
Frontiers in Neurology 01 frontiersin.org

Data analysis protocol for early 
autonomic dysfunction 
characterization after severe 
traumatic brain injury
Kejun Dong 1, Vijay Krishnamoorthy 2,3, Monica S. Vavilala 4, 
Joseph Miller 5, Zeljka Minic 6,7, Tetsu Ohnuma 3, 
Daniel Laskowitz 8, Benjamin A. Goldstein 9, Luis Ulloa 3, 
Huaxin Sheng 3, Frederick K. Korley 10, William Meurer 10,11 and 
Xiao Hu 1*
1 Center for Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, 
United States, 2 Critical Care and Perioperative Population Health Research (CAPER) Unit, Department 
of Anesthesiology, Duke University, Durham, NC, United States, 3 Department of Anesthesiology, 
School of Medicine, Duke University, Durham, NC, United States, 4 Department of Anesthesiology and 
Pain Medicine, University of Washington, Seattle, WA, United States, 5 Department of Emergency 
Medicine, Henry Ford Hospital, Detroit, MI, United States, 6 Department of Emergency Medicine, 
School of Medicine, Wayne State University, Detroit, MI, United States, 7 Faculty of Biotechnology and 
Drug Development, University of Rijeka, Rijeka, Croatia, 8 Department of Neurology, Duke University 
Medical Center, Durham, NC, United States, 9 Department of Biostatistics and Bioinformatics, School 
of Medicine, Duke University, Durham, NC, United States, 10 Department of Emergency Medicine, 
University of Michigan, Ann Arbor, MI, United States, 11 Department of Neurology, University of 
Michigan, Ann Arbor, MI, United States

Background: Traumatic brain injury (TBI) disrupts normal brain tissue and 
functions, leading to high mortality and disability. Severe TBI (sTBI) causes 
prolonged cognitive, functional, and multi-organ dysfunction. Dysfunction 
of the autonomic nervous system (ANS) after sTBI can induce abnormalities 
in multiple organ systems, contributing to cardiovascular dysregulation and 
increased mortality. Currently, detailed characterization of early autonomic 
dysfunction in the acute phase after sTBI is lacking. This study aims to use 
physiological waveform data collected from patients with sTBI to characterize 
early autonomic dysfunction and its association with clinical outcomes to 
prevent multi-organ dysfunction and improving patient outcomes.

Objective: This data analysis protocol describes our pre-planned protocol using 
cardiac waveforms to evaluate early autonomic dysfunction and to inform multi-
dimensional characterization of the autonomic nervous system (ANS) after sTBI.

Methods: We will collect continuous cardiac waveform data from patients 
managed in an intensive care unit within a clinical trial. We  will first assess 
the signal quality of the electrocardiogram (ECG) using a combination of the 
structural image similarity metric and signal quality index. Then, we will detect 
premature ventricular contractions (PVC) on good-quality ECG beats using a 
deep-learning model. For arterial blood pressure (ABP) data, we  will employ 
a singular value decomposition (SVD)-based approach to assess the signal 
quality. Finally, we  will compute multiple indices of ANS functions through 
heart rate turbulence (HRT) analysis, time/frequency-domain analysis of heart 
rate variability (HRV) and pulse rate variability, and quantification of baroreflex 
sensitivity (BRS) from high-quality continuous ECG and ABP signals. The early 
autonomic dysfunction will be  characterized by comparing the values of 
calculated indices with their normal ranges.
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Conclusion: This study will provide a detailed characterization of acute changes 
in ANS function after sTBI through quantified indices from cardiac waveform 
data, thereby enhancing our understanding of the development and course of 
eAD post-sTBI.
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1 Introduction

Traumatic brain injury (TBI) is a heterogeneous condition that 
leads to significant injury-related disability and mortality (1). TBI not 
only impacts the brain but also results in extracranial multi-organ 
dysfunction, leading to secondary brain injuries and poor clinical 
outcomes (2). In 2014, TBI accounted for 2.8  million Emergency 
Department visits, 288,000 hospitalizations, and 56,800 deaths (3). 
One-third of survivors of hospitalization suffer long-term disability 
(3). The severity of TBI falls into three severity classifications based on 
the Glasgow Coma Scale (GCS) score following resuscitation: mild 
(GCS 13–15), moderate (GCS 9–12), and severe (GCS < 9), contingent 
upon criteria such as the duration of loss of consciousness, post-
traumatic amnesia (4). However, variation in presentation, hospital 
course, and outcomes within each severity category is significant. 
Individuals initially diagnosed with mild or moderate TBI upon 
hospital admission may deteriorate, necessitating escalation in TBI 
management (5–7).

1.1 Extracranial organ dysfunction and 
sympathetic activation following TBI

The pathophysiology of extracranial organ dysfunction 
following TBI is characterized by complex neuroendocrine and 
inflammatory cascades. The initial brain injury triggers an intense 
sympathetic activation, leading to a massive release of 
catecholamines and inflammatory mediators (8). This autonomic 
response creates a paradoxical situation: while the acute elevation 
in sympathetic tone may initially serve as a protective mechanism 
to maintain cerebral perfusion despite increased intracranial 
pressure, its persistence can lead to detrimental systemic 
effects (9).

The sustained sympathetic hyperactivity, which can persist for up 
to 10 days post-injury, results in circulating catecholamine levels that 
may be up to 10-fold higher than normal (8). This catecholamine 
surge serves to maintain cerebral perfusion pressure in the face of 
rising intracranial pressure, but simultaneously can induce direct 
cardiac injury through catecholamine-mediated myocardial damage, 
systemic inflammatory responses, immune system dysfunction and 
metabolic derangements. These mechanisms help explain why 22.3% 
of patients with isolated moderate-to-severe TBI demonstrate left 
ventricular dysfunction as early as 24 h after injury (10). When this 
cardiac dysfunction occurs in the context of impaired cerebral 
autoregulation (present in 40% of moderate-to-severe TBI cases), it 
can create a vicious cycle: decreased cardiac output leads to systemic 
hypotension, which further compromises cerebral blood flow and 
brain perfusion.

Recent research using clinical scoring systems, particularly the 
Sequential Organ Failure Assessment (SOFA), has quantified the 
burden of multi-organ dysfunction following TBI. Studies have 
shown that nearly 40% of patients with moderate to severe TBI 
develop multi-organ dysfunction syndrome (MODS) within the 
first 10 days of hospitalization, with predominant involvement of 
the cardiopulmonary systems (11). Furthermore, examination of 
SOFA scores within the initial 72 h post-admission revealed that 
252 patients (68%) with moderate to severe TBI developed early 
MODS (12). Understanding these pathophysiological mechanisms 
and their temporal evolution is crucial for predicting MODS risk, 
providing early warning of clinical deterioration, and guiding 
therapeutic interventions.

The relationship between intracranial pressure (ICP), autonomic 
function, and hemodynamics in TBI follows distinct temporal 
patterns. In the acute phase, elevated ICP triggers an intense 
sympathetic response with increased catecholamine release, leading 
to systemic vasoconstriction and hypertension (13). This response can 
become particularly problematic in cases of refractory intracranial 
hypertension. As demonstrated in (14), refractory ICP elevations are 
associated with a marked dysregulation of autonomic function, 
characterized by persistent sympathetic hyperactivation, reduced 
heart rate variability, impaired baroreflex sensitivity and development 
of refractory arterial hypertension. These autonomic alterations can 
persist even after ICP normalization, suggesting a more complex 
pathophysiology than previously recognized. In the subacute phase, 
this initial sympathetic surge may be  followed by autonomic 
exhaustion, leading to vasodilation and hypotension. Understanding 
these temporal patterns and their relationship to autonomic 
dysfunction is crucial for appropriate hemodynamic management in 
TBI patients.

1.2 Heart rate variation with autonomic 
dysfunction

ANS critically regulates heart and vascular system functions by 
utilizing sympathetic and parasympathetic fibers directed toward the 
heart, alongside sympathetic fibers targeting the vessels (15). One 
hand, the release of norepinephrine from autonomic sympathetic 
fibers in heart induces positive inotropic and chronotropic effects 
through the activation of β-adrenoceptors. The other hand, 
acetylcholine released by parasympathetic fibers leads to negative 
inotropic and chronotropic effects by stimulating muscarinic receptors 
(16). In addition, the autonomic nervous system influences arterial 
blood pressure (ABP) and heart rate by producing oscillations in these 
cardiovascular parameters that occur at specific frequencies (16). In 
frequency domain analysis, the high frequency (HF, 0.15–0.4 Hz) 
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component primarily reflects respiratory sinus arrhythmia (RSA) and 
is predominantly influenced by parasympathetic modulation, though 
respiratory parameters such as rate and tidal volume can significantly 
affect its interpretation. The low frequency (LF, 0.04–0.15 Hz) 
component and LF/HF ratio, previously considered markers of 
sympathetic activity or sympathovagal balance, actually represent an 
intricate interplay of both sympathetic and parasympathetic influences 
on cardiac autonomic control. Several factors contribute to LF power, 
including baroreflex-mediated autonomic fluctuations, central 
oscillations in sympathetic nerve activity, and mechanical effects of 
breathing at lower frequencies.

However, in the severe traumatic brain injury (sTBI) population, 
the interpretation of frequency-domain HRV metrics is complicated 
by several factors. Mechanical ventilation, often required for sTBI 
patients, can artificially alter respiratory patterns, impacting HF power 
and respiratory-related heart rate modulation. Additionally, the use of 
sedation and analgesic medications, common in sTBI management, 
can directly affect autonomic regulation and HRV patterns. 
Intracranial pressure fluctuations, characteristic of sTBI, can 
independently influence autonomic regulation and cardiovascular 
variability. Furthermore, hemodynamic management strategies 
involving vasopressors and fluid management can affect blood 
pressure variability and consequent autonomic responses. Baguley 
et al. investigated dysautonomia following sTBI based on the HRV 
analysis, finding significant differences in HRV among TBI patients, 
controls, and between dysautonomia and non-dysautonomia subjects 
(17). Froese et  al. assessed the physiological relationship between 
pressure reactivity index (PRx) and HRV, BP, and baroreflex sensitivity 
(BRS) using time-series statistical methodologies in sTBI patients. 
They demonstrated a stronger connection between BRS, HRV, and 
PRx, indicating sympathetic autonomic response related to 
cerebrovascular reactivity derangements (18). Therefore, while these 
frequency-domain metrics provide valuable insights into autonomic 
regulation, their interpretation in sTBI patients should account for 
these confounding factors and be integrated with other autonomic 
assessment measures for a more comprehensive evaluation of 
autonomic dysfunction.

1.3 Need for clinical tools to assess 
autonomic dysfunction in clinical care

Despite the high burden of extracranial clinical deterioration, 
multi-organ dysfunction, and early autonomic dysfunction following 
sTBI, there are no real-time clinical decision support (CDS) tools, 
early warning scores, guidelines, or studies to help clinicians predict 
which patients will develop MODS. The sTBI-related literature lacks 
robust and well-powered analysis of autonomic function using cardiac 
and ABP waveform data, often including only exploratory datasets. 
sTBI is associated with eAD, yet characterization of eAD and its 
impact on clinical outcomes, in large sTBI populations is lacking. To 
bridge this gap, this protocol outlines the waveform data analysis for 
eAD characterization post-sTBI using a large prospective cohort 
(collected within the confines of a multicenter randomized controlled 
trial). We  propose examining granular cardiac waveform data to 
identify subtle changes in the ANS in patients following sTBI that 
precede visible clinical symptoms of MODS. These changes can serve 
as early indicators of autonomic dysfunction, which is a precursor to 

MODS. The measurable metrics from cardiac waveform analysis, such 
as HRV, BRS, and heart rate turbulence (HRT), can be integrated into 
predictive models. These models can then be used to develop CDS 
tools that help clinicians assess the risk of MODS development in real-
time. Furthermore, the metrics from waveform analysis can 
be  employed to create early warning scores that gage the risk of 
MODS, using established thresholds for parameters like HRV and BRS 
linked to adverse outcomes in sTBI patients. Therefore, this protocol 
for characterization of eAD using ECG and ABP waveforms offers a 
pathway toward the development of real-time CDS tools, predictive 
models, and clinical guidelines.

2 Methods

2.1 Recruitment

We will collect data from an ongoing multi-center randomized 
controlled trial examining the efficacy of a sTBI treatment strategy 
guided by both ICP and brain tissue oxygen (PbtO2) as compared to 
a strategy guided by ICP monitoring alone [Brain Oxygen 
Optimization in sTBI (BOOST), Phase 3, NCT03754114] (17). As part 
of the trial, the ECG waveform with four-leads and arterial blood 
pressure waveform data will be collected over the first 5 days of their 
intensive care unit (ICU) stay. Our ancillary study (AUTO-BOOST) 
will leverage this rich and granular waveform data to fully characterize 
autonomic dysfunction following sTBI.

We are sourcing data from this active clinical trial (BOOST), the 
trial has enrolled 550 patients. Since unexpected issues may arise 
during data collection, such as failures to collect data due to leads 
detaching or errors caused by device malfunctions, we estimate that 
approximately 50% of patients will have adequate cardiac telemetry 
data of sufficient quality for analysis. The Moberg monitor (CNS 
Monitor, Moberg ICU Solutions, Amber, Pennsylvania, United States) 
will capture and time-synchronize these analog data with other vital 
signs, ventilator data, and ICP/PbtO2 data, storing all data locally. A 
research team member will extract and upload the waveform data to 
a secure IBM cloud-based server. We will extract ABP, ECG data, and 
ventilator parameters from the Moberg device, deriving heart rate 
from the raw ECG tracing. We will use cleaned segments of stable 
recordings within 24 h of ICU admission for analysis.

2.2 Data analysis

Based on data from the currently recruited 550 patients, we found 
some incomplete ECG recordings of short duration, necessitating data 
analysis based solely on the ABP signal. To address this issue, we will 
conduct the eAD characterization on two fronts: one from both ECG 
and ABP waveforms, and the other from only ABP waveforms.

We will conduct non-invasive characterization of eAD by 
computing multiple indices over 24 h following admission, including 
heart rate turbulence (HRT) (18), time- and frequency-domain 
analyses of HRV and sequence analysis of BRS. First, we will slice the 
long-monitoring waveform into 1-h segments and assess the signal 
quality for both ECG and ABP segments. Next, the premature 
ventricular contractions (PVC) detection will analyze high-quality 
ECG segments. If more than 10 PVC beats for a given 1-h segment are 
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detected, we will conduct HRT analysis on ECG waveforms (19). HRT 
is generally assessed by two parameters: turbulence onset (TO) and 
turbulence slope (TS). TO measures the initial acceleration and 
subsequent deceleration of heart rate after a PVC, while TS quantifies 
the rate of heart rate return to baseline. We will extract two time series 
from the ECG and ABP waveforms: one consisting of RR intervals 
from normal sinus beats, and the other comprising systolic blood 
pressures (sBP) from ABP pulses. We will then perform three analyses 
on these sequences: extracting root mean square of successive 
differences (RMSSD) and HRT from time-domain RR interval 
sequences, transforming RR intervals into the frequency domain to 
calculate the low- and high-frequency band ratio, and estimating BRS 
indices from RR intervals and sBP sequences. For eAD characterization 
based on ABP signals alone, we will compute autonomic indices from 
pulse interval sequences, excluding HRT due to the difficulty of 
detecting PVC beats without ECG waveforms. Figure 1 summarizes 

the entire procedure, with detailed explanations of each function 
block provided in the following sections.

2.2.1 Signal quality assessment
The collected waveforms may include uncontrollable noise from 

sensor circuits, body motion, and poor electrode attachment, making 
it nearly impossible to perform a reliable beat detection of such 
contaminated ECG and ABP waveforms. Therefore, it is essential to 
assess the signal quality to ensure that the eAD is characterized 
promisingly on high-quality waveforms.

We will assess ECG signal quality and select the lead with the best 
quality, based on our previous work (20). Comparable with the visual 
quality assessment of multi-lead ECG signals that clinicians 
traditionally use, we will plot collective multi-lead ECG signals in the 
standard paper-ECG format with grid marks and format as a multi-
lead ECG image. Then, we will construct ECG image templates of two 

FIGURE 1

Flow diagram to compute automatic indices from 1 h ECG and ABP segments.
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groups (good quality and poor quality) from the training database, 
which will be achieved by the agglomerative hierarchy cluster analysis 
(21) based on the structural similarity measure (SSIM).

Suppose we have a pair of ECG image 1 , ,
TT T

MX x x = … 
 and 

1 , ,
TT T

MY y y = …  , where , N
m mx y R∈ , 1, ,m M= … , and M is number 

of leads. The SSIM between two single lead ECG x  and y can 
be calculated as Equations 1, 2
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, , ,µ µ ∂ ∂x y x y  and á xy are means, standard deviations and cross-
covariance of x  and y. 1C  and 2C  are constants depending on the 
dynamic range of each ECG sample. For each ECG pair with M  leads, 
we will have a total of M M×  values and use the mean value as final 
similarity. All similarity values are divided into two groups using 
2-means clustering, corresponding to good and bad quality, 
respectively. For an ECG image cluster containing a total of T  images, 
the representative one with index c can be choose by Equation 3
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where N is the number of images in the cluster, and ( ),i jS I I  is the 
SSIM result between the image iI  and jI  within each cluster. Lastly, 
we  format the result of SSIM between each test ECG image and 
template images as the input features to the linear discriminant 
analysis classifier to determine ECG quality.

For multi-lead ECG recordings with good quality, we will further 
select the optimal ECG lead. We will calculate several signal quality 
indices (SQIs) for each lead from a good-quality recording as 
introduced in published works (22, 23): (1) the consensus beat 
detection signal quality index (bSQI), which measures the percentage 
of beats detected by two beat detection algorithms; (2) the spectral 
distribution SQI (sSQI), which calculates the proportion of the 
spectral distribution of a given ECG segment found to be within a 
certain physiological frequency band; (3) the kurtosis-based SQI 
(kSQI), which evaluates the kurtosis of a segment. Then, we  will 
combine these individual SQIs into a composite signal quality index 
to select the optimal lead based on expert knowledge.

We will assess ABP signal quality using a singular value 
decomposition (SVD)-based approach (24). We  will use our 
previously developed pulse detection algorithm to mark the onset of 
each ABP pulse, normalizing each pulse in both time and amplitude 
(25). Once the onsets of pulses are identified, we will adjust each pulse 
to a fixed length using spline resampling to ensure consistency in the 
number of data points across all pulses. Additionally, we  will 
standardize each pulse’s amplitude by centering it around zero and 

scaling it to a standard deviation of one. Then, we will project this ABP 
pulse onto the signal subspace based on the SVD approach and 
calculate the signal-to-noise ratio. To obtain the signal and noise 
subspaces, we will implement SVD approach on an expert-validated 
reference library of 567 ABP pulses collected from 51 patients 
hospitalized at UCLA Ronald Reagan medical center. These valid ABP 
pulses will be subjected to the same normalization process. We will 
define the signal subspace and noise subspace after conducting SVD 
valid ABP pulses in the reference library. For a test ABP pulse, we will 
first project it onto the signal subspace and calculate the ratio of the 
energy of the projected signal over that of the projected noise. This 
ratio will be  compared with a threshold, which is defined as the 
minimum calculated ratio among all the 567 pulses in the reference 
ABP library. This setting ensures that any ABP pulse closely resembling 
any pulse in the validated library is assessed correctly, providing a 
robust measure against false detections. The valid ABP pulses are 
those with calculated ratio greater than the threshold. We will conduct 
subsequent analysis only on the one-hour segments that pass both 
ECG and ABP signal quality assessments.

2.2.2 Peaks detection
We will recognize R peaks for each ECG beat using a 

published QRS detection algorithm that includes four steps (26). 
The first step will use a sliding window of 2 s to capture the ECG 
signal. In the second step, we apply a band-pass filter ranging 
from 0.5 to 17 Hz to eliminate signal noise and motion artifacts. 
Then, we apply an enhancement mask to the filtered signal as 
Equation 4:

 
( ) ( ) ( )

k
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The enhancement mask M  is defined as Equation 5:
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where E is the filtered ECG signal and S is the enhanced ECG 
signal. To eliminate variations in QRS amplitude, we will normalize 
the amplitude of the enhanced ECG signal to 1 using 
min-max normalization.

The third step is the detection of QRS fiducial points based on 
detected crests and troughs. Based on the normal range of the QRS 
complex in a typical lead-II ECG waveform, as shown in a published 
work, we will use a searching range of 0.3 s to detect the QRS complex. 
The searching process starts at the first point of the normalized ECG 
signal, and the amplitude threshold for detecting the QRS complex 
will be defined as 0.5 mV (26). The last step is the R peak recognition 
based on the detected QRS fiducial point. Since a normal QRS rangs 
is less than 0.12 s, the time interval for recognizing R peak is set as 
0.24 s centering at the fiducial point in (26), and we identify the R 
peak successively.

For the high-quality ABP waveform, we will detect systolic blood 
pressure based on a published algorithm (27). Initially, we will apply 
a Savitzky–Golay filter to remove noise. Subsequently, we will utilize 
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a sliding window to correctly identify the maximum point of the 
arterial pulse.

2.2.3 PVC detection
Because HRT that occurs after a premature ventricular contraction 

(PVC) can reflect the condition of the autonomic nervous system (28), 
detection of PVC beats is for subsequent HRT calculation. To reduce 
the computation cost, we will primarily classify ECG signals into PVC 
or non-PVC segments and then detect PVC locations only on 
PVC segments.

We will first classify 1-h ECG signals into PVC or non-PVC 
segments using an existing algorithm, which employs a Siamese 
network architecture to capture complementary information from 
two-lead ECG signals (29). During training, the model will take a pair 
of ECG signals as inputs. In each training iteration, the two signal 
modalities will take turns flowing through the encoder and the 
projector of this network. The learned features of one ECG channel 
will pass through the predictor to map to the latent space of features 
from the other ECG channel. We will optimize an agreement loss 
between the predicted latent feature vector of one ECG channel ECG 
and the projected latent feature vector of the other ECG channel. 
We will also optimize a supervised cross-entropy loss for the output 
of the classifier function, which takes the latent features of one ECG 
channel as inputs. Upon completion of training, only the encoder and 
classifier are preserved for subsequent predictions. During testing, the 
trained network can operate using single lead ECG independently, 
without necessitating an ECG signal pair. After the PVC segments are 
classified, we will adopt the algorithm in (30) to identify the PVC 
locations in two stages. In the first stage, based on the PVC 
morphological characteristics in high width, large amplitude and an 
abnormal waveform, we  identify rough PVC beats through the 
quantification of these qualities with rules. In the second stage, 
we  refine detection to reject false positive and normal beats. If a 
solitary PVC candidate is identified after initial screening and its 
morphology closely aligns with that of the majority of other beats, it 
should be  reclassified as non-PVC and excluded from further 
consideration. Conversely, if there are multiple PVC candidates, their 
widths (cW) are computed at three-fourths the height of the smallest 
candidate. Subsequently, the PVCs are assessed pairwise. A PVC that 
exhibits considerable deviation from others and possesses a cW 
exceeding the mean is designated as an ectopic PVC. Candidates 
failing to meet these criteria are categorized as non-PVC and 
consequently excluded from the analysis.

2.2.3.1 Methods evaluation
PVC detection enables the correct identification of HRT onset and 

slope. To obtain the accurate location of PVCs, we will test several 
PVC detectors, including the Siamese network-based PVC algorithm 
mentioned above, using publicly available datasets and compare their 
performance. We will select the method that demonstrates optimal 
performance as the final solution for PVC detection on our collected 
waveform data. The evaluation process will include the following steps.

2.2.3.1.1 Evaluation dataset
We will use the St Petersburg INCART 12-lead Arrhythmia 

database available from Physionet (31) as the evaluation dataset. This 
database includes multiple recordings from each of the 32 patients 
undergoing tests for coronary artery disease, resulting in 75 annotated 

recordings (17 men and 15 women, aged 18–80; mean age: 58). In 
selecting records for inclusion, preference was given to subjects with 
ECGs indicative of ischemia, coronary artery disease, conduction 
abnormalities, and arrhythmias. Each recording is 30 min and 
sampled at 257 Hz. The PVC beat is annotated by an automatic 
algorithm and manual correction. Because PVC is global and training 
model can learn from more exposures to different combinations of 
ECG leads, we will expand the training dataset by forming more pairs 
of ECG leads. Then, we will slice the ECG signals into 30 s segments 
with 1 s nonoverlapping. We  label each 30 s segment as a PVC 
segment if it contains at least one PVC beat. We then apply the five-
fold cross-validation splitting data based on subjects to validate the 
performance of the algorithm. We will use the MIT-BIH Arrhythmia 
database available from PhysioNet (31, 32) as the test dataset, which 
includes 48 2-lead ECG recordings obtained from 47 subjects (two 
recordings from the same subject), studied by the BIH Arrhythmia 
Laboratory. The subjects include 25 men aged 32 to 89 years and 22 
women aged 23 to 89 years.

2.2.3.1.2 Evaluation with state of the art PVC detections
Several state-of-the-art tools for PVC detection are available with 

open code, and we will compare them to our primary method. The 
first one proposes a convolutional neural network-based deep learning 
model, ECGDet, to detect PVC beats for every 32 points of the ECG 
signals (33). The second PVC detection algorithm involved two stages 
(34): the first classifies heartbeats into ectopic and non-ectopic beats, 
and the second further classifies the ectopic heartbeats into PVC beats. 
The last algorithm (35) combined the long short-term memory 
network with autoencoder to extract features of ECG heartbeats for 
K-means clustering and construct templates. This algorithm identifies 
PVC beats based on the similarity with these templates. To evaluate 
the performance of PVC detection, we  will use sensitivity (Sen), 
specificity (Spec), accuracy (Acc) and F1-score. The definitions of 
these four metrics are provided in the Appendix.

2.2.4 Heart rate turbulence quantification
HRT refers to the fluctuations of sinus heart beat cycle length 

caused by PVC beats (18). When a PVC beat occurs, it results in a 
shortened interval with the prior beats and this interval is termed 
coupling interval (couplI). A longer interval than that of a normal 
sinus beat is then followed, which is a compensatory interval (compI) 
(36). The HRT reflects the natural fluctuation of HR after the compI. If 
more than 10 beats are detected as PVC, we will conduct HRT analysis 
to compute turbulence onset (TO) and slope (TS) (19) for each PVC 
beat. TO is an indicator to reflect the vagal inhibition by quantifying 
the initial fast increase of heart rate (36) and calculated as Equation 6:

 

( ) ( )1 2 2 1

2 1
100%

RR RR RR RR
TO

RR RR
− −

− −

+ − +
= ×

+  
(6)

where 1 2,RR RR  are two RR intervals immediately after compI, 
and 1 2,RR RR− −  are two RR intervals immediately preceding couplI.

TS is an indicator to reflect the vagal activation and is measured 
as the maximum positive regression slope over any 5 consecutive sinus 
rhythm RR intervals within the first 15 RR intervals after the compI 
(19). Therefore, the analysis for both HRT parameters will require at 
least 2 sinus rhythm RR intervals before couplI and at least 15 RR 
intervals after compI. For 1-h ECG segments, we will compute the 
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mean of TO and TS across all detected PVCs to obtain an average 
value that represents the overall heart rate turbulence for the 
recording period.

2.2.5 BRS analysis
While heart rate changes due to acceleration and deceleration 

involve various physiological mechanisms beyond baroreceptor 
activity—including direct autonomic influences, mechanical 
factors, and other reflex pathways (37–39)—the combined analysis 
of baroreflex sensitivity (BRS) with directional heart rate changes 
offers a comprehensive view of autonomic regulation. This 
approach is particularly informative because the temporal 
relationship between blood pressure changes and subsequent heart 
rate responses helps distinguish baroreflex-mediated changes 
from other factors. Additionally, the magnitude and timing of 
these heart rate responses provide insights into baroreflex gain, 
even amid other regulatory influences. Analyzing both 
acceleration and deceleration also allows for the assessment of 
potential asymmetry in autonomic control, which is crucial in 
conditions like TBI where sympathetic and parasympathetic 
responses may be unevenly affected. By integrating these heart 
rate responses with traditional BRS measures, a more detailed 
understanding of cardiovascular regulation in sTBI patients is 
achieved, highlighting the complexities of impaired 
autonomic control.

We will use a phase-rectified signal averaging (PRSA) algorithm 
to compute BRS metrics. The process includes several steps regarding 
to the published paper (37):

 1. Anchor points identification: if sBP values are higher than the 
preceding values, these values are defined as anchor points.

 2. For the synchronous RR intervals (RRI), each RRI is matched 
to a sBP value. A window length of 15-beat R-R intervals 
around each anchor point provides an optimal balance between 
capturing complete baroreflex responses and maintaining 
signal stationarity. Therefore, we select 15 RR intervals around 
each anchor point as a segment.

 3. Segments are aligned at the anchor points leading to a phase-
rectification of the segments.

 4. Computation of PRSA signal: the PRSA signal ( )X i  is obtained 
by averaging the signals within the aligned segments, as shown 
in Equations 7, 8.

 
( )

1

1 , , 1, , .
p

P
n

p
X i RRI l l L L L

P =
= + = − − + …∑

 
(7)

 
( ) ( ) ( ) ( )1 0 1 1 2

4
BRS X X X X=  + − − − −   

(8)

where P  is the total number of anchor points used in the 
averaging process. 

pnRRI denotes the R-R interval values at the 
anchor point p . pn  is the index of the anchor points with the total 
number of P. l  is an index representing a range around the anchor 
points from L−  to L, where L is the length of the segments before 
and after the anchor point considered for averaging. The 

expression 
pnRRI l+  indicates the RR interval value at the position 

offset by l  from the thp anchor point. ( ) ( ) ( )0 , 1 , 1X X X − and 
( )2X − are the PRSA signal values at offsets 0, 1, −1, and − 2, 

respectively.
In addition, we will estimate BRS in the frequency domain (27). 

We will identify an autoregressive with exogenous input (ARX) model 
with sBP time series as input and RR interval time series as output, 
which is indicated as Equation 9 (40):
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= =
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(9)

where ia  and ib  are coefficients of the ARX model and e is a 
random error with zero mean. We will then calculate the PSD of the 
transfer function within the LF frequency band (0.04–0.15 Hz) and 
the gain of the transfer function will be used as an estimate of BRS as 
Equation 10 (41):

 
( ) ( )

( )
.RR

BP

P LF
LF

P LF
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(10)

where ( )RRP LF  and ( )BPP LF  indicate the spectral densities in 
LF band of RR interval and sBP time series, respectively.

2.2.6 Heart/pulse rate variability analysis
The autonomic nervous system constantly regulates sBP and heart 

rate and the oscillations at different frequencies in these signals 
therefore reflect the status of the ANS regulation. We will extract 
metrics in both time domain and frequency domain. In the time 
domain, we  will compute RMSSD between inter-beat intervals of 
sinus beats.

There are several reasons that we select RMSSD as the primary 
measure: (1) RMSSD is particularly sensitive to short-term, high-
frequency variations in heart rate, making it an excellent index for 
capturing rapid vagal modulation of heart rate (42). (2) RMSSD 
demonstrates superior mathematical properties compared to pNN50, 
including better statistical stability when analyzing short segments of 
data (43). (3) RMSSD is less affected by respiratory rate changes 
compared to other time-domain measures, which is particularly 
important in mechanically ventilated TBI patients (44).

In the frequency domain, as highlighted in (45) and (42), the LF 
component (0.04–0.15 Hz) was previously known as the baroreceptor 
range, as it primarily reflects baroreceptor activity under resting 
conditions. LF power can be influenced by both the parasympathetic 
and sympathetic nervous systems, as well as by blood pressure 
regulation through baroreceptors. The sympathetic nervous system 
generally does not produce rhythms above 0.1 Hz, whereas the 
parasympathetic system can influence heart rhythms down to 
0.05 Hz, which corresponds to a 20-s rhythm. Under resting 
conditions, the LF band is indicative of baroreflex activity rather than 
cardiac sympathetic innervation. During periods of slow breathing, 
vagal activity can induce oscillations within the LF band. The HF 
component (0.15–0.4 Hz) is closely tied to respiratory rates, which is 
why it is also referred to as the respiratory band. The rate of breathing 
modulates vagal activity through respiratory sinus arrhythmia, the 
natural increase and decrease in heart rate that occurs with inhalation 
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and exhalation. Hence, the HF band is predominantly a measure of 
parasympathetic influence on the heart. Because observed RR 
interval samples are non-uniformly spaced in time, we will use the 
well-established Lomb-Scargle power spectral density (PSD) 
estimator to calculate PSDs of the RR interval sequence (46). From 
the calculated PSD of the RR interval sequence, we will derive the LF/
HF ratio.

For the case of eAD characterization utilizing ABP signal alone, 
we will extract pulse-to-pulse interval (PPI) based on detected systolic 
blood pressure from high-quality ABP waveforms and calculate pulse 
rate variability. We identify the intervals between fiducial points in 
successive pulses as PPI. Based on PPI time series, we will calculate 
RMSSD, the ratio of LF/HF and BRS metrics in place of using RR 
interval time series.

2.3 Coherence analysis

Coherence analysis between pulse rate variability and blood 
pressure variability will be  performed on 1-h ABP waveform 
segments. Peaks corresponding to systolic pressure of each cardiac 
cycle will be detected, and Gaussian filter will be applied to exclude 
frequencies above 10 Hz (47). Pulse rate variability and blood 
pressure variability will be calculated based on frequency domain 
analyses of the waveform derived after applying a Gaussian shape to 
the time differences between subsequent cardiac cycles. Power 
spectral density (or power spectrum) will be used to quantify the 
frequency content of a blood pressure variability or pulse rate 
variability. Coherence will be calculated using mscohere function in 
MATLAB (47).

3 Statistical analysis

The characterization of eAD requires consideration of age-specific 
analysis. We  will stratify patients into age to account for known 
age-related differences in autonomic function; Within each age 
stratum, we will establish reference distributions based on published 
normative data for that specific age group; For each autonomic 
measure, we will use age-appropriate reference ranges from healthy 
controls as reported in large-scale studies. Normally, RMSSD values 
should fall between 19 and 75 ms (48), HRT should exhibit a 
turbulence onset near 0% and a turbulence slope above 2.5 ms/R-R 
interval (49), and BRS is around 4.87–34.07 across different age groups 
over 20 years old (50).

For the determination of eAD, we will quantify the incidence and 
magnitude of anomalies such as reduced RMSSD, HRT, and BRS, 
alongside increased low frequency (LF) power and an elevated LF/HF 
ratio, which are critical indicators. eAD will be characterized if three 
or more of these indicators exceed or fall below 2.5 standard deviations 
from age and sex-standardized values. Autonomic function measures 
will also be considered as continuous variables as well. For the primary 
analysis, we will use data from patients over their first 24 h following 
ICU admission to identify eAD, as well as examine the association of 
these measures with clinical outcomes. In exploratory analysis, we will 

describe autonomic function measures over the first 5 days following 
ICU admission.

4 Expected results

 (1) Quantification of individual eAD indices, defined as reduced 
RMSSD, reduced HRT, reduced BRS, decreased LF power, 
decreased LF/HF (45, 51) (less/greater than 2.5 SDs of age/
sex-standardized values) measured over 24 h 
following admission.

 (2) Quantification of eAD, defined as 3 or more (out of 5) indices 
less/greater than 2.5 SDs of age/sex-standardized values 
measured over 24 h following admission.

5 Discussion

This study’s novelty lies not in the development of new autonomic 
measures, but rather in three key aspects: (1) the first application of HRT 
analysis in sTBI patients, providing new insights into post-ectopic beat 
autonomic regulation in this population; (2) the comprehensive 
integration of multiple autonomic measures in a large cohort of sTBI 
patients, allowing for robust characterization of autonomic dysfunction 
patterns specific to this population; and (3) the potential to establish 
normative values and clinical thresholds for autonomic measures in acute 
sTBI, which are currently lacking. This approach will provide clinicians 
with a more complete understanding of autonomic dysfunction in sTBI 
and its relationship to clinical outcomes.

Following sTBI, eAD is a complex and multifaceted issue that can 
significantly impact a patient’s overall health and recovery. 
Characterizing eAD is crucial for risk assessment, customizing 
pharmacological interventions, and assessing rehabilitation strategies. 
While small studies indicate that eAD is associated with poor 
outcomes following sTBI, the duration and full trajectory of eAD has 
been poorly characterized. This protocol outlines the data analysis 
procedure for quantifying acute autonomic dysfunction using cardiac 
telemetry waveforms. We will collect and annotate waveform data 
from 550 patients in a clinical trial and quantify the incidence and 
magnitude of eAD indices after the first day of admission. We will 
characterize eAD as the presence of 3 or more indices less/greater than 
2.5 SDs of age/sex-standardized values measured over 24 h 
following admission.

In some patients, simultaneous ECG and ABP signals may 
be unavailable. To solve this problem, we will divide the collected data 
into subgroups with and without ECG information and examine eAD 
within both subgroups. We will report results of the planned study in 
one or multiple scientific papers in international peer-reviewed 
journals. We will note and deviations from this protocol, if any occur, 
in these publications.

When interpreting autonomic indices, particularly LF/HF ratio, 
several important caveats must be  considered. The traditional 
interpretation of LF/HF as a simple marker of sympathovagal balance 
is problematic in acute TBI patients for several reasons. First, 
respiratory rate, which significantly influences HF power, is often 
mechanically controlled in these patients. Second, medications 
commonly used in TBI management, such as beta-blockers and 
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vasopressors, directly affect autonomic modulation. Third, altered 
intracranial pressure and cerebral autoregulation can independently 
influence cardiovascular variability. Therefore, we  recommend 
interpreting LF/HF alongside other autonomic measures and within 
the context of each patient’s clinical status, medication profile, and 
ventilatory parameters. This multi-parameter approach provides a 
more reliable assessment of autonomic dysfunction than relying on 
any single metric alone.

There are still some limitations in this study. Currently, this study 
incorporates both linear (time and frequency domain) and non-linear 
(PRSA) approaches to analyze autonomic function. The inclusion of 
PRSA as a non-linear method is particularly valuable as it can capture 
complex patterns of cardiovascular regulation that may be missed by 
traditional linear analyses. Future studies might benefit from 
incorporating additional non-linear methods such as entropy 
measures and detrended fluctuation analysis to provide an even more 
comprehensive assessment of autonomic dysfunction in severe 
TBI. Another limitation of our study is the inability to fully control for 
numerous confounding factors that can influence autonomic function 
in the critical care setting. While we  account for age through 
stratification and statistical adjustment, several other important 
confounders remain uncontrolled. These include pharmacological 
interventions (such as vasopressors, analgesics, sedatives, beta-
blockers, and anti-edema medications like mannitol), mechanical 
ventilation parameters, arterial CO2 levels, and timing of various 
therapeutic interventions. Future studies should consider 
implementing more complex statistical methods to better account for 
these factors.
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Appendix

RMSSD is calculated between inter-beat intervals of sinus beats 
using the following formula:
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Sensitivity measures the proportion of true PVCs correctly 
identified by the algorithm, calculated as follows:
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=

+  
(2)

where TP stands for true positives and FN indicates false negatives.
Specificity quantifies the proportion of non-PVCs correctly 

identified, computed as follows:
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(3)

where TN stands for true negative; FP stands for false positives.
Accuracy represents the overall correctness of PVC detection, 

determined as following formula:
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where N is the total number of instances.
F1-score provides a balanced measure of the algorithm’s precision 

and recall, computed as follows:

 

( )
( )

2
1

precision recall
F

precision recall
∗ ∗

=
+  

(5)

where precision is the ratio of TP to the sum of TP and FP, and 
recall is the same as sensitivity.
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