swarm intelligence

algorithm is used to optimize the weights, thereby improving

the overall prediction performance of the model. (3) Synergistic

Optimization: The optimization of feature subsets and weights is

not conducted independently but synchronously, ensuring that

the synergistic effect of feature screening and weight assignment

is maximized.

2.2.3 Improved intelligent algorithms
This study employs a swarm intelligence optimization

algorithm to handle the complex tasks of feature screening and

weight determination. To ensure superior global optimization

capability, we introduce an improved Prairie Dog Optimization

Algorithm (IPDO). The original Prairie Dog Optimization

Algorithm (PDO) divides the behavior of prairie dogs into two

stages: global exploration and local exploitation. However, previous

studies have indicated a risk of the algorithm falling into local

optima (11). To address this, the IPDO enhances exploration and
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FIGURE 2

Training of each model (training set). (A) ROC curve; (B) PR curve.

TABLE 2 Test set performance of each base learner based on synchronization optimization.

Base learning model (BLM) PRE SEN SPE ACC F1 ROC-AUC PR-AUC

LR - 0.0000 1.0000 0.6833 - 0.6977 0.5733

SVM 0.8571 0.3158 0.9756 0.7667 0.4615 0.8017 0.6499

BPNN 0.8571 0.3158 0.9756 0.7667 0.4615 0.7811 0.6884

XGBoost 0.9231 0.6316 0.9756 0.8667 0.7500 0.8684 0.8688

LR predictions were all good prognoses and lost predictive value, so PRE and F1 values could not be calculated.

convergence performance through Tent chaotic initialization and

t-distribution perturbation variation. Detailed descriptions of these

enhancements are as follows.

2.2.3.1 Tent chaotic initialization

Tent mapping is a simple yet effective chaotic mapping method

with excellent non-linear and traversal properties. By using Tent

chaotic initialization, the algorithm can generate a more diversified

and uniformly distributed solution space in the initial stage,

which enhances the global search capability and prevents the

algorithm from prematurely falling into local optima (12). During

the algorithm’s initialization phase, each prairie dog’s location

is no longer randomly generated but is determined by a Tent

chaotic sequence, thus ensuring better diversity and coverage of the

initial population.

2.2.3.2 t-distribution perturbation variation

The t-distribution (Student’s t-distribution) is a probability

distribution whose shape is controlled by the degrees of freedom

parameter. When the degrees of freedom are low, the t-distribution

has a thicker tail, which allows for generating more significant

variances with smaller probabilities when creating perturbations,

thereby increasing the algorithm’s ability to escape local optima

(13). In the position updating stage, in addition to the traditional

PDO position updating rules, a perturbation factor generated by

the t-distribution is introduced to randomly perturb the position

of an individual. This variation enhances the algorithm’s local

search ability, explores a broader search space to some extent, and

improves the probability of finding the optimal global solution.

2.2.4 Performance simulation testing of swarm
intelligence algorithms

The optimization performance of the IPDO algorithm was

tested using 23 standard test functions, each designed for

minimization problems and varying in dimensions and complexity.

Key characteristics of these functions include search space

boundary range, function dimensionality, function category, and

optimal solutions. The test functions were classified into unimodal

(U) and multimodal (M) types. Unimodal functions assess local

exploitation capability, while multimodal functions evaluate global

exploration capability. To ensure a fair comparison, the population

size was set at 30, the number of iterations at 200, and the average

convergence curves were plotted after 30 repetitions.
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FIGURE 3

Comparison of prediction performance of models (test set). (A) ROC curve; (B) PR curve.

2.3 Statistical analysis

SPSS 25.0 software was used to analyze the data, and the count

data were expressed as [n (%)] and compared with the χ2-test;

the normally distributed measure data were expressed as (x̄ ± s)

and compared with t-test; the analysis of influencing factors was

performed by multifactorial Logistic regression analysis, and the

independent variables were entered into the regression equations

by stepwise method. P < 0.05 was used to indicate statistically

significant differences in two-sided tests.

3 Results

3.1 Performance test of improved group
intelligence algorithm

The results show that the overall convergence speed and

global optimization-seeking ability of the IPDO algorithm are

significantly improved compared to the pre-improvement period

(Figure 1).

3.2 Predictive modeling

3.2.1 Model training
Eighty percent of the dataset is randomly selected as the

training set, cross-validation is executed, IPDO is utilized to find

the optimal combination of features and hyper-parameters, and

four types of base learners are selected; namely, LR, SVM, Back

Propagation Neural Network (BPNN), and XGBoost, and the final

model training results show that the AFFWDImodel with XGBoost

as the base learner performs optimally (Table 1, Figure 2).

3.2.2 Model testing
The remaining 20% of the dataset was used as a test

set to examine the generalization ability of each model. The

results showed that the AFFWDI model with XGBoost as the

base learner had the best performance, and 10 variables were

screened for age, comorbid hypertensive disorders, ruptured

aneurysm preoperatively, Hunt-Hess classification, Fisher score,

ASA classification, number of aneurysms, and intraoperative use

of etomidate, intubation on leaving the operating room, and length

of surgery (Table 2, Figure 3).

3.3 Feature revalidation

All 10 variables the improvedmachine learning model screened

had statistically significant differences between the two groups (P

< 0.05), coinciding with the logistic multifactor analysis results

(Tables 3, 4).

3.4 Visualization system setup

In the application of the visualization system, the user only

needs to enter 10 specific values in the “Characteristic Input” field,

including “age, combined hypertension, preoperative aneurysm

rupture, Hunt-Hess classification, Fisher score, ASA classification,

number of aneurysms, intraoperative use of etomidate, intubation,
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TABLE 3 Univariate analysis.

Variants Good prognosis group
n = 207

Poor prognosis group
n = 96

t/c2-value p-value

Age 55.45± 10.34 58.28± 11.23 2.156 0.031

Hypertension 19.684 <0.001

No 96 (46.38) 19 (19.79)

Yes 111 (53.62) 77 (80.21)

Preoperative aneurysm rupture 42.755 <0.001

No 131 (63.29) 22 (22.92)

Yes 76 (36.71) 74 (77.08)

Hunt-Hess classification 34.438 <0.001

I–II 145 (70.05) 33 (34.38)

III–V 62 (29.95) 63 (65.62)

Fisher score 25.309 <0.001

1–2 194 (93.72) 70 (72.92)

3–4 13 (6.28) 26 (27.08)

ASA classification 8.187 0.004

I–II 131 (63.29) 44 (45.83)

III–IV 76 (36.71) 52 (54.17)

Number of aneurysms 5.643 0.018

1 166 (80.19) 65 (67.71)

≥2 41 (19.81) 31 (32.29)

Use of etomidate 5.494 0.019

No 171 (82.61) 89 (92.71)

Yes 36 (17.39) 7 (7.29)

Intubation 61.096 <0.001

No 18 (8.70) 47 (48.96)

Yes 189 (91.30) 49 (51.04)

Surgical time/min 156.34± 21.99 40.23± 7.28 50.430 <0.001

length of surgery.” The system automatically calculates the risk of

poor prognosis for a patient by assigning specific values to each of

the 10 characteristics: age, Hunt-Hess classification, Fisher score,

ASA classification, number of aneurysms, intraoperative use of

etomidate, time of intubation, and length of surgery (Figure 4).

4 Discussion

Intracranial aneurysms are vascular abnormalities

characterized by the abnormal bulging of intracranial artery

walls, and their rupture is associated with high rates of disability

and mortality (14, 15). Therefore, preventing aneurysm rebleeding

is crucial. Endovascular intervention has increasingly been

recommended as the preferred treatment for intracranial

aneurysms due to its advantages such as reduced trauma, shorter

operation times, and minimal damage to brain tissues. However,

patients undergoing this procedure are susceptible to cerebral

vasospasm and face a high rate of postoperative recurrence, both

of which contribute to poor prognosis (16, 17). Consequently,

analyzing the risk factors that influence the poor prognosis of

endovascular intervention for intracranial aneurysms is vital for

improving patient outcomes.

Machine learning has shown significant promise in enhancing

clinical prediction efficacy by analyzing clinical data and

applying specific algorithms to predict various outcomes (18, 19).

By learning from multiple data modules, machine learning

effectively identifies variables associated with patient outcomes,

accurately predicts relevant risk factors, explores patterns, and

builds mathematical models from complex data. It can also be

iteratively calibrated during validation (20, 21). The Prairie Dog

Optimization (PDO) algorithm, inspired by the behavior of prairie

dogs, offers advantages such as easy implementation and balanced

exploration and exploitation capabilities (22). However, it faces

challenges such as slow convergence speed and low optimization

accuracy. To address these issues, we implemented Tent chaotic

initialization and t-distribution perturbation variation to initialize

the population. Additionally, we incorporated suboptimal
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TABLE 4 Logistic multivariate analysis.

Variants β SE Wald χ2 P-value OR value 95% CI

Age 1.256 0.417 9.072 0.003 3.511 1.551–7.951

Hypertension 1.436 0.452 10.093 0.002 4.204 1.733–10.195

Preoperative aneurysm rupture 1.343 0.491 7.482 0.006 3.831 1.463–10.028

Hunt-Hess classification 1.411 0.485 8.464 0.004 4.100 1.585–10.608

Fisher score 1.293 0.406 10.142 0.002 3.644 1.644–8.075

ASA classification 1.277 0.451 8.017 0.005 3.586 1.481–8.679

Number of aneurysms 1.302 0.429 9.211 0.003 3.677 1.586–8.524

Use of etomidate 1.419 0.463 9.393 0.002 4.133 1.668–10.242

Intubation 1.391 0.406 11.738 0.001 4.019 1.813–8.906

Surgical time 1.274 0.403 9.994 0.002 3.575 1.623–7.876

FIGURE 4

Visualization system interface display. (A) Good prognostic forecasting demonstration. (B) Demonstration of poor prognostic prediction.

individual guidance strategies, natural enemy avoidance strategies,

and adaptive probability threshold guidance strategies. These

enhancements improve the algorithm’s ability to avoid local optima

and ensure higher solution accuracy and faster convergence speeds

for the PDO algorithm (23).

In this study, we developed an improved machine learning

model to predict poor prognosis in patients undergoing

endovascular intervention for intracranial aneurysms. By

adjusting relevant parameters for different algorithms and

employing 5-fold cross-validation, we minimized the effect of

randomness and prevented overfitting. Model performance on

the test set was further enhanced through pruning, leading to the

identification of 10 key variables: age, comorbid hypertension,

preoperative aneurysm rupture, Hunt-Hess classification, Fisher

score, ASA classification, number of aneurysms, intraoperative use

of etomidate, intubation status upon leaving the operating room,

and procedure duration.

The identified variables provide valuable insights into the

factors influencing poor prognosis. For instance. Age: Older

patients show decreased vascular elasticity and repair capabilities,

increasing the risk of complications and recurrence post-

intervention (24). Hypertension: Hypertension exacerbates damage

to the intracranial vascular wall and alters hemodynamics,

leading to higher risks during and after the procedure (25, 26).

Preoperative Aneurysm Rupture: Ruptured aneurysms complicate

the intervention due to fragile vasculature and increased aneurysm

numbers, leading to higher recurrence and poor prognosis (27, 28).

Hunt-Hess Classification and Fisher Score: Higher scores indicate

severe intracranial hemorrhage and increased risk of complications

like vasospasm and edema, which adversely affect outcomes

(29–31). ASA Classification: Higher ASA scores reflect severe

underlying conditions and lower surgical tolerance, impacting

recovery and prognosis (32, 33).

Compared to traditional logistic regression models, our

machine learning model leverages a broader range of clinical

data and advanced algorithms to enhance predictive accuracy.

Previous studies have utilized various machine learning techniques

such as support vector machines and neural networks for

similar purposes (7–9). However, our approach integrates the

Prairie Dog Optimization (PDO) algorithm with enhancements
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like Tent chaotic initialization and t-distribution perturbation,

which improve convergence speed and solution accuracy. The

development of a visualization system based on our model

allows clinicians to input specific patient data and receive

immediate risk assessments and recommendations. This tool

has significant potential for both public health research and

clinical practice, aiding in early intervention and personalized

treatment planning.

Although our study aims to construct a prediction and

visualization system for poor prognosis in intracranial aneurysm

endovascular treatment based on an improved machine learning

model, we acknowledge several limitations.

Firstly, the predictive capability of our model is constrained by

the quality and scale of the currently available dataset. A larger

and more comprehensive dataset could potentially enhance the

model’s accuracy and stability. Secondly, our research focuses on

specific treatment methods and populations. Future studies should

consider a broader range of treatment methods and population

factors to increase generalizability. Additionally, the interpretability

and clinical applicability of the model require further optimization

and improvement.

Future research can expand in several directions. Firstly, we

can further optimize our machine learning model by exploring

more advanced algorithms and technologies to enhance predictive

performance and improve interpretability. Secondly, incorporating

additional clinical variables and imaging features into the

model could enhance the accuracy and comprehensiveness of

prognosis prediction. Furthermore, integrating other advanced

technologies, such as deep learning and natural language

processing, could enrich the functionality and efficacy of the

predictive model. Finally, integrating our system with actual

clinical practice and conducting large-scale validation and

application will ensure its effectiveness and reliability in real

clinical settings.

By continuously refining our research methods and

technologies, we are confident that future studies will provide

more accurate and reliable support for prognosis prediction and

clinical decision-making in intracranial aneurysm endovascular

intervention treatment. This will offer greater hope and

opportunities for patient treatment and recovery.

5 Conclusion

In summary, applying improved machine learning models

to analyze patients’ clinical data can help clinics predict the

risk of poor prognosis following endovascular intervention for

intracranial aneurysms at an early stage. This can assist in

developing intervention programs to improve patient outcomes.
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