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Background: This systematic review and meta-analysis investigated the 
relationship between somatic TP53 oncogenic variants and prognosis, 
specifically with overall survival (OS) and progression-free survival (PFS) in 
patients diagnosed with supratentorial glioblastoma.

Methods: We included longitudinal studies and clinical trials involving a 
minimum of 40 adult participants diagnosed with supratentorial glioblastoma, 
wherein the status of TP53 variants was assessed. We conducted searches in 
multiple databases. We assessed bias risk using a modified version of the Quality 
in Prognosis Studies tool, and the certainty of evidence was evaluated following 
the principles of the GRADE approach.

Results and conclusion: This study encompassed 23 papers involving 2,555 
patients, out of which 716 had reported oncogenic variants. TP53 oncogenic 
variants were associated with a reduced likelihood of 1-year survival (OR 0.52, 95% 
CI 0.29–0.94). However, our analysis did not reveal any significant impact of TP53 
variants on overall survival, progression-free survival, or 2-year survival. Therefore, 
this comprehensive analysis demonstrates that the presence of genetic variants in 
TP53 does not provide useful information for the prognosis of glioblastoma.

Systematic review registration: https://www.crd.york.ac.uk/prospero/, 
identifier CRD42021289496.
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1 Introduction

Glioblastoma stands as the most prevalent and aggressive primary malignant tumor of the 
central nervous system, representing a formidable clinical challenge (1). Despite comprehensive 
treatment strategies encompassing surgery and chemoradiation, patients diagnosed with 
glioblastoma face a daunting prognosis, marked by a median overall survival (OS) of merely 
15.6 months (2).
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The diagnostic landscape of central nervous system tumors 
underwent a significant transformation with the advent of the World 
Health Organization (WHO) 2016 classification of Tumors of the 
Central Nervous System (TCNS). This revision incorporated 
diagnostic molecular factors into the standard histopathological 
evaluation. Among these pivotal biomarkers, IDH1/2 somatic variants 
are critical in confirming the diagnosis of glial tumors, including 
glioblastoma, and distinguishing them from lower-grade counterparts 
(3). Furthermore, the WHO published a new TCNS classification in 
2021, focusing more on tumors’ genetic landscape. This update 
presents new tumor types and subtypes and includes a reclassification 
of specific tumors based on their genetic profile and a reviewed tumor 
taxonomy (4).

TP53 variants exhibit a dual presence within glioblastoma 
patients’ germline and somatic lineages (5). Germline pathogenic 
variants in TP53 are associated with Li-Fraumeni syndrome, a 
hereditary cancer predisposition syndrome (6). On the other hand, 
somatic TP53 oncogenic variants manifest at a prevalence ranging 
from 15 to 36% among glioblastoma cases (7, 8). These variants 
typically occur within exons 5–8, predominantly clustering in hotspots 
intricately linked to the DNA-binding domain of the TP53 protein (9).

While TP53 oncogenic variants have earned notoriety for their 
adverse prognostic implications in various cancer types, including 
breast cancer, esophageal carcinoma, and leukemia, their precise role 
in dictating outcomes for glioblastoma patients remains an enigma 
(10, 11). Despite their relatively common occurrence, a definitive 
association between TP53 status and prognosis in glioblastoma 
remains elusive.

Therefore, this systematic review and meta-analysis were 
undertaken to elucidate the intricate relationship between somatic 
TP53 oncogenic variants and the prognosis of individuals grappling 
with glioblastoma. We  define our inquiry utilizing the PICOTS 
framework, delineating the population, index prognostic factor, 
comparator prognostic factor, outcome(s), timing, and setting.

2 Methods

We followed the Preferred Reporting Items for Systematic Reviews 
and Meta-Analysis (PRISMA) Statement. We registered our systematic 
review in PROSPERO (registry number: CRD42021289496).

2.1 Eligible studies

Eligible studies: reports with publication dates after 2008, data 
from humans, a minimum sample size of 40 eligible individuals whose 
oncogenic variants status had been evaluated by DNA sequencing or 
PCR, longitudinal studies, and clinical trials. The minimum number 
of participants was 40 to avoid or minimize the risk of small-study 
effects and exclude case series.

Eligible participants: individuals with a pathologic confirmed 
diagnosis of glioblastoma, aged ≥18 years. If an article reported 
summary data from a mixed pediatric and adult cohort, 
we  pondered its inclusion only if the pediatric component was 
<10%. Tumors from eligible participants had to be localized in the 
intracranial supratentorial compartment of the brain. If an article 
provided specific information about anatomical localization, it was 

considered for inclusion only if the aggregated fraction of 
infratentorial and spinal tumors was less than 10%. We generally 
chose a 10% margin for pediatric patients and infratentorial tumors 
to avoid discarding studies with more prominent participants. 
Furthermore, individual patient data (IPD) were reported in most 
cases. Studies that included participants that did not meet all the 
inclusion criteria were included only if an out-lined sub-analysis of 
eligible participants was performed or if individual participant data 
(IPD) was reported.

In this work, we avoided the use of the word “mutation”; while this 
term is widely used to describe changes in the nucleotide sequence, it 
is no longer recommended; instead, we used the term “genetic variant” 
as proposed by the Joint recommendations of Clinical Genome 
Resource (ClinGen), Cancer Genomics Consortium (CGC), and 
Variant Interpretation for Cancer Consortium (VICC). Further 
classification of somatic genetic variants in the context of cancer is 
possible with the following five categories: oncogenic (O), likely 
oncogenic (LO), a variant of uncertain significance (VUS), likely 
benign, and benign (12).

2.2 Search strategy and screening process

Our systematic search, conducted until October 1st, 2022, 
encompassed several critical databases: PubMed, Web of Science, 
Scopus, Biblioteca Virtual en Salud (a search engine aggregating 53 
databases, excluding MEDLINE), and OpenGrey. We confined our 
search to English, Spanish, or Portuguese manuscripts.

To ensure rigor and impartiality, two authors conducted the initial 
screening of articles independently, employing the search algorithm 
detailed in Supplementary material 1. When disagreements arose 
concerning the inclusion or exclusion of specific articles, a constructive 
dialogue between the two investigators ensued. In cases where a 
unanimous decision remained elusive, a third author intervened as a 
tiebreaker to facilitate consensus.

2.3 Data extraction

Data from the included studies were extracted and collected in 
spreadsheets individually by five authors: DE, KDG, KGRC, JACE, 
and BCD—another corroborated data extracted by one author. Time-
to-event data comparing individuals grouped by TP53 for overall 
survival (OS) and progression-free survival (PFS) outcomes were 
extracted as hazard ratios (HRs). In contrast, survival data presented 
as dichotomous (i.e., 1-year or 2-year survival) was recorded as odd 
ratios (ORs). Adjusted effect measurements were preferred over 
unadjusted, particularly when adjusting included the following 
molecular and clinical variables: IDH1 or IDH2 oncogenic variant 
status, age, sex, the extent of resection, chemotherapy, radiotherapy, 
and functional status. The 95% confidence intervals (95% CI) and p 
values were also extracted for all effect measurements. If the 
information of interest was not directly provided in the article but IPD 
was available, we  calculated HRs and ORs, adjusting for relevant 
variables reported in the IPD. Without clearly reported HRs or 
individual patients’ data, HRs were calculated from Kaplan–Meier 
curves if image resolution was adequate. Heterogeneity was evaluated 
with the Cochran Q test and the Higgins I2 statistics.

https://doi.org/10.3389/fneur.2024.1490246
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Esperante et al. 10.3389/fneur.2024.1490246

Frontiers in Neurology 03 frontiersin.org

2.4 Assessment of risk of bias

The risk of bias was assessed with a modified version of the 
Quality in Prognosis Studies (QUIPS) tool (Supplementary material 2) 
(13). This modified QUIPS tool was based on the version used by 
McAleenan et al. (14).

2.5 Data synthesis

We used a random effects model and evaluated the risk of 
publication bias in each meta-analysis if it included ten or more 
studies. We expected to synthesize time-to-event survival data through 
HRs; therefore, we used a modified version of Peter’s test, proposed by 
Debray, Moons, and Riley (15). For meta-analyses pooling odds ratio, 
we used Egger’s test. Contour-enhanced funnel plots were created with 
the “funnel” command from the package metaphor for R (v. 3.8-1). 
Finally, the certainty of evidence evaluation was carried out according 
to the principles proposed by the GRADE approach (16).

3 Results

3.1 Study selection

Our initial database search yielded a substantial pool of 14,820 
manuscripts. After rigorous screening and assessment, a total of 23 
manuscripts were deemed eligible for inclusion in our analysis, as 
illustrated in Figure 1 and Table 1 (7, 8, 17–37). Notably, it’s worth 
mentioning that the publication authored by Yang et  al. (37) 
encompassed two distinct studies. It’s also important to note that three 
of the initially considered reports, specifically those authored by 
Felsberg et al. (7), Jesionek-Kupnicka et al. (23), and Motomura et al. 
(26), lacked the essential quantitative data required for inclusion in the 
quantitative synthesis. Therefore, they were only summarized in the 
Systematic Review. The studies included in our systematic review are 
summarized in Table 2.

3.2 The impact of TP53 oncogenic variants 
on OS

Fifteen reports comprising 16 studies evaluated the effect of 
TP53 oncogenic variants on OS, and only 13 (14 studies) provided 
enough quantitative data for the meta-analysis. The 14 studies 
reported 1,306 participants. After quantitative pooling, the 
occurrence of TP53 variants was not significantly associated with 
OS (HR: 1.00, 95% CI: 0.76–1.19, p = 0.98), as observed in Figure 2. 
There was evidence of moderate heterogeneity in the meta-analysis 
(Cochran’s Q test p-value: 0.07), with an I2 of 40%. The heterogeneity 
found in the meta-analysis came from the studies reported by Wang 
et al. (33) and Parsons et al. (27). When both studies were removed 
from the analysis, we calculated an I2 of 0%. One of the possible 
explanations is that the patients reported in these two studies were 
the youngest among all the reviewed manuscripts. In addition, the 
study by Wang et al. (33) was designed as a clinical trial.

A post hoc subgroup analysis separated reports into those with 
selected exons (exons 4 or 5 through 8) and those where all exons were 

sequenced. This subgroup analysis failed to explain the heterogeneity 
found; the I2 in the “selected exons” subgroup was 55%, and in the “all 
exons” subgroup, the I2 was 10% (Supplementary Figure S1). No gross 
asymmetry was observed in the funnel plot (Supplementary Figure S2).

We performed an additional analysis to evaluate the OS in a 
subgroup of patients with IDH-wt GB (Figure 3). The information from 
8 studies with complete details (n = 1,125) found no effect on OS (HR: 
0.96, 95% CI: 0.71–1.32, p = 0.82). Significant heterogeneity was 
uncovered for a Cochran’s Q test p-value of 0.06 and an I2 of 49%. 
Subgroup analyses for age or sex could not be accomplished due to 
insufficient information. Most of the heterogeneity in this meta-analysis 
came from the validation cohort (36) reported. A significant asymmetry 
was observed in the contour-enhanced funnel plot from this meta-
analysis; all the studies fell in the white (non-significant) region, similar 
to where their missing counterparts would have been plotted, without 
mainly modifying the total effect size (Supplementary Figure S3).

3.3 The impact of TP53 oncogenic variants 
on PFS

Five studies (four reports) reporting the information on 690 
patients were considered to measure the association between TP53 and 
PFS. The overall effect was insignificant (HR: 0.90, 95% CI: 0.79–1.39, 
p = 0.55), as observed in Figure 4. Moderate heterogeneity (Cochran’s 
Q test p-value: 0.20, I2 = 34%) was found. Removing the studies 
published by Amer et al. (17) and the validation cohort from Yang 
et al. (37), the I2 value was <20%. Notably, the population in the Amer 
et al. (17) study reported only gliosarcoma, an uncommon GB variant.

In the meta-analysis carried out in individuals with IDH-wt 
tumors, described in Figure  5, four studies from three different 
manuscripts were pooled, reporting information from 592 patients. 
The total effect was non-significant (HR: 0.95, 95% CI: 0.73–1.25, 
p-value: 0.72). No evidence of heterogeneity was present (Cochran’s Q 
test p-value: 0.42, I2 = 0%). In the same way, as other meta-analyses in 
the review, all studies had domains not rated as presenting with a low 
risk of bias. The Yang et al. (37) validation cohort was responsible for 
the funnel plot’s notorious asymmetry in both meta-analyses. Further 
exploration of the reasons behind the imprecision in this study was 
impossible due to inadequate reporting of the recruitment process and 
the clinical and demographical characteristics of the cohort.

3.4 TP53 prognostic effect on dichotomous 
outcomes

Four meta-analyses evaluating the influence of TP53 oncogenic 
variants on dichotomous outcomes for 1-year survival and 2-year 
survival were done. Each of them analyzed separately all 
glioblastoma patients and those with IDH-wt tumors. Six studies 
were pooled with information from 350 patients. TP53 somatic 
oncogenic variants were associated with a lower possibility of 
1-year survival in all patients with GB (OR: 0.52, 95% CI: 0.29–
0.94, p-value: 0.03). This meta-analysis found no heterogeneity 
(Cochran’s Q test p-value: 0.44, I2 = 0%). However, all the included 
studies had two or three domains affected by moderate/unclear or 
high risk of bias, particularly the study confounding domain, as it 
was not rated with a low risk of bias. The corresponding forest plot 
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is represented in Figure 6. In the contour-enhanced funnel plot, 
there was asymmetry in one study in the plot’s p < 0.01 area (gray-
shaded). In contrast, the remaining four studies fell in the white 
area, suggesting a low likelihood of publication bias.

No significant effect was observed for any of the other meta-
analyses. The meta-analyses for the 1-year survival among individuals 

with IDH-wt tumors and for the 2-year survival among all individuals 
with glioblastoma showed a trend toward increased mortality in 
individuals with oncogenic variants of TP53 without statistical 
significance. Details about the three remaining meta-analyses are 
presented in Table  3, and their forest plots can be  found in 
Supplementary Figures S1–S4. Asymmetries in the 1-year survival of 
patients with IDH-wt glioblastoma and the 2-year survival of all 
patients funnel plots were caused by Tabone et al. (32) and Wang et al. 
(33), respectively, with both having several domains in their risk of 
bias assessment rated as having unclear/moderate or high risk of bias.

3.5 Summary of findings

Table  4 presents the outline of the results from our 
systematic review.

4 Discussion

In this systematic review and meta-analysis, we  analyzed the 
impact of somatic TP53 oncogenic variants on OS, PFS, and 1-year or 
2-year survival in patients with glioblastoma. The presence of TP53 

FIGURE 1

PRISMA flowchart for the inclusion of articles in this review.

TABLE 1 PICOTS question of this systematic review.

Population Adults diagnosed with supratentorial GB

Index prognostic factor

Presence of somatic TP53 genetic variants detected in 

tumoral tissue with at least one of the following 

methods: PCR, high-throughput DNA sequencing, 

Sanger sequencing, or Maxam-Gilbert sequencing

Comparator index factor Not applicable

Outcomes

Overall survival (time-to-event data, in months), 

progression-free survival (time-to-event data, in 

months), 1-year survival (dichotomous outcome, 

rate), 2-year survival (dichotomous outcome, rate), 

5-year survival (dichotomous outcome, rate).

Time Any follow-up period

Setting Any setting
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oncogenic variants was associated with a lower 1-year survival 
possibility (OR: 0.52, 95% CI: 0.29–0.94) but was not related to other 
outcome measures, namely OS, 2-year mortality, and PFS. However, 
due to the nature of the meta-analysis and the studies included, it 
remains essential to question the integrity of the effect seen at the 
1-year mark.

We performed four meta-analyses with data obtained from 
longitudinal studies and clinical trials reporting a minimum of 40 
adult participants diagnosed with supratentorial glioblastoma, 
including cases of IDH-wt glioblastoma, which is a common 

finding (1). All included reports were from individuals of European 
or East Asian descent, while individuals of other ethnic 
backgrounds were underrepresented, which could bias the study. 
We selected only reports that included the status of somatic TP53 
oncogenic variants. However, future studies on TP53 variants 
should ideally include comparison between different variants, e.g., 
loss versus gain of function; DNA-binding domain (exons 5–11) 
versus transactivation domain of the p53 protein; as well as 
modifier genes and/or interaction with other genes, among 
other considerations.

TABLE 2 Studies included in the systematic review.

References Country Median age at 
diagnosis

Method to detect TP53 
variants

Number of patients (TP53 
oncogenetic variant)

Outcomes 
evaluated

Clark et al. (19) USA 60 PCR-SSCP (exons 5–8) 48 (11) OS, 1y-mortality

Parsons et al. (27) USA 52 IDH-wt: 55.5 WES 87 (25) IDH-wt: 76 (25) OS, 1y, 2y

Felsberg et al. (7) Germany 56 PCR-SSCP (exons 4–10) 65 (13) OS

Weller et al. (34) Germany 60.1
PCR-SSCP, then Sanger sequencing 

(exons 5–8)
292 (45) OS, PFS

Benito et al. (18) Spain 53 Sanger sequencing (exons 5–8) 45 (8) OS, 1y, 2y

Motomura et al. (26) Japan 55 Sanger sequencing (exons 5–8) 68 (23) OS

Hartmann et al. (21) Germany
Not reported for the 

whole cohort
PCR-SSCP, then Sanger sequencing 344 (55) 5yb

Jesoniek-Kupnicka 

et al. (22)
Poland 61 IDH-wt: 60 Sanger sequencing (exons 5–8) 41 (11) IDH-wt: 40 (10) OS, 1y, 2y

Stancheva et al. (30) Bulgaria 56 Sanger sequencing (exons 5–8) 106 (37) OS

Tabone et al. (32) Australia 63.3
Targeted sequencing (TP53 regions: 

NR)
IDH-wt: 43 (11) 1y, 2y

Wang et al. (33) China 49.7
PCR-SSCP, then Sanger sequencing 

(exons 4–8)
68 (24) OS, 1y, 2y

Sim et al. (29) South Korea 52.8a WES 75 (25) OS

Jesoniek-Kupnicka 

et al. (23)
Poland 63 Sanger sequencing (exons 5–8) 49 (12) OS

Liu et al. (24) USA IDH wt: 62 WES IDH-wt: 138 (32) OS

McNulty et al. (25) USA 59 IDH wt: 61 Targeted sequencing (all exons) 61 (21) IDH-wt: 54 (16) 1y, 2y

Yang et al. (36) Korea IDH-wt: 57 WES, Targeted sequencing (all exons) IDH-wt: 43 (13) OS, PFS

Qin et al. (28) USAd 57 WES 149 (48) OS

Stasik et al. (31) Germany IDH-wt: 62 Targeted sequencing (all exons) IDH-wt: 55 (12) OS, 1y, 2y

Dono et al. (20) USA IDH-wt: 61 Targeted sequencing (all exons) IDH-wt: 282 (85) OS, PFS

Wong et al. (35) China IDH-Oe: 38 Targeted sequencing (all exons) IDH-O: 53 (30) OS

Amer et al. (17) USA 59 Targeted sequencing (all exons) 41 (30) OS, PFS

Pandey et al. (8) USA 58-59f Targeted sequencing (whole gene) 109 (40) OS, PFS

Yang et al. (37) 

(Discovery cohort)
USA 62.2 IDH-wt: NR Targeted sequencing (all exons) 185 (68) IDH-wt: NR OS, PFS

Yang et al. (37) 

(Validation cohort)
USA NR Targeted sequencing (all exons) 108 (42) IDH-wt: NR OS, PFS

aOnly mean was reported.
bThe outcome of 5-year survival was contemplated in the protocol, but only one study provided enough information.
cThe analyzed cohort was TCGA, IDH-wt patients only.
dThe analyzed cohort was TCGA, all patients.
eThis was the only study analyzing enough IDH-mut patients.
fAges were reported separately for control and treatment groups.
IDH, isocitrate dehydrogenase; NR, not reported; O, oncogenic variant (i.e., IDH-O); mt, mutation; OS, Overall survival; PFS, Progression-free survival; TP53, p53 gene; wt, wildtype; PFS, 
Progression-free survival; TP53, p53 gene; wt, wildtype.
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Considerable heterogeneity was observed in several of the meta-
analyses performed for this review, and subgroup analysis was 
impossible due to incomplete clinical and demographic characteristics 
reporting. The heterogeneity might be attributed to three main factors. 
First, there was insufficient statistical adjustment since only two 
reports in all the systematic reviews were rated with a low risk of bias 

in the study confounding domain. Second, differences in medical 
treatments may be an important source of heterogeneity, but it was not 
possible to record them since only a few studies described 
pharmacological or radiotherapeutic regimens. Third, population 
differences were exemplified by the disappearance of heterogeneity 
after eliminating studies with younger patients from the OS 

FIGURE 2

Forest plot of the meta-analysis evaluating the impact of TP53 oncogenic variants on OS, with a summary of the risk of bias assessment through the 
QUIPS tool. Notice that all studies had at least one domain of the QUIPS tool rated with unclear, moderate, or high risk of bias, particularly the study 
confounding domain, which was only considered low risk in (36) discovery cohort.

FIGURE 3

Forest plot of the meta-analysis evaluating the impact of TP53 oncogenic variants on OS in individuals with IDH-wt glioblastomas, with a summary of 
the risk of bias assessment through the QUIPS tool. All studies had suboptimal ratings according to the QUIPS tool. Risk of Bias domains: A, Study 
participation; B, Study attrition; C, Prognostic factor measurement; D, Outcome measurement; E, Study confounding; F, Statistical analysis and 
reporting. 95% CI, 95% Confidence interval; HR, Hazard ratio; IV, Inverse variance; SE, Standard error.
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meta-analysis in all individuals with glioblastoma. Other reports with 
an important difference in their study population were those of Amer 
et  al. (17) and Yang et  al. (37), who only included patients with 
gliosarcoma. The heterogeneity and asymmetry likely observed in the 
funnel and forest plots that included these studies derive, at least in 
part, from the inclusion of gliosarcoma.

The TP53 gene is the most mutated in human cancers. Its protein, 
p53, acts as a transcription factor that regulates critical processes such 
as cell cycle control, senescence, apoptosis, DNA repair, and genomic 

stability, thereby protecting against cancer development. Additionally, 
p53 influences cellular metabolism, immune responses, ferroptosis, 
autophagy, and the tumor microenvironment. The activity of p53 is 
tightly regulated by various proteins, most notably MDM2 and 
MDMX. In turn, p53 directly interacts with or modulates the 
expression of multiple genes involved in these pathways, such as XPC, 
GADD45, CDKN1A, Cyclin B, Bax, Bak, Fas/FasL, SCO2, and 
G6PDH, among others. However, genetic variants in TP53 not only 
impair these protective roles but can also endow mutant p53 with 

FIGURE 4

Forest plot of the meta-analysis evaluating the impact of TP53 O/LO genetic variants on PFS in all patients with GB, with a summary of the risk of bias 
assessment through the QUIPS tool. All studies had suboptimal ratings in at least one domain according to the QUIPS tool. Risk of Bias domains: A, 
Study participation; B, Study attrition; C, Prognostic factor measurement; D, Outcome measurement; E, Study confounding; F, Statistical analysis and 
reporting. 95% CI, 95% Confidence interval; HR, Hazard ratio; IV, Inverse variance; SE, Standard error.

FIGURE 5

Forest plot of the meta-analysis evaluating the impact of TP53 oncogenic variants on PFS in patients with IDH-wt glioblastomas, with a summary of 
the risk of bias assessment. The pooled effect was not statistically significant. All studies had suboptimal ratings in at least one domain according to the 
QUIPS tool. Risk of Bias domains: A, Study participation; B, Study attrition; C, Prognostic factor measurement; D, Outcome measurement; E, Study 
confounding; F, Statistical analysis and reporting. 95% CI, 95% Confidence interval; HR, Hazard ratio; IV, Inverse variance; SE, Standard error.
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oncogenic properties, driving cancer progression, metastasis, and 
resistance to therapies. Given the complexity of TP53 interactions and 
actions, it is necessary that future research should include not only the 
study of TP53 but also its multiple interactions (38, 39). TP53 variants 
can be classified based on their functional effects: loss of function 
(LOF), resulting in haploinsufficiency; gain of function (GOF); and a 
dominant-negative effect (DNE), which impairs transactivation (6). 
Specific TP53 variants have been shown to influence treatment 
responses and survival outcomes. For example, mutations at codon 
273 in astrocytoma are associated with significantly longer overall 
survival (OS) and increased chemosensitivity compared to wild-type 
TP53, whereas in oligodendroglioma, TP53 mutations correlate with 
shorter OS (40). Additionally, in vitro studies have demonstrated that 
GOF mutations at codons 237 and 273 are linked to resistance to 
temozolomide treatment (41). Mutated TP53 protein, particularly 
within the DNA-binding domain, often forms aggregates with other 
proteins, including wild-type p53, leading to its inactivation. These 
aggregates further exacerbate the loss of normal tumor-suppressor 
activity (42). TP53 variants not only cause misfolding of the protein 
but also promote the formation of biomolecular condensates and 
aggregates with amyloid-like properties, particularly in the form of 
amyloid oligomers located in the nucleus, participating in cancer 
progression through loss-of-function, negative dominance, and gain-
of-function pathways (43). Studies have shown the presence of 
amyloid oligomers of TP53  in various tumor tissues. Notably, 

glioblastoma cells resistant to TMZ chemotherapy exhibited 
significantly higher levels of these amyloid oligomers of mutated TP53 
compared to glioblastoma cells with wild-type TP53 or hotspot TP53 
mutations not associated with chemoresistance (44). This finding 
suggests a role for amyloid-like TP53 oligomers in the chemoresistance 
phenotype of malignant and invasive brain tumors. To study the 
mechanism by which mutated TP53 forms these amyloid-like 
aggregates, Petronilho et al. demonstrated that during the aggregation 
process, the DNA binding domain of TP53 undergoes phase 
separation before aggregation. Moreover, mutant proteins such as 
p.Met237Ile and p.Arg249Ser, undergo solid phase transition faster 
than the WT protein (45).

Importantly, this knowledge about the formation of aggregates by 
mutated TP53 has enabled the development of therapeutic strategies 
targeting the phase transitions to solid-like, amorphous, and amyloid-
like states (43) or the phase separation process of TP53 (45). While 
our study aimed to correlate the presence of TP53 variants with 
prognosis, it is now clear that future research should also consider the 
influence of TP53 mutations on treatment response.

Several in vitro studies have also investigated targeting TP53 and 
MDM2 in glioblastoma, emphasizing the necessity of wild-type TP53 
for therapeutic efficacy, as certain TP53 variants may accelerate tumor 
progression or alter treatment responses. There is no strong evidence 
linking TP53 mutational status directly to standard therapy response 
in glioblastoma (46, 47).

FIGURE 6

Forest plot of the meta-analysis evaluating the impact of TP53 oncogenic variants on 1-year survival in all patients with glioblastoma, with a summary 
of the risk of bias assessment. Overall effect size showed a decreased 1-year survival in individuals with TP53 genetic variants. Risk of Bias domains: A, 
Study participation; B, Study attrition; C, Prognostic factor measurement; D, Outcome measurement; E, Study confounding; F, Statistical analysis and 
reporting. 95% CI, 95% Confidence interval; HR, Hazard ratio; IV, Inverse variance; SE, Standard error.

TABLE 3 Results of the meta-analyses evaluating dichotomous outcomes.

Overall effect Heterogeneity

Meta-analysis Participants OR (95% CI) p-value I2 p-value

1-year survival, patients with IDH-wildtype tumors 257 0.88 (0.46–1.70) 0.71 7% 0.37

2-year survival, all patients 286 0.61 (0.22–1.65) 0.33 16% 0.32

2-year survival, patients with IDH-wildtype tumors 243 1.08 (0.40–2.91) 0.88 0% 0.92
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Despite these insights, our review could not perform a meta-
analysis of the impact of TP53 variants on survival or treatment 
response due to insufficient data on chemotherapy protocols and the 
lack of individual patient data. As a result, there is currently no robust 
evidence to definitively establish the clinical relevance of these variants 
in this context.

The limitations include that some studies presented 
underpowered multivariate analyses, resulting in wide confidence 
intervals. According to the QUIPS tool, most studies had at least one 
domain with a suboptimal rating of risk of bias. Also, we could not 
evaluate the effect of TP53 oncogenic variants in patients with IDH-
mutant tumors due to the low number of patients reported. Another 
significant limitation is that this is an analysis of the impact of only 
TP53 without the interaction of this gene with other genes since few 
studies reported this gene–gene interaction. Despite these 
shortcomings, the findings of the present systematic review were 
consistent with the selected population and the measurements done.

A systematic review has certain limitations, particularly the lack of 
control over key aspects of the included studies, such as the number of 
individuals analyzed, the data reported in each manuscript, and the 
follow-up periods. In the case of glioblastoma patients with a median 
survival of approximately 15 months, studies with follow-up periods 
exceeding 2 years are rare. Regarding sample size, we carefully selected 
studies that included a minimum of 40 patients, and although different 
techniques were used in the selected papers to identify TP53 gene 
variants (PCR-SSCP, Sanger sequencing, NGS, and WES), each of these 
methods is widely accepted and validated for this purpose due to their 
high sensitivity and specificity. Furthermore, we found a 28% prevalence 
of TP53 variants (716 out of 2,555 individuals), which is consistent with 
rates reported for glioblastoma (46). Concerning treatment regimens, 
glioblastoma, being relatively rare and associated with limited life 
expectancy, has few well-established protocols, resulting in variability 
in therapeutic approaches based on individual patient factors. The 
standard treatment remains the STUPP protocol, although alternative 
regimens explored in some countries have not significantly impacted 
survival, as demonstrated by our group (48). Another limitation of our 
study is the low prevalence of the disease, which results in a limited 
number of published cases. However, using meta-analysis allowed us to 
achieve statistical significance by weighing the articles based on the 
number of cases, and while a larger number of cases could provide 
greater statistical power, the current analysis remains robust.

The results gathered in this systematic review and its meta-
analysis are evidence for solving the controversy surrounding the 

prognostic implication of TP53 genetic variants; for now, the 
evidence does not support the routinary use of TP53 sequencing 
as a marker of GB prognosis. In particular, this is important for 
low-income countries, where efforts should focus on the 
identification of markers that have demonstrated clinical utility for 
diagnosis, prognosis and/or choice of treatment, such as the 
identification of genetic variants in IDH1/2 or MGMT promoter 
methylation should be a priority.

5 Conclusion

Glioblastoma is a highly aggressive disease with a survival rate of 
about 15 months, making improvements in diagnosis critical. In this 
systematic review and meta-analysis, TP53 oncogenic somatic variants 
were associated with decreased 1-year survival rates in glioblastoma 
patients; however, no significant correlations were found with overall 
survival, 2-year mortality, or progression-free survival. Based on 
current evidence, TP53 sequencing does not appear to be routinely 
necessary for glioblastoma prognosis. This information is especially 
relevant for institutions and countries with limited resources. 
Therefore, this comprehensive analysis demonstrates that the presence 
of genetic variants in TP53 does not provide useful prognostic 
information for glioblastoma.
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